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Abstract. We present a method to generate a textured 3D model of
architecture with a structure of multiple floors and depth layers from
image collections. Images are usually used to reconstruct 3D point cloud
or analyze facade structure. However, it is still a challenging problem to
deal with architecture with depth-layer structure. For example, planar
walls and curved roofs appear alternately, front and back layers occlude
each other with different depth values, similar materials, and irregular
boundaries. A statistic-based top-bottom segmentation algorithm is pro-
posed to divide the 3D point cloud generated by structure-from-motion
(SFM) method into different floors. And for each floor with depth lay-
ers, a repetition based depth-layer decomposition algorithm based on
parallax-shift is proposed to separate the front and back layers, espe-
cially for the irregular boundaries. Finally, architecture components are
modeled to construct a textured 3D model utilizing the extracting pa-
rameters from the segmentation results. Our system has the distinct
advantage of producing realistic 3D architecture models with accurate
depth information between front and back layers, which is demonstrated
by multiple examples in the paper.

1 Introduction

Realistic and flexible 3D architecture models are very important for many ap-
plications including culture heritage protection, games, movies and augmented
reality navigation etc. Depth images from 3D scanners or color images from dig-
ital cameras are the two most popular data sources to model the architecture.
Obviously, digital cameras are more common and inexpensive, and also provide
rich color texture information which is very important for realistic modeling.
Therefore, we focus our work on the problem of image based architecture mod-
eling.
Many works have been proposed for this problem, e.g. [1] focuses on piecewise
planar architecture; [2] utilizes a single image to model symmetry architecture,
but it needs a lot of manual interactions; [3] makes use of a rectangular plane
or a developable surface to generate buildings. There are also a few commercial
tools which all require tedious manual works. However, both of them can not
deal with architecture with front and back depth layers and get the accurate
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Fig. 1. Our modeling results. (a) Image collections. (b) Top-bottom segmentation re-
sult. (c) Depth-layer decomposition result. (d) The final textured 3D model.

depth between these layers automatically. Front-back depth layers are very com-
mon in architecture, e.g. in Figure 1 (a), the second floor of this building are
composed of two layers which are pillars layer and windows layer respectively.
This property is particularly worthy of being modeled, [4] proposes a 2D-3D
fusion method to decompose these layers to rectangular planar fragments, and
a 3D LiDAR scanner is also needed. We handle this problem only with digital
images especially for decomposing layers with irregular boundaries (as shown in
the corner regions in Figure 1 (c)) as one of our contributions. Another kind of
methods are based on multi-view stereos, such as [5], [6], etc.. The reconstruc-
tion results are dense point clouds or meshes and can not be further segmented
to generate meaningful architecture components which are more important to
extend the range of architecture modeling application.
Given image collections of one building, our goal is to generate a visually com-
pelling 3D model, in which accurate architecture components segmentation is
critical. Although high resolution texture information can be acquired from im-
ages, but it is hard to segment the components in the image space solely. A
common case is that different components which are occluded by each other may
have the same material, such as the pillars and their back windows in Figure 1
(a). 3D point cloud can be generated from multiple images by structure-from-
motion (SFM) method, but these 3D points are too sparse to be segmented into
architecture components directly. The complementary characteristics of these
two data sources are combined to handle more complex architecture modeling
problems in this paper. We first propose a statistic-based top-bottom segmenta-
tion algorithm and divide the sparse 3D point cloud to several horizontal floors
vertically along the ground plane normal as in Figure 1 (b). For each horizontal
floor with depth layers, we propose a repetition based depth-layer decomposition
algorithm to divide its sparse 3D points and images into several repetitive com-
ponents as in Figure 1 (c). The key observation of our depth-layer decomposition
algorithm is the parallax-shift among repetitive structures in a single image or
multiple view images. Finally, textured architecture component models are re-
constructed from the segmented sparse 3D points and texture parts to make up
the 3D architecture model. An example of modeling results is shown in Figure
1 (d), and others are shown in the section Experiments and Discussion, which
prove that our work can be used in practical applications.
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2 Related works

Image based architecture modeling have received a lot of research interest, with
a large spectrum of modeling systems developed to build realistic 3D models. We
classify the up to date and most relevant studies according to the data sources,
single view or multiple view images without being exhaustive.
Single view based modeling [7] represents a scene as a layered collection of
depth images, but assigns depth values and extracts layers manually. [8] presents
a fully automatic method for creating a rough 3D model from a single photo-
graph, the model is composed of several texture-mapped planar billboards. [9]
automatically extracts shape grammar rules from facade images for procedu-
ral modeling technology whose modeling results are similar as ours, but the
depth are also assigned manually. [10] makes use of Manhattan structure for
man made building and models the building as a number of vertical walls and a
ground plane. [2] calibrates the camera and reconstructs a roughly sparse point
clouds from a single image by exploiting symmetry, but user must interactively
marks out components on the 2D image to complete the modeling work. Real-
istic textured 3D models are reconstructed but depth layer decomposition are
not handled. [11] proposes a repetition-based dense single-view reconstruction
method, but the repetition is necessary, and depths are roughly estimated from
the repetition intervals.
Multiple views based modeling Image collections from different viewpoints
are able to provide more 3D geometric information. Computer vision based
multi-view stereo(MVS) algorithms, such as [5] and [6], generate architecture
meshes on dense stereo reconstruction method. [12] and [13] develop a real-
time video images registration method and focus on the global reconstruction
of dense stereo results. Proper modeling of the structure from reconstructed
point clouds or meshes has not yet been addressed. Recently, some methods
use 3D points from SFM or MVS to guide users for marking out the architec-
ture components interactively and efficiently. [1] uses image collections to assist
interactively reconstructing the architecture composed of planar elements. [3]
proposes a semi-automatic method to segment the architecture and optimizes a
depth value for each component using reconstructed 3D points. The following
paper [14] proposes a partition scheme to separate the scene into independent
blocks and extends their methods to reconstruct street-side city block. [15] in-
troduces a schematic representation for architecture, in which transport curves
and profile curves are extracted from 3D point cloud to generate an architec-
ture model with some swept surfaces. [16] uses baseline and profile, a similar
representation of [15], to model the architecture facade in the unwrapped space
and get a textured architecture model. But the above methods are not suited for
separating the depth layers with irregular boundaries and similar appearance. [4]
uses LiDAR data which are manually registered with photos to generate building
with multiple layers. However, their layer decomposition method needs denser
point cloud than SFM and only deals with rectangular components.
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3 Overview

In the real world, most buildings are multistory and also have different depth
layers. For the purpose of reconstructing the structure and components of the
architecture, we first segment the architecture into isolated floors, and further
divide some floors to repetitive or non-repetitive parts, and finally decompose
these parts to layers with different depth values. In this paper, floor-segmentation
is implemented in a 3D point cloud space generated from multiple view images
by SFM algorithm, and we call it top-bottom floors segmentation. Integration of
the above 3D points segmentation results and the multiple view images, repeti-
tion detection and further segmentation is performed to solve the decomposition
problem for the floors with depth-layer structure, and we call it depth-layer de-
composition. The pipeline of our architecture modeling method is composed of
four major stages.
1) 3D point cloud from SFM From the captured images, a sparse 3D point
cloud is reconstructed by SFM method, then outliers removing and normals es-
timation are performed. The reconstruction results are used as our input for the
following segmentation.
2) Top-bottom floors segmentation Manhattan directions[17] are first esti-
mated from the normals of the 3D points. Along the direction which is parallel
to the normal of the ground plane, the 3D points are partitioned vertically to
different horizontal floors. For some horizontal floors, 3D points are further par-
titioned to different layers according to their depth values.
3) Depth-layer decomposition For the candidate decomposition floor, 3D
points at different layers are projected back to images and help us to detect the
horizontal repetition at different layers respectively in the image space. Then, for
each repetitive region, per-pixel parallax-shift values are estimated using SIFT-
flow method[18], and the region is further decomposed into front and back layers
by solving a per-pixel label-assignment optimization problem.
4) Architecture components modeling Parameters are extracted from the
corresponding 3D points clusters and their projection images to generate the
geometry of the architecture components. Then the components’ textures are
repaired from the multiple view segmented images, and a textured 3D architec-
ture model is reconstructed finally.

4 Statistic-based Top-Bottom Floors Segmentation

Our top-bottom floors segmentation algorithm is based on two intuitive criteria:
normal variation that separates components like roofs and walls, and the depth
variation that distinguishes layers with different depth values. Firstly, point cloud
is generated by SFM algorithm and preprocessed by outliers removing and nor-
mals estimation. Secondly, Manhattan-direction is estimated as our segmentation
direction. Finally, 3D points are segmented to floors along the ground normal
direction according to the points’ normal variation and some floors are further
segmented to layers with different depth values along the facade direction.



Image Parallax based Modeling of Depth-layer Architecture 5

4.1 Image Capture and Point Cloud Preprocessing

About 100 images for each dataset are captured with the positions distributing
on an 180-degree arc in front of the architecture. A 3D point cloud is recon-
structed using VisualSFM [19] because of its stability and ease of use. Generally,
SFM point cloud contains outliers, which can be removed by performing a ra-
dius outlier removing method. In addition, point normals can only be inferred
from the point cloud dataset directly. The problem of point normal estimation is
approximated by the problem of estimating the normal of a plane tangent to the
surface, which in turn becomes a least-square plane fitting estimation problem.
For each point, an analysis of the eigenvectors and eigenvalues of a covariance
matrix created from the nearest neighbors is implemented to estimate its nor-
mal. PCL-Point Cloud Library [20] is used to complete our outliers removing
and point normal estimation.

4.2 Manhattan Axes Estimation

The 3D point cloud from SFM is in the camera coordinate system of the primary
image as shown in the top three images of Figure 2 (a), which can not be di-
rectly used to vertically segment the 3D points into horizontal floors. Therefore,
the ground plane normal should be estimated firstly. Many existing methods
adapt the Manhattan assumption, estimate the Manhattan-axis in the case of
piecewise planar architecture, and generate axis-aligned plane segments. We re-
lax this assumption to non-piecewise planar architecture that includes oblique
or curved surfaces like roofs. Let XM , YM , ZM be the Manhattan axes, and in
this paper YM and ZM also represent the ground plane normal direction and
the facade normal direction of the architecture respectively. Let XC , YC , ZC be
the coordinate axes of the original 3D point cloud. Since the captured images
are taken without much yawing and rolling, the facade normal direction ZM is
nearly perpendicular to YC . Therefore, a histogram of angles between all the
point normals and YC is created as shown in Figure 2 (b). The longest column
with horizontal coordinate value near to 90 is selected and the corresponding
group of point normals are considered as the candidates to estimate ZM . An-
other histogram of angles between candidate points’ normals and their mean
normal is created repeatedly to remove outlier points until all angles between
candidate point normals and the mean normal are less than 2 degree. ZM is
assigned as the mean normal of the remaining candidate points after outliers
removing. Then, XM = ZM × YC and YM = ZM × XM . Finally, the 3D point
cloud is transformed to the Manhattan axes system as shown in the bottom
three images of Figure 2(a).

4.3 Segmentation

Normal variation based segmentation With respect to the artificial ar-
chitecture, it is intuitive that point normals in the same floor vary slightly or
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(a) (b)

Fig. 2. (a) Top three images are the three orthographic views of the reconstructed 3D
point cloud before Manhattan rectification and bottom three images are the rectifica-
tion results. (b) The histogram of all the 3D point normals distribution. The vertical
axis is the 3D point number and the horizontal axis is the angle between the point
normal and ground plane normal.

smoothly. Therefore, we split the 3D point cloud into small slices along YM and
compute the variance of point normals in each slice. The positions of the local
maximum values in the curve composed of the variance values can be considered
as the potential split lines to segment the point cloud into different horizontal
floors. More specifically, a series of uniform sampling planes which are perpen-
dicular to YM are created to divide the 3D point cloud into point slices. In each
slice, the variance of the dot product between the point normals and YM are
computed to form the curve. The interval of these sampling planes are only
determined by the ratio of the 3D point cloud height to the real architecture
height. Because of the noise points, false split lines will be chosen and result in
over-segmentation results. Nonetheless, this over-segmentation will be resolved
by the subsequent merging operation. The segmentation result of this step are
shown in Figure 3 (a).
Depth-based segmentation In this step, some floors are further divided into

separated layers according to the depth values along facade normal direction
ZM . First, roof floors are recognized and removed by the dot products between
their mean normals and YM . Then, for each remaining floor, a series of uniform
sampling planes perpendicular to the axis ZM are created to divide the current
floor into point slices. A statistic curve composed of the numbers of all point
slices is built, and the positions of its local maximum values are considered as
the split lines along ZM direction as shown in the middle images of Figure 3
(b). In order to remove the noise, some local maximum values are filtered if
the corresponding slices contain less than two percent of all points. The final
depth-based segmentation result is shown in the top image of Figure 3 (b).

Merging Due to the presence of noise points, the 3D point cloud will be
over segmented by the above two segmentation steps. To solve this problem,
any two segmented parts are traversed to determine whether they are able to
merge. Two segmented parts with similar normals will be merged if the two dis-
tances between their bounding boxes along YM and ZM directions are both less
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(a)

(b)

Fig. 3. (a) The result of normal variation based segmentation. Local maximum values
of the curve in right image generate the split lines in the left image. (b) The result
of depth variation based segmentation. Different segmented parts are represented by
different colors in the top image. Statistic curves formed by point numbers of slices for
the potential floors to be partitioned are shown in the middle images. Bottom image
shows the merging result.

than the sampling plane interval. The above merging operation is implemented
repeatedly until there are no mergeable parts and the result is shown in the
bottom image of Figure 3 (b).

5 Repetition based Depth-Layer Decomposition

In order to reconstruct the layered and textured 3D architecture model, we
should decompose the images into different layers according to their correspond-
ing depth values. During the SFM process, some pairs of 2D pixels and 3D
points are established, but they are too sparse to do the direct layer assignment
for all pixels. Nevertheless, these sparse pairs can provide enough information for
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(a) (b) (c) (d)

Fig. 4. (a) Image rectification by [22]. (b) Repetition detection by [22]. (c) Image
rectification by our method. (d) Repetition detection by our method.

accurate repetition detection in the image with depth-layer structure. Because
of the perspective projection and the camera position, image deviation exists
among back layer regions behind the front layer repetitive structures, and we
name this deviation as parallax-shift. A parallax-shift estimation based coarse
image segmentation algorithm is proposed to perform the initial depth-layer de-
composition. Generally, the boundaries between front and back layers are often
irregular, but also have a high edge response. Based on above-mentioned charac-
teristic and coarse decomposition result, we design a per-pixel label-assignment
formulation and deploy a graph-cut optimization to refine the depth-layer de-
composition.
Our repetition based depth-layer decomposition algorithm decomposes the image
into components with different depth values in the following stages: (1) Carry
out repetition detection in each image to get rectangle repetitive regions. (2)
Perform a coarse depth-layer decomposition based on parallax-shift estimation
between these repetitive regions. (3) Refine the coarse depth-layer decomposi-
tion by per-pixel layer assignment using graph-cut[21] energy minimization. (4)
Decompose non-repetitive regions with multiple images.

5.1 Repetition Detection

After vertical segmentation, architecture images are segmented to image strips
according to different floors. The repetitive structures appear only along the hor-
izontal direction. We first test the method in [22] to detect rectangle repetitive
regions, but there exist two problems in our case. First, large roof area and high
frequency repetition of tiles always lead to wrong vanish point detection and
result in incorrect image rectification (Figure 4 (a)). Second, repetitive struc-
tures at different depth layers always affect the estimation of the symmetry axis
location (Figure 4 (b)).

In order to satisfy our subsequent decomposition requirement, we improve
Wu’s method[22] in three ways to achieve higher accuracy and stability. (1)
Some 3D points are selected randomly, and the lines across these points and
parallel to the Manhattan coordinate axes are computed and projected on the
captured images to estimate the vanish points. This improvement utilizes the 3D
point cloud information and results in consistent rectification for multiple view
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images. Meanwhile, wrong rectification results caused by parallel lines which
are not vertical or horizontal such as parallel lines on the roof are avoided. (2)
According to the former segmentation in point cloud, we are able to pick out
the SIFT points at the front layer to estimate the repetitive region size and
the symmetry axis location. This improvement may remove the interference by
the repetition at different layers. (3) Vector quantization is used to estimate
the similarity of different repetitive regions. A quad tree is constructed for the
image, the root node is the whole image, and the image region belonging to each
child node is one quarter of its parent node. The image region size in the leaf
node is half size of the smallest repetitive region. SIFT descriptors are computed
for all nodes and clustered to 256 categories (In our experiment, 256 is totally
enough to detect the repetitive region similarity). Any two candidate regions
are confirmed as repetitive regions if their SIFT descriptors belong to the same
category. This improvement avoids the sensitive threshold value determination
in Wu’s method[22]. Our image rectification and repetition detection results are
shown in Figure 4 (c) and (d).

5.2 Coarse Depth-layer Segmentation

For the rectified image, the camera projection plane is parallel to the architec-
ture facade. The parallax-shift between the projection pixels of two points with
the same horizontal coordinates but different depth values can be computed
according to

ps(x) = x× (d2 − d1)/d1d2 = Cx (1)

as in Figure 5.

Fig. 5. The principle of parallax-shift between two points which is represented by the
red solid line segment ps(x).

Convert to the repetitive regions in the image, repeating points at the back
layer project to different pixel locations in respective repeating regions (Figure
6 (a)). More specifically, given a set of repeating regions {R1, R2, .., Rn} with
symmetry axes {X1, X2, .., Xn}, for any point Pi at the front layer and its cor-
responding point P ′i at the back layer in Ri, its corresponding repetitive point
in Rj is denoted as Pj and P ′j , they satisfy the following equations:

Ix(Pi)−Xi = Ix(Pj + (tij , 0))−Xj , (2)
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where Ix(Pi) is the x coordinate of the projection of point Pi on image I, tij is
the distance between Ri and Rj .

Ix(P ′i )−Xi = Ix(P ′j + (tij , 0))−Xj + psij , (3)

where psij = tij × C is the parallax-shift between Ri and Rj .

(a) (b)

Fig. 6. (a) The blue lines are repeating back layer structures in different repeating
regions. The parallax-shift is represented by a short red line. (b) Depth-layer decompo-
sition results for one repetitive region. Part of the image is extracted to show details.

Given two repetitive regions, SIFT-Flow method is used to compute the
parallax-shift and obtain a flow vector map. The horizontal component of the
flow vector is a coarse indicator of the corresponding pixel’s layer label, but it is
very unfaithful. Therefore, flow vector maps between multi-pair repetitive regions
are computed to estimate a consistent confidence map for the repetitive regions.
The confidence map is used as the input for the graph-cut optimization method
to refine the depth-layer decomposition in the next section. Our confidence map
calculation includes two stages. (1) Local confidence map calculation. For each
region Ri, the flow vector maps between it and Ri−2, Ri−1, Ri+1, Ri+2 are
computed respectively. These flow vector maps are converted to confidence maps
as the following equation.

cmij(s) =

{
1 if |(hi,j(s)/tij | < C/5
−1 else

(4)

where cmij(s) denotes the confidence map contributed from Rj to Ri, hij(t)
denotes the horizontal component of the flow vector map between Ri and Rj .
Local confidence map of Ri is calculated by accumulating all the confidence
maps from neighboring repetitive regions (Figure 7 (a)). (2) Global confidence
map calculation. For a group of repetitive regions, only one uniform confidence
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map is calculated by summing all the regions’ local confidence maps. During the
summation of local confidence maps, the axial and translational symmetry are
also considered to increase the number of votes and improve the robustness of
the global confidence map (Figure 7 (b)).

(a) Local confidence map result. (b) Global confidence map result.

(c) Final decomposition result.

Fig. 7. For (a) and (b), top image shows the confidence value directly. Bottom image
shows the segmentation results by blending the confidence value and pixel color value.
(c) Final decomposition result including non-repetitive regions.

5.3 Decomposition Refinement

After coarse depth-layer decomposition, a uniform decomposition result for each
repetitive region is obtained and shown as in the top image of Figure 6 (b).
However, the boundary of the decomposition result is not accurate. In order to
refine it, local edge information is utilized to optimize the boundary to the pixels
with maximal gradient variation. Inspired by the interactive Graph-Cut method
[21], a similar Markov Random Field (MRF) energy function is constructed,
global confidence map for each repetitive region is assigned as the data term
instead of the interactive constrain in [21], and the pixel edge response is assigned
as the smooth term as the following equations.

E(L) =
∑

Edata(L(s), s) +
∑

L(p)!=L(q)

Esmooth(p, q) (5)

where L denotes the layer label map of a repetitive region. There are only two
kinds of values in L: 1 means front layer and 0 means back layer. s denotes one
pixel in a repetitive region, (p, q) denotes one pair of neighboring pixels.

Edata(L(s), s) =
1

σ
e−cm

′(L(s),s) (6)

Esmooth(p, q) =
1

dist(p, q)
e−

edge(p)+edge(q)
γ (7)
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edge is the canny edge response of the region image, edge(p) = 1 means p is a
edge pixel, or else edge(p) = 0, and γ is the smooth factor. The data term in the
energy function is constructed by the confidence maps from coarse decomposition
as:

cm′(L(s), s) =

K if L(s) = 1&cm(s) > 0
K if L(s) = 0&cm(s) < 0
−|cm(s)| else

(8)

whereK is set to 9 in the case of 2D image due to the constructed eight-connected
graph as in method [21]. Equation 5 is optimized by a graph-cut algorithm [23]
and the final refined result is shown in the bottom image of Figure 6 (b).

5.4 Non-Repetitive Region Decomposition

Some repetitive regions over a wide distance are very difficult to detected (Left
region and right region in Figure 7 (a) & (b)), and there also exist some non-
repetitive regions (Center region in Figure 7 (a) & (b)). Fortunately, our depth-
layer decomposition algorithm in a single image can be easily extended to mul-
tiple view images with approximate camera parameters. The remaining non-
repetitive regions are decomposed by utilizing multiple view images and the
results are shown in Figure 7 (c).

6 Experiments and Discussion

6.1 Architecture Geometry Modeling

After segmentation, we get architecture components composed of 3D points and
texture images. In order to construct a 3D textured architecture model, textured
plane models are used to fit planar components, and parametric surface models to
fit non-planar components. The boundary of each component’s sparse 3D points
is projected onto the images to get a coarse texture boundary. Along the texture
boundary, image windows with 100-pixel width are created, where pixels with
maximum gradient variation are selected to refine the boundary and extract the
modeling parameters. For example, roof is modeled by a quadric surface which is
fitted by the parameters (topwidth, bottomwidth, height and depth) extracted
from segmented texture and 3D points as in Figure 8. The back layer of the
architecture is usually occluded by the front layer, textures need to be repaired
from multi-view images. For a planar object in 3D space, there exists an affine
homography between each view. Image from front-parallel view is chosen as the
reference to estimate the affine transforms with other views. The texture holes
in this reference image are repaired by warping images from other views with the
computed affine transforms. The modeling result of the floor with depth layers
is shown in Figure 8.



Image Parallax based Modeling of Depth-layer Architecture 13

Fig. 8. Left images show the roof modeling parameters and result. Right image shows
the depth-layer modeling result.

6.2 Implementation and Results

We demonstrate the results of our approach with three data sets: the HongYi
Ge, the Chairman Mao Memorial Hall as shown in Figure 9 and the Hall of
Central Harmony as shown in Figure 10.
We first evaluate our method on the ancient Chinese architecture HongYi Ge
(Top row in Figure 9). The resolution of our photos is about twenty million pix-
els. By using continuous shooting mode of the digital camera, these photos are
taken in a few minutes for each architecture. VisualSFM[19] is used to generate
3D point cloud as shown in the first column. The result of top-bottom floors
segmentation is shown in the second column. The building is segmented suc-
cessfully into curved roofs and planar facades. For the facade floors with depth
layers, repetition based depth-layer decomposition is implemented, and the result
is shown in the third column. In this data set, the segmentation on the second
floor is very difficult due to the same appearance between the front pillars and
the back layer. However, by using both the parallax-shift and edge response, we
can get excellent segmentation results. The textured 3D model of this building is
shown in the fourth column of Figure 9. Our method also works well on regular
modern architectures. In these cases, top-bottom segmentation does not always
output meaningful parts, and the output layers are all treated as simple planes
as shown in the second row in Figure 9. We also evaluate our method on the
architecture without repetitive regions at the front layer as in Figure 10. The
modeling result proves that our depth-layer decomposition algorithm can also
be applied to non-repetitive architecture.
Limitations As most feature-based methods, SFM result is poor on non-Lambert
material and textureless areas. If there exist gaps along the ground plane nor-
mal direction, our top-bottom segmentation algorithm will fail. The sparsity of
SIFT features may also affect our parallax-shift detection algorithm, which is
important in our depth-layer decomposition algorithm based on SIFT-Flow.

7 Conclusion and Future Work

We have presented an image-based modeling approach for architecture with a
structure of multiple floors and depth layers. Repetition detection in the image
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Fig. 9. Left to right: 3D SFM points, top-bottom segmentation, depth-layer decompo-
sition, final reconstructed model.

(a) Depth-Layer decomposition result. (b) Final modeling result.

Fig. 10. Modeling results of Hall of Central Harmony.

region where repetition interference at different layers exists and irregular archi-
tecture components decomposition are handled well in our method.
The possible future work includes several directions. The geometry and texture
of the architecture components are reconstructed simply which can be further
refined to get geometry details and appearance from zoom-in images and make
the 3D architecture model relightable. Procedural rules can be extracted to get
an editable procedural 3D architecture model and generate large architecture
scene quickly.
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