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Abstract. We introduce the Tepalcatl project, an ongoing bi-disciplinary
effort conducted by archaeologists and computer vision researchers, which
focuses on developing statistical methods for the automatic categoriza-
tion of potsherds; more precisely, potsherds from ancient Mexico includ-
ing the Teotihuacan and Aztec civilizations. We captured 3D models
of several potsherds, and annotated them using seven taxonomic crite-
ria appropriate for categorization. Our first task consisted in exploiting
the descriptive power of two state-of-the-art 3D descriptors. Then, we
evaluated their retrieval and classification performance. Finally, we in-
vestigated the effects of dimensionality reduction for categorization of
our data. Our results are promising and demonstrate the potential of
computer vision techniques for archaeological classification of potsherds.

1 Introduction

The application of computer vision technologies for the preservation, manage-
ment, and analysis of cultural heritage artifacts has witnessed a rapid growth
during the last decade [1]. This is especially true with regard to the creation
and use of digital 3D models, which enable capabilities that would not be avail-
able using the original artifacts, such as automatic and semi-automatic content
analysis [2, 3], virtual reconstructions[4, 5], more efficient archiving [6, 7], sharing
documentation online [1, 7], training of novel scholars, etc.

An area of especial interest is the statistical analysis of features observed on
3D models of potsherds with the purpose of categorizing archaeological pottery
[3], which is one of the most important jobs in archaeology [2, 4]. In this work,
we use the term categorization with a slight different connotation than that
of classification. More precisely, categorization defines a series of decisions that
have to be made about a sherd of interest, which is different from the traditional
classification scenarios where a single class label is assigned to a query instance.
For example, besides of classifying a sherd in function of the type of vessel it
comes from, we might also be interested in knowing the type of rim it has. These
distinctions are of high relevance, as knowing certain of such characteristics helps
archaeologist to infer the final class of the sherd.

This paper introduces the Tepalcatl project, an ongoing effort that brings
together archaeologist from the National Anthropology and History Institute of
Mexico (INAH) and researchers in computer vision. This project is oriented to
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developing a system for the automatic categorization of ceramic sherds. Fig. 1,
shows examples of Aztec potsherds used as study case in this work.

(a) Cajete. (b) Cajete Tripode. (c) Cup.

Fig. 1: Pictures provided by the project Urban Archaeology of the INAH di-
rected by the archaeologist Raul Barrera. These artifacts are from excavations
conducted near the Templo Mayor in Mexico City.

The contributions of this paper are as follows.

1. We design a recognition system for potsherd. First, we acquired a set of 3D
surfaces of sherds belonging to specific vessel shapes. These model instances
are then used for semi-supervised training of the recognition system.

2. We reformulate the archaeological task of sherd categorization into a com-
puter vision problem, namely 3D image classification and retrieval. For this
purpose, we defined seven different taxonomic criteria for which the recog-
nition system is able to perform sherds categorization. For example, it is
able to distinguish between several types of rim; or using another criterion,
it is able to recognize the type of curvature of the fragment. Note that the
training of the system happens only once, but it works well with the seven
different criteria nevertheless.

3. We exploit the discriminative power of two state-of-the-art local descriptors,
namely the Scale Invariant Feature Transform (SIFT) [8, 9] and the Spin Im-
ages descriptor [9, 10]. These descriptors are invariant to rotation and scale
transformations, and therefore avoid the need of a pre-processing step to nor-
malize the scale and orientation of the sherds, as required by other methods
[3, 11]. Our approach proved to be effective for potsherd categorization.

Our approach allows examining different combinations of local descriptor,
dictionary sizes and taxonomic criteria in order to find out which one achieves
the best performance. To the best of our knowledge, this approach has not been
tried before in archaeological classification.

The rest of this paper is organized as follows. Section 2 describes the details
of the Tepalcatl project. Section 3 discusses detailed work in areas of digital
preservation of pottery and their automatic analysis. Section 4 summarizes the
statistical descriptors that we used. Section 5 explains the data that we used
and our experimental protocol. Section 6 discusses our findings. Finally, section
7 presents our conclusions and future directions for our project.
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2 Tepalcatl project

The analysis and classification of pottery sherds constitutes one of the most im-
portant jobs in archaeology. It provides cultural information of past societies at
multiple scales, from the identification of human activity areas to the determi-
nation of site chronology and/or the elucidation of regional economic systems.

Unfortunately, a detailed analysis of ceramic fragments is also one of the most
cumbersome and time-consuming tasks for archaeologists. This is due not only
to the long learning curve involved in mastering a ceramic classification system
but also to the vast quantity of sherds normally recovered from the field. A
typical excavation in Central Mexico, for example, produces tens of thousands of
fragments and a single site may contain ceramics dating from a very long period,
encompassing occupations of the Teotihuacan, Toltec and/or Aztec civilizations,
that is, sherds dating from approximately 100 B.C.E. to 1521 C.E. Fig. 2 shows
the settlement region of the Teotihuacan, Toltec and Aztec civilizations.

(a) Settlement region of Teotihua-
can, Toltec, and Aztec cultures.

(b) Purple circle: Teotihuacan;
blue: Toltec; red: Aztec.

Fig. 2: Settlement region of Teotihuacan, Toltec (city of Tula), and Aztec (city
of Tenochtitlan) cultures. (a) Localization within current Mexico. (b) Details of
(a) indicating the capital cities.

2.1 Sherd categorization

A very relevant property in ceramic analysis is shape [3]. Archaeologists are
expected to reconstruct the profile of a whole vessel by examining the form of
a surviving fragment. A traditional method to accomplish this task, has been
a visual comparison of a sherd with a manual drawing of the silhouette and
diameter of vessels already known. However, this approach is time consuming and
requires the knowledge of highly trained people. A common practice to reduce the
complexity of the task is selecting only fragments that are considered diagnostic
to identify important ceramic types. This includes certain body parts like rims,
legs, handles, etc., which are then used in a more detailed typological analysis to
deduce chronology, cultural style, etc. Fig. 3 shows examples of potential sherds
from the type of ceramic we use.
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Fig. 3: Potential sherds from the type of pottery pieces in our project.

During the past decade, some professionals have been experimenting with dig-
ital technologies oriented to reducing learning curves and improving the quality
of the classification process. One of the most interesting proposals has been the
acquisition of 3D models of sherds with the purpose of applying mathematical,
computer vision and/or machine learning techniques that perform classifications
more accurately in an automatic or semi-automatic way [2, 3]. The extraction of
3D digital data has also brought extra benefits, such as the possibility to under-
take new types of content analyses, as well as an easier sharing of information
among professionals, the design of better ceramic documentation and archiving
systems [6, 7], and the performance of virtual reconstruction of vessels [4, 5].

2.2 Goals of the Tepalcatl project

To help in this categorization endeavor, we decided to experiment with new tech-
niques, hoping that a better and more efficient classification method will emerge
from successive iterations that benefit from the join efforts of archaeologists and
computer vision specialists.

Namely, the goals that our project pursuits are:

1. Design and compilation of a 3D dataset. We will digitize a large col-
lection of potsherds from the Aztec and Teotihuacan cultures that ranks in
the order of tens of thousands. This task will generate a new digital dataset
that poses several challenges in terms of visual description and automatic
categorization. This dataset will be rich in terms of labels, as its instances
will be annotated using different taxonomic criteria.

2. Advance the state-of-the-art in 3D classification. We will develop new
methods for better description and representation of 3D models. These new
models will overcome limitations potentially found in current approaches.
Also, we will explore more efficient methods for classification.

3. Improve the archaeological process of ceramic classification. Using
different taxonomic criteria (explained in section 5.1), we will conduct sev-
eral analyses of similarity that could lead us to design efficient methods for
accurate categorization of potsherds.

4. Further assessment. We will assess the potential that our and other meth-
ods that could have to deal with more archaeological tasks, such as retrieval
of complete vessels from potsherds, and virtual reconstruction of vessels.
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2.3 Work in data collection

Our project contemplates the study of potsherds belonging to the ancient Teoti-
huacan (100-600 C.E.) and Aztec civilizations (1325-1521 C.E.). Teotihuacan
was the first urban center in central Mexico and produced one the most influ-
ential cultures in the ancient Americas, whereas the Aztecs were the dominant
civilization in the same region by the time of the European arrival. Remains of
both cultures, including ceramic sherds, are often found in different strata of the
same archaeological sites. Fig. 2 shows the settlement location of these cultures.

Aztec III Black on Orange ceramics. The potsherds used in this work
belong to a ceramic style known as “Aztec III Black on Orange”, which is one
of the most important wares in Mesoamerican archaeology. Along with the so-
called Aztec I, II and IV it is part of the sequence that helps understand the
cultural evolution in Central Mexico during Postclassic times [13].

The geographic distribution of Aztec III Black on Orange covers the entire
Basin of Mexico. Vessels of this type were part of the utilitarian assemblage
common in households during the late Aztec period (1350-1520 C.E.). For this
reason, it is considered a diagnostic ware to infer the presence of Aztec settle-
ments as opposed to those controlled by previous ethnic groups. Another reason
for its importance is that the emergence of this style coincides with the formation
and development of the Aztec empire.

Vessels belonging to this ceramic complex show black painted designs drawn
on a polished orange surface. The designs are formed by thin brush strokes
that follow parallel and curved lines combined with other motifs, such as birds,
fishes, plants, geometric figures etc. The designs are found both on the interior
and exterior surfaces of the vessels. Fig. 1 shows examples of the Aztec III Black
on Orange ceramics. A feature of this ceramic complex, and a major challenge
for the classification of sherds, is the abundance of shapes given to the vessels.
The most common are cajetes with three legs (Fig. 1b), comales (a flat circular
surface to cook corn tortillas), bowls, jars, pots, plates and the so-called apaxtles.

A great quantity of this type of ceramics was collected on the surface during
the 1970’s by the Valley of Mexico Survey Projects [14–17]. During the 1990’s,
paste composition and stylistic analyses of those materials was performed, com-
paring their geographic distribution with historically-documented polities [18,
19]. They found that a number of decorative motifs are exclusive to particular
paste groups and managed to identify three main production areas in the Basin
of Mexico. This in turn allowed to hypothesize about the exchange systems of the
Aztec empire. Thanks to these studies we know in greater detail the economic
relations between dependent communities and the Aztec capital.

Most recently, Mexican researchers have uncovered new material inside the
boundaries of the Sacred Precinct of Tenochtitlan, the main religious center of
the Aztec capital (whose remains lay in close proximity to the main square in
Mexico City). The findings have drawn the attention of many specialists, mainly
because it proceeds from controlled excavations as opposed to surface surveys.
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However, the great quantity of findings has made it difficult to classify and
publish the reports.

3 Related work

Computer-aided classification and reconstruction of ceramics has been a sub-
ject of research for at least 20 years, with pioneering work by Hall and Lafling
[20], who created a software package called NEWTS for drawing, archiving, and
editing ceramic profiles using B-spline functions.

Since then, the focus has continued to be the acquisition of 2D profiles,
either from sherds or from complete vessels, which can then be classified by
archaeologists using their curvature functions [3]. A notable example of these
efforts is the creation of the so-called profilograph (http://www.dolmazon.de/
profilograph_e.htm), a device to draw profiles from 3D objects (i.e. sherds).

Thanks to the growing accessibility of 3D laser scanners, some researchers
have shown the advantages of acquiring 3D models of ceramics with the pur-
pose of extracting automatically the 2D profiles [4–6, 21–25]. They based their
work on the assumption that the majority of vessels studied by archaeologists
are axially symmetric. For perfectly symmetric vessels the profile corresponds
to a cross section in the direction of the rotational axis. Thus, by calculating
the rotational axis, different methods are able to draw the profile of the ves-
sels with different levels of success. Unfortunately, archaeological vessels are not
perfectly symmetric, especially if they were hand-crafted as opposed to thrown-
wheel manufactured. Therefore, extracting the rotational axis possesses serious
challenges [3]. Perhaps the best method to address this tasks, is the one proposed
by Karasik and Smilansky [3] because it takes into account the many possible
deviations in the axis of symmetry.

The calculation of the axis of symmetry also requires a pre-processing stage of
orientation and alignment of the sherds [26], which is normally a time consuming
task [21]. Our analytic approach is invariant to rotation and scale and therefore
avoids the need of normalizing orientation and scale.

Another drawback of the current approaches is that they require a whole
model of the sherd. This involves taking several scans of the sherd, which are
then merged together to complete the model [3]. Our method does not rely on
capturing a whole model. Instead it uses only surface information from the back
and front views of the sherd, which expedites the process significantly.

As for the comparison of sherds for classification, some methods compare
sherds using a point-to-point matching process [27]. Our method compares his-
tograms (i.e. bag-of-visual-words) that represent the statistical frequency of local
descriptors (i.e. SIFT and spin images).

Perhaps the most complete and sophisticated approaches under the paradigm
of profile extraction that include classification of sherds are due to Gilboa [28] and
to Hörr [26]. Hörr [26] proposed a series of mathematical algorithms for profile
segmentation, feature extraction and, more importantly, clustering of sherd de-
scriptions using algebraic functions, which in turn allows query and hierarchical
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classification. The method, however, was applied to complete or semi-complete
vessels and results for sherds are not available in the original paper

4 Descriptors

This section describes the two local descriptors that we used in our work. Namely,
the Local Invariant Feature Transform (SIFT) [8] and the Spin Images [10], that
were originally proposed to deal with 2D images, and whose 3D version consists
in scale invariant points of interest in a 3D space [9].

4.1 Spin images

Spin images are well known local descriptors developed to match mesh-surfaces
by the individual point-to-point matching of its vertices [10]. However, it might
as well be implemented under a bag-of-visual-words approach [9, 12].

In the spin images methodology, each vertex vi is characterized by

vi = (xi, yi, zi, θi, ri, hi) , (1)

where, (xi, yi, zi) defines the three coordinates position of the vertex; θi denotes
its local orientation, which corresponds to the orientation of the plane touching
the closest points that are connected to vi; and ri and hi are respectively the
radius and height of a cylindrical support volume centered at (xi, yi, zi).

The base idea of this method consists in scanning the 3D surface by spinning
a sheet around the axis defined by the point orientation θi while counting the
amount of nearby points [10]. More formally, the cylindrical support volume is
divided into R radial segments (rings) and L vertical segments (layers), thus
generating K = RxL spatial bins. Finally, the counting of the number of nearby
points #{pj} falling within each resulting bin bk, k = 1, . . . ,K, is arranged as a
K-dimensional feature vector s termed spin image [29],

s (k) = #{pj : pj ∈ bk}. (2)

The above mentioned methodology can be applied to each vertex in the mesh
[10]. However, it might also be applied only to certain vertices selected randomly
or by other approaches. One of such approaches is presented in section 4.3.

4.2 SIFT

The Scale-Invariant Feature Transform (SIFT) is a state-of-the-art and one of the
most popular image descriptor for gray-scale images. It detects points of interest
as points that maximize the difference of Gaussian (DoG) response in a Gaussian
scale space, where such a maximization is evaluated both in location and scale
spaces. The resulting points are invariant to scale and rotation variations [8].

Recently, the Local-Depth SIFT (LD-SIFT) variant was proposed to deal
with 3D images [9], representing the vicinity of an interest point as a depth
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map. In this approach, the 3D mesh around vertex vs
i is locally projected onto

its dominant plane, where the dominant plane is defined by it local orientation θi,
and s denotes the characteristic scale (or locality span) of the vertex of interest,
which can be computed as explained in section 4.3.

A 2D patch (image) is obtained after projecting the 3D mesh onto the dom-
inant plane, for which a traditional SIFT descriptor is computed [8].

4.3 Scale-Invariant 3D local descriptors

One of the approaches for selecting a subset of vertices, proposes to detect a
set of so-called points of interest [8, 9], where a vertex is considered as a point
of interest if it maximizes the local variation of a function of the image of 3D
model, both in location and scale spaces. In the case of 3D models, this is the
straightforward extension of the Gaussian scale space used by Lowe to select
points of interest in 2D images [8], where the Gaussian scale space is constructed
by cascading a Gaussian filter and a smoothing of the image, which create a set
of filtered images called octaves.

However, an important difference between applying Gaussian filters to 2D
images and 3D meshes is that points on a mesh are not necessarily uniformly
spaced in the depth axis[9]. This characteristic, might harm the repeatability rate
and the scale-invariant capabilities of the selected points [9, 30]. To cope with this
issue, several approaches have been proposed [9, 27, 31, 32], among which, the use
of local filters with uniform weights to build the mesh octaves outperforms the
others methods in terms of repeatability rate and scale invariance [9].

In this approach [9], the smoothing step required to build the Gaussian scale

space is given by the estimation of each vertex vs+1
i at scale s+ 1 as,

vs+1
i =

1

|V s
i |

∑
vs
j∈V s

i

vs
j , (3)

where, V s
i is the set of first order neighbors of vs

i , | · | denotes the cardinality
operator, and the summation of the vertices is performed component-wise on
the x, y, and z components of v.

Once the smoothing of the vertex is performed, the difference of Gaussians
(DoG) is computed by,

dsi =
1(

s · σ2
i,0

) (vs
i − vs+1

i

)
, (4)

where, σ0 is the initial variance of the integration parameter [8] and it is inde-
pendently estimated for each vertex as,

σi,0 =
1

|V s
i |

∑
vs
j∈V s

i

abs
(
vs
i − vs

j

)
, (5)

where, abs (·) denotes the absolute value operator.
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Using this formulation, it is possible to select a subset of points of interest
for which a local descriptor (SIFT or spin image) will be computed, i.e., those
points whose dsi is maximal both in location and scale spaces. Section 6 will show
that this scheme to detect points of interest and select their characteristic scale
achieves good retrieval and classification performance when it is combined with
Spin images and SIFT descriptors.

5 Experiments

This section introduces the dataset generated by our project during its initial
phase, as well as the set of experiments that we have performed.

5.1 Data

Our data consists of 149 3D surfaces that were manually scanned from 16 sherds
of Aztec ceramics, and annotated under different taxonomic criteria by experts in
archaeology. More precisely, surfaces obtained from different views were scanned
from the internal and external sides of the sherds, and the following taxonomic
criteria were used to annotate them according to their visual information,

– type: defines the type of ceramic where the sherd comes from. At this stage
of the project, three types of ceramics were available to us: Apaxtle, Cajete,
and Cajete with handler (see Fig. 1).

– side: the side of the sherd with two possible values: internal and external.
– form: this label indicates the form of the ceramic where the sherds comes

from, with two possible values: open and close.
– wall : corresponds to the type of wall of the original ceramic, with three

possible values: simple wall, divergent, and straight.
– curvature: this label indicates whether the sherd corresponds to a flat or

curved section of the ceramic. It has two possible values: NONE and YES.
– border : gives information about the type of border of the ceramic. It has

three possible values: NONE when no border is visible in the 3D surface,
straight, and round.

– base: this label indicates whether the sherd contains part of the base of the
ceramic, and it has two possible values: NONE and YES.

Fig. 4a shows the amount of 3D surfaces scanned from each of the 16 sherds.
Note that the dataset tends to be balanced in the amount of internal and external
views that were scanned, despite the fact that only external views were available
for sherd 11. Also, Fig. 4b shows the distribution of labels on the 149 3D surfaces.
Note that only 139 3D surfaces are used for the label ‘border’, because 10 models
have borders different from the three possible values (NONE, straight, round),
but they have only one or two instances, which makes difficult to define relevant
sets, and therefore, these instances were excluded for this taxonomy.

Although the available data after scanning the sherds contains both geometry
(mesh defined by points and faces) and texture (surface photos), we started
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Fig. 4: (a) Amount of 3D surfaces scanned per sherd: blue bars correspond to
external views, whereas red bars indicate internal views. (b) Distribution of
labels assigned to each 3D surface.

our analysis relying solely on the geometric information. For this purpose, the
SIFT descriptor was tailored to work with orientation information instead of
intensities, the same way as the work of Darom and Keller [9].

5.2 Experimental protocol

The experimental protocol that we followed consists of:

1. Compute the sets of local descriptors (SIFT [8] or spin images [10]) for each
of the 149 3D surfaces.

2. Estimate a visual vocabulary using a subset of 700 local descriptors for
each of the 16 sherds, thus 11200 local descriptors. We computed visual
vocabularies of different sizes, i.e., 100, 250, 500, 1000, and 2000 visual words.

3. Build a bag-of-words representation (BoW) of each 3D surface.
4. Perform retrieval experiments by sorting the 3D surfaces in terms of vi-

sual similarity, where such similarity is computed using the BoW. Note that
these retrieval experiments were performed using a leave-one-out full-cross-
validation approach. We evaluated the retrieval performance using the dif-
ferent taxonomic criteria to define the relevant set for each 3D query surface.

5. Using PCA [33], we found the most informative principal components of the
BoW’s, and repeated the retrieval experiments using only them.

6. Finally, we performed a series of classification experiments using the kNN
approach for the seven taxonomic criteria.

This protocol was repeated independently for each of the local descriptors
and each visual vocabulary. We used a Matlab implementation [9] to compute
both SIFT and spin images local descriptors. In section 6, we report our results in
terms of mean average precision computed for the first 25 3D surfaces retrieved
(mAP@25) and the standard recall vs average precision curves . We also report
the average classification rate and show the most interesting confusion matrices.
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6 Results

Table 1 shows the mAP@25 obtained with both the SIFT [8] and the spin im-
ages [10] local descriptors, and using different vocabulary sizes and the different
taxonomic criteria described in section 5.1.

The first observation available from Table 1, is that small vocabularies are
adequate for description of the 3D surfaces of potsherds for most of the tax-
onomic criteria, i.e., 100 and 200 visual words in most cases. Two exceptions
to this observation were found using the Spin images along with the Curvature
and Border information, where respectively, larger vocabularies of 2000 and 1000
visual words achieved the best retrieval performance.

Table 1: mAP@25 obtained with the SIFT and spin images descriptors using
different vocabulary sizes and taxonomies. Best result per taxonomy is in bold.

Vocabulary Taxonomy

SIFT Type Side Form Wall Curvature Border Base

100 0.688 0.749 0.802 0.651 0.704 0.643 0.767
200 0.677 0.734 0.816 0.637 0.694 0.635 0.744
500 0.649 0.721 0.812 0.605 0.687 0.633 0.736
1000 0.618 0.709 0.807 0.592 0.687 0.640 0.727
2000 0.613 0.687 0.810 0.574 0.670 0.627 0.701

Spin Type Side Form Wall Curvature Border Base

100 0.579 0.610 0.753 0.526 0.619 0.533 0.660
200 0.577 0.618 0.751 0.532 0.617 0.540 0.655
500 0.573 0.617 0.752 0.527 0.620 0.544 0.638
1000 0.569 0.616 0.751 0.521 0.625 0.549 0.634
2000 0.564 0.622 0.747 0.522 0.626 0.544 0.626

Another observation from Table 1 is that, good retrieval performance is ob-
tained by using the Form information to build the relevant sets, i.e., 0.816 with
the SIFT descriptors and 0.753 with the spin images, which suggests that it
is relatively easy to differentiate between open and close forms. However, this
result must be read with caution, since the dataset is not well balanced under
such a taxonomic criterion as shown in Fig. 4b, where the set of models with
closed forms is about a third of the set with open forms.

The construction of the relevant set using the taxonomic criteria Side, Cur-
vature, and Base also provided with acceptable retrieval performance, i.e., above
0.7 using the SIFT descriptors and above 0.6 with the spin images. Note that
the bars in Fig. 4b indicate that all these three taxonomies define a binary clas-
sification problem, with balanced relevant sets for the Side and Curvature cases.
Thus suggesting that the use of such taxonomies can provide with good hints for
automatic categorization. The remaining three taxonomic criteria Type, Wall,
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and Border, all divide the dataset into three classes, and all obtained the poorer
retrieval performance for either of the descriptors.

Finally, note that the SIFT descriptors are more appropriate than the spin
images for the statistical visual description of 3D surfaces of potsherds, as they
obtained better retrieval performance in all cases, i.e., about 10% better on
average, which confirms observations from previous comparisons [9, 29].

Using Principal Component Analysis (PCA) [33], we performed dimensional-
ity reduction on the BoW’s and evaluated the retrieval performance. We noticed
that the retrieval precision increased in all cases, specially when large vocabu-
laries are used, and with the SIFT descriptors. Table 2 shows the best retrieval
results, which on average were obtained using 1000 visual words.

Table 2: mAP@25 obtained using 1000 words and principal component analysis.
The number of principal components used with each taxonomy is also shown.

Vocabulary Taxonomy

SIFT Type Side Form Wall Curvature Border Base

1000 0.718 0.788 0.821 0.678 0.695 0.658 0.776
Num. Comp. 5 9 5 9 20 20 10

Spin Type Side Form Wall Curvature Border Base

1000 0.590 0.627 0.734 0.527 0.634 0.560 0.678
Num Comp. 9 18 9 20 5 5 6

Looking at the Type column in Table 2, we can see that by using only 5 prin-
cipal components from a 1000 vocabulary, higher retrieval precision is obtained,
i.e., 3% higher than using 100 words, and 10% higher than using the full 1000
words vocabulary. Due to space constraints, we only present here the results
with 1000 words, as they represent the case of the larger increment in retrieval
precision. However, this behavior resulted true for most of our experiments.

Fig. 5a and Fig. 5b show, respectively for SIFT and Spin images, the average
precision vs standard recall curves obtained with the visual vocabulary of 1000
words. This is, the average drop of the retrieval precision as more relevant in-
stances are included within the vector of sorted elements. Note that the drop of
the retrieval precision is smooth in all cases. Also note that these curves are con-
sistent with the results shown in Table 1 and Table 2 for both descriptors, i.e.,
Form information provides the best retrieval performance (red-dotted line with
diamond markers), whereas the Border and Wall taxonomies obtained the lowest
retrieval performance (olive-dotted line with triangle markers and cyan-solid line
with asterisk markers respectively).

Finally, we performed a series of classification experiments using the kNN
(k=1). For these experiments, we also used the principal components of the
1000 words vocabularies, as indicated in Table 2.

Table 3 shows the average classification rate achieved by both the SIFT de-
scriptor and the spin images. Note that, similarly to the retrieval results, classify-



Categorizing Aztec Potsherds 13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Standard recall

A
v
er

ag
e 

p
re

ci
si

o
n

 

 

Type

Side

Form

Wall

Curvature

Border

Base

(a) SIFT descriptors.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Standard recall

A
v
er

ag
e 

p
re

ci
si

o
n

 

 

Type

Side

Form

Wall

Curvature

Border

Base
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Fig. 5: Average precision vs standard recall obtained with the different taxonomic
criteria. These result were obtained using 1000 visual words.

Table 3: Average classification rate per taxonomic criteria. These results were
obtained using the principal components of the 1000 words vocabularies, as
indicated in Table 2.

Type Side Form Wall Curvature Border Base

SIFT 0.70±0.1 0.88±0.0 0.77±0.2 0.67±0.3 0.78±0.1 0.64±0.3 0.74±0.2

spin 0.43±0.2 0.58±0.0 0.57±0.4 0.42±0.2 0.58±0.1 0.44±0.1 0.56±0.3

ing potsherds using the Side, Form, and Curvature information gives the highest
accuracy. However, using the Type information as labels also gives acceptable
classification rates. Also note that, the use of he Wall and Border information
gives the poorest results, which contain high levels of standard deviation.

A more detailed explanation of the classification performance is shown in the
confusion matrices of Fig. 6. Due to space constraints, we only show the most
interesting confusion matrices.

7 Conclusions and future work

We presented a novel project towards the integration of computer vision tech-
niques in the analysis of potsherds from the ancient Teotihuacan and Aztec cul-
tures. Our interdisciplinary approach is rich and genuine, as it addresses needs
and open problems in archaeology, i.e., those of helping the efficient analysis and
categorization of potsherds.

Different from classical works on analysis of 3D potsherds, ours approaches
the categorization problem under 3 assumptions: we use rotation and scale in-
variant local descriptors, which avoid the need of normalizing the 3D sherds
under such transformations; we avoid the need of manual registration of dif-
ferent views of the sherds by relying on 3D surfaces; and instead of performing
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Fig. 6: Confusion matrices for Type, Side, Form, and Curvature information,
computed using PCA and the number of components indicated in Table 2. Best
viewed as pdf.

point-to-point matching of the 3D models, we use statistical representations that
are much more efficient.

In this work, we designed a recognition system, which after a single unsu-
pervised training, is able to categorize 3D surfaces of potsherds under different
taxonomic criteria that in archaeology are used to infer the final class of sherds.

Within the context of our project, we started the collection of a new and chal-
lenging dataset of 3D surfaces of potsherds. The initial strategy is constrained to
the use of Aztec III ceramics, due to the availability of this material. However,
we plan to scan a much larger collection of sherds from the Teotihuacan culture,
which ranks in the order of tens of thousands, and that is well documented.
When this dataset is completely scanned, it will be also annotated using the
different taxonomic criteria.

We presented a study of the descriptive potential of two state-of-the-art
3D descriptors for the pieces of our datasets, and combined them with the
efficient bag-of-visual-words representation, and dimensionality reduction tech-
niques based on PCA. Overall, our methodology is promising, as the results
show good categorization performance using the different taxonomic criteria.
More precisely, achieving an average accuracy rate of 70%, while leaving room
to conduct more research in the topic. For instances, collecting more data and
designing better descriptors.
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