
Accelerating Local Feature Extraction
Using Two Stage Feature Selection
and Partial Gradient Computation

Keundong Lee, Seungjae Lee, Weon-Geun Oh

ETRI, Daejeon, Rep. of Korea

Abstract. In this paper, we present a fast local feature extraction method,
which is our contribution to ongoing MPEG standardization of compact
descriptor for visual search (CDVS). To reduce time complexity of fea-
ture extraction, two-stage feature selection, which is based on the feature
selection method of CDVS Test Model (TM), and partial gradient com-
putation are introduced. The proposed method is examined on SIFT and
compared to SIFT and SURF extractor with the previous feature selec-
tion method. In addition, the proposed method is compared to various
feature extraction methods of the current CDVS TM 11 in CDVS eval-
uation framework. Experimental results show that the proposed method
significantly reduces the time complexity while maintaining the matching
and retrieval performance of previous work. For its efficiency, the pro-
posed method has been integrated into CDVS TM since 107th MPEG
meeting. This method will be also useful for feature extraction on mobile
devices, where the use of computational resource is limited.

1 Introduction

Local features such as SIFT [14] and SURF [3] are widely used in visual search,
object recognition and image classification for their robustness against scale,
rotation, illumination changes and affine transformation.

However, these local features are not feasible in mobile visual search or large-
scale image retrieval due to large size and high computational complexity. To
handle this problem, MPEG-7 is working on the standardization of compact de-
scriptors for visual search (CDVS) [11]. They study on feature selection, feature
compression and searching method for mobile visual search. In feature selec-
tion, it selects more helpful features for correct match based on probabilistic
model [7] instead of using all the detected features to reduce computational bur-
den in descriptor extraction and achieve compactness of descriptor. However,
the complexity of feature extraction is still high.

In this paper, the efficient feature extraction with considering feature selec-
tion is proposed. To reduce computational complexity, two-stage feature selection
and partial gradient computation are introduced. Experimental results verify the
effectiveness of the proposed method.

This paper is organized as follows: Section 2 describes the feature selec-
tion method of CDVS TM. Section 3 introduces the proposed method in detail.

2 Keundong Lee, Seungjae Lee, Weon-Geun Oh

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

b
ab

ili
ty

(a) Peak

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

b
ab

ili
ty

(b) Scale

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

b
ab

ili
ty

(c) Distance from center

−5 −4 −3 −2 −1 0 1 2
0.1

0.12

0.14

0.16

0.18

0.2

0.22

P
ro

b
ab

ili
ty

(d) Orientation

Fig. 1. Conditional Probabilities of correct match on SIFT given the peak, scale,
distance from center and orientation.1

Experimental results on uncompressed SIFT framework and CDVS evalation
framework are presented in Section 4. Finally, we conclude in Section 5.

2 Feature Selection for Compact Descriptor

Feature selection is the method to select more important feature among the
detected features. G. Francini et al. [7] proposed feature selection based on the
characteristics of detector to generate compact descriptor with specific size such
as 512B, 1KB, and this method has been adopted in CDVS TM. They estimated
conditional probability of correct match as a function of four characteristics of
the feature: scale, orientation, peak response (e.g., Difference-of-Gaussian (DoG)
response), and distance from the center of image as shown in Fig. 1.1 For each
feature, the relevance, the probability of correct match, is assigned by multiplying
four probabilities.

1 This figure was reproduced by the author with the permission of G. Francini et al. [7]
using the program and dataset which they provided during the MPEG meetings.
Note that this figure is not just taken from [7], the larger datasets [4, 8, 17, 18] were
used to obtain the results compared to that of [7].

Accelerating Local Feature Extraction 3

(a) Before feature selection (b) After feature selection

Fig. 2. An example of feature selection [7] with DoG detector [14].

And then, only a small number of features with high relevance are selected
to satisfy its target descriptor length. An exemplar result of feature selection is
shown in Fig. 2.

Consequently, they also reduced time complexity of descriptor extraction by
selecting features before descriptor extraction. However, there are still rooms to
be improved in view of time complexity.

In this paper, we propose more efficient feature extraction method with fea-
ture selection and show that improvement in time complexity can be achieved.

3 Proposed Method

We propose a fast feature extraction method based on SIFT descriptor which
significantly reduces the time complexity while maintaining the matching and
retrieval accuracy of [7]. This was achieved by two-stage feature selection, and
partial gradient computation. Two methods are described in the following sub-
sections.

3.1 Two-stage Feature Selection

In [7], keypoints are detected for input image, and orientation is computed for
each keypoint, after that the relevance of feature is assigned by its peak, scale,
location and orientation, and then, N most relevant features are selected to ex-
tract descriptor. Even though time complexity is reduced by extracting descrip-
tor only for the selected features, it is still computational burden that orientation
is computed for every keypoint.

To handle this problem, we divide the feature selection method into two
stages: upright feature selection and feature selection. We introduce the following
definition for better understanding:

– Upright Feature : Keypoint having detectors output such as peak (e.g. DoG
response), scale and location (coordinate) except orientation

4 Keundong Lee, Seungjae Lee, Weon-Geun Oh

Fig. 3. The proposed feature extraction pipeline based on two-stage feature se-
lection.

– Feature : Keypoint having peak, scale, location and orientation after orien-
tation assignment

As shown in Fig. 3, upright feature selection stage is inserted before orientation
assignment. In this step, first, the relevance of upright feature is computed by its
peak, scale, location (Eq.(1)), and then, top N upright features with high rele-
vance are selected to compute orientation. With this approach, time complexity
can be reduced by selecting relevant upright features in advance of orientation
assignment.

The relevance of ith upright feature, r(ui) is presented by the following equa-
tion:

r(ui) = c(pui)c(sui)c(lui) (1)

where p, s, l are peak, scale, and location of upright feature, respectively, and
c(x) is the probability of correct match corresponding to x as in Fig. 1.

In orientation assignment stage, N upright features produce N’ features. N’
is usually bigger than N because there are features with different orientations
at the same location and scale. After computing orientation, the relevancies of
features are updated for each feature by multiplying the relevance computed in
upright feature selection stage and the relevance corresponding to its orientation
(Eq.(2)).

r(fi,j) = r(ui)c(oi,j) (2)

where j is positive integer, and fi,j is feature ui with orientation oi,j , and r(fi,j)
is the relevance of fi,j .

Finally, N features are selected to extract descriptors. The detail of procedure
is presented in Algorithm 1. As we expected from the low variance of probabilities
according to orientation shown in Fig. 1, the selected features with the proposed
method is very similar to the features selected by [7].

To verify the effect of two-stage feature selection in computational complex-
ity, the average number of upright features, for which orientation is computed,
is compared to that of the previous feature selection [7] for 250 images of VGA
resolution according to the target number of selected features in Table 1. When
the target number of selected feature is 150, orientation is computed only for the

Accelerating Local Feature Extraction 5

Algorithm 1 Two-stage Feature Selection.

Input: U, N (U: detected upright features , N : target number of selected features)
Output: selected features F
1: for each upright feature ui ∈ U do
2: r(ui)← relevance of upright feature in Eq.(1)
3: end for
4: sort the relevancies of upright features in descending order
5: Us ← select top N upright features with high relevance in U
6: for each selected upright feature ui ∈ Us do
7: compute orientations Oi

8: for each orientation oi,j ∈ Oi do
9: fi,j ← feature ui with orientation oi,j
10: r(fi,j)← relevance of feature in Eq.(2)
11: end for
12: end for
13: sort the relevancies of features in descending order
14: F← select top N features with high relevance

Table 1. Comparison of the average number of upright features in orientation
assignment stage.

Target # of
selected features

Feature
selection [7]

Two-stage
Feature selection

Computational
improvement

150 913.8 150.4 83.54%
300 913.8 300.3 67.14%
500 913.8 492.1 46.15%
650 913.8 621.4 32.00%

16.46% of keypoints in the proposed method which means large computational
saving can be achieved.

3.2 Efficient Partial Gradient Computation

In this subsection, we present an efficient partial gradient computation method.
In SIFT, Gaussian smoothed image patch around each keypoint are extracted,
and gradient magnitude and angle of each pixel in this patch are used to com-
pute orientation or descriptor. The patches used in orientation and descriptor
computation are called orientation patch and description patch, respectively.
Orientation patch belongs to descriptor patch.

Considering the complexity of gradient computation, previous SIFT imple-
mentations are inefficient. In OpenCV [16], gradients are directly computed for
orientation and description patches, so there are unnecessary multiple calcula-
tions at the same pixel, because orientation patch belongs to description patch,
and usually this patch is overlapped with other features patch. In Vlfeat [19],
gradient map is used, which computes the gradients in advance for all pixels of

6 Keundong Lee, Seungjae Lee, Weon-Geun Oh

Table 2. Comparison of complexity in gradient computation.
Target # of
selected
features

FS+GM FS+DGC FS+PGC TFS+DGC Proposed

150 1 0.48 0.28 0.26 0.11
300 1 0.67 0.33 0.50 0.20
500 1 0.90 0.39 0.79 0.31
650 1 1.05 0.44 0.98 0.38

Average 1 0.78 0.36 0.63 0.25

scale space images to avoid multiple calculations at the same pixel. However,
there are unused areas in gradient map for descriptor computation.

To tackle this problem, proposed method combines two approaches for ef-
ficient gradient computation. Gradients are calculated only for the pixels used
in orientation and descriptor computation, and updated in the gradient map to
avoid multiple calculations. The procedure is as follows:

1. Initialize gradient map to -1
2. When the gradients are required, read the values of gradient magnitude in

the map
(a) If the value is -1, compute gradients and update the map
(b) Otherwise, use the values

It is obvious that multiple calculations at the same pixel will not occur, because
once gradient magnitude is computed, it will have non-negative value, which
means that it cannot be eqaul to -1. Its effectiveness is enhanced with two-
stage feature selection, which significantly reduces the regions where gradients
computation is required for orientation compuation as shown in Fig. 4 (e).

To show the efficiency of partial gradient computation and compare the two-
stage feature selection with [7] in terms of computational complexity, we com-
pared five different implementations of SIFT extractor:

– FS+GM : Feature selection [7] and Gradient map
– FS+DGC : Feature selection [7] and Direct gradient computation
– TFS+DGC : Two-stage Feature selection and Direct gradient computation
– FS+PGC : Feature selection [7] and Partial gradient computation
– Proposed : Two-stage Feature selection and Partial gradient computation

For each implementation, the average number of pixels, for which gradients are
computed, is counted for 250 images of VGA resolution according to the target
number of selected features, and the relative computational complexity with re-
spect to FS+GM is summarized in Table 2. Comparing FS+DGC and FS+PGC,
there are many unnecessary multiple calculation at the same pixel in direct gra-
dient computation. Partial gradient computation greatly reduced unnecessary
calculation in this case. Comparing FS+PGC and proposed method, the com-
plexity is further reduced when the two-stage feature selection is combined with

Accelerating Local Feature Extraction 7

(a) (b) (c)

(d) (e) (f)

Fig. 4. Partial gradient computation applied to (a)-(c) the previous feature se-
lection [7] and (d)-(f) the two-stage feature selection in 2nd layer of 1st octave.
(a) 159 detected upright features by DoG detector. (b) Orientation patches. (c)
Orientation and description patches. (d) 52 pre-selected upright features with
two-stage feature selection scheme. (e) Orientation patches (f) Orientation and
description patches.

partial gradient computation. This is visualized in Fig.4. FS+PGC and proposed
method case is shown in Fig.4 (a)-(c), and (d)-(f), respectively.

For simple comparison, only one layer of scale space is considered in this
example. By DoG detector, 159 upright features are detected in this layer as
shown in Fig.4 (a). Corresponding to these upright features, the white regions in
Fig.4 (b) represent orientation patches where gradients are calculated. When 300
features are selected in whole layer by [7], the gradients in description patch are
computed and updated for the 61 selected features in this layer as shown in Fig.4
(c). When two-stage feature selection is combined, computational complexity can
be further reduced as shown in Fig.4 (d)-(f).

4 Experimental Results

The proposed method is evaluated on uncompressed SIFT framework, and CDVS
framework (where descriptors are compressed). The experimental results are
presented in Section 4.1 and 4.2, respectively. MPEG CDVS datasets [9] were
used in both experiments as described in Table 3. These datasets can be divided
into two datasets: 2D planar object (books, CDs, and paintings) dataset and 3D
non-planar object (buildings or common 3D objects) dataset.

8 Keundong Lee, Seungjae Lee, Weon-Geun Oh

Table 3. CDVS Dataset used in the experiments.

Name Categoty # of images # of matching pairs
of

non-matching pairs

2D
Graphics 2500 3000 30000
Paintings 455 364 3640

Video frames 500 400 4000

3D
Buildings 14935 4005 48675
Objects 10200 2550 25500

4.1 Evaluation on SIFT Framework

To evaluate the proposed method, we compared the time complexity and match-
ing performance of the proposed method with that of [7] on the SIFT framework.
Target number of selected features is varied from 150 to 650 to examine the ef-
fect of the proposed method. Moreover, the feature selected SURF based on [7]
was examined for comparison. Vlfeat 9.14 [19] and OpenCV 2.4.6 [16] were used
to extract SIFT and SURF respectively and several training sets in [4, 8, 17, 18]
were used to estimate the conditional probabilities of correct match for each de-
scriptor as a function of scale, orientation, peak, and distance from image center.
As peak threshold of SURF influences the number of features, time complexity,
and matching performance, SURF with various peak threshold were compared.

Time Complexity. Time complexity was measured in terms of average ex-
traction time including feature detection and descriptor extraction time. For
fair comparison, image loading and resizing time was excluded because different
libraries were used for SIFT and SURF, respectively. Average extraction time
was measured with i7-2600 @ 3.4GHz PC on 250 randomly selected images with
a resolution of VGA. All of the results were measured on single core not to
consider speed-up by parallel processing of different implementation.

The results are shown in Fig.5 (a). The extraction time is increased according
to the target number of selected features. The SIFT with the proposed method
is more than 1.7 times faster compared to SIFT with [7], and 1.4 times faster on
average compared to SURF based on [7] with various peak response threshold.
When compared to SIFT with all features, the speed-up factor is up-to 3.8 and
on average 2.96. While SURF with [7] extracts 150 features, SIFT with proposed
method can extract about 500 features. These results tell us that the proposed
method significantly improved the time complexity.

Matching Performance. To verify the influence of the proposed method on
matching performance, receiver operating characteristic (ROC) curve and true
positive rate (TPR) at 1% of false positive rate (FPR) were compared. Nearest
neighbor distance ratio matching scheme based on Euclidean distance was used

Accelerating Local Feature Extraction 9

150 300 500 650 ALL
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Target number of selected features

E
xt

ra
ct

io
n

tim
e

[s
ec

]

SIFT [7]
SIFT (proposed)
SURF [7] TH100
SURF [7] TH200
SURF [7] TH300
SURF [7] TH400

(a) Time complexity

150 300 500 650 ALL
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Target number of selected features

T
ru

e
P

os
iti

ve
 R

at
e

Previous [7] (2D)
Proposed (2D)
Previous [7] (3D)
Proposed (3D)

(b) TPR at 1% FPR

0 0.02 0.04 0.06 0.08 0.1 0.12
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

ROC curve − 2D

SIFT all
SIFT 150
SIFT 300
SIFT 500
SURF all
SURF 150
SURF 300
SURF 500
SURF 650

(c) ROC curves on 2D dataset

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

ROC curve − 3D

SIFT all
SIFT 150
SIFT 300
SIFT 500
SIFT 650
SURF all
SURF 150
SURF 300
SURF 500
SURF 650

(d) ROC curves on 3D dataset

Fig. 5. Performance Comparisons.

with the ratio of 0.85, and geometrical consistency was checked by DISTRAT [13]
with the Chi-square percentile of 95.

As shown in Table 4, peak response threshold of SURF influences the number
of features, and affects the time complexity and matching performance. Consid-
ering the trade-off between complexity and performance, 200 was used in the
following experiments for the threshold of SURF.

In Fig.5 (b), the proposed method and [7] on SIFT are compared in terms
of TPR at 1% FPR for 2D and 3D dataset according to the target number of
selected features. The performance of the proposed method is almost the same
as that of [7]. It is noticeable that the proposed method significantly improved
the time complexity without affecting the matching performance.

ROC curves of feature selected SIFT and SURF are compared in Fig.5 (c-d)
These curves were drawn by changing the threshold of the number of the inlier
matching pair in DISTRAT [13]. From the results, it is shown that the matching
performance of 300 selected features for 2D and 500 selected features for 3D is
comparable to that of all features both on SIFT and SURF, and even outperform
at low FPR. This is because the irrelevant features from background or clutters
degrade the matching performance while increasing descriptor length.

10 Keundong Lee, Seungjae Lee, Weon-Geun Oh

Table 4. The influence of peak response threshold of SURF.

Threshold # of features Extraction time (sec)
TPR in 3D
@ 1% FPR

SIFT 0 1115.5 0.2556 0.921

SURF

100 1575.5 0.2238 0.872
200 1229.0 0.1858 0.862
300 1025.3 0.1624 0.844
400 886.3 0.1474 0.831

Moreover, it is noticeable that SIFT with 150 features for 2D dataset and 300
features for 3D dataset outperform SURF with all features. This tells us that
SIFT with the proposed scheme for 2D dataset is 2.8 times (2.3 times for 3D)
faster in extraction time than SURF while using 25% (40% for 3D) of descriptor
length and still outperforming in the matching performance compared to SURF.

4.2 Evaluation on MPEG CDVS Framework

The proposed method has been integrated into CDVS TM as an fast mode of fea-
ture extractor for its efficiency since 107th meeting. In current CDVS TM11 [10,
11], there are four different modes on feature extraction. A Low-degree Polyno-
mial (ALP) detector [6] and SIFT descriptor are baseline of feature extraction,
and its three variants :

– ALP low memory mode [1] : ALP detector with block-based processing and
spatial domain filtering

– ALP fast mode [12] : fast extraction mode of ALP detector (Proposed
method)

– ALP BF [5] : ALP detector with block-based processing and frequency do-
main filtering

ALP detector approximates the LoG filtering by polynomials to find key-
points of image.

In Table 5, four different feature extractors are compared. For ALP, ALP low
memory, ALP BF cases, the previous feature selection method [7] is used. How-
ever, features are selected after SIFT descriptor extraction in ALP low memory,
ALP BF for their block-based processing to acheive low memory usage.

For gradient computation, ALP and ALP low memory mode use gradient
map, which computes the gradients in advance for all pixels, and ALP BF com-
pute gradient directly for each detected keypoint where multiple calculations at
the same pixel can exist.

In fast mode of ALP, the proposed method was integrated into ALP detector
and SIFT descriptor. Because the proposed method speed up the computation
after keypoints are detected, it could be easily integrated into ALP detector
framework.

Accelerating Local Feature Extraction 11

Table 5. Comparison of TM11 feature extractors.2

ALP
ALP

Low memory
ALP

Fast mode
ALP BF

Feature
selection

[7] [7] TFS [7]

Gradient
Computation

GM GM PGC DGC

Average
extraction
time (sec)

0.1385 0.2689 0.0915 0.1374

Speed-up Factor 1 0.5149 1.5130 1.0076

Max Memory
usage (512B)

28.2 MB 21.0 MB 24.3 MB 21.2 MB

Max Memory
usage (16KB)

28.3 MB 22.2 MB 25.7 MB 21.0 MB

In this section, we compare the time complexity, memory usage, and mathc-
ing and retrieval accuracy of the proposed method (ALP fast mode) with three
other modes of feature extractor on MPEG CDVS framework.

Experimental Setup. Evaluation procedure follows the evaluation framework
for CDVS [9]. Descriptors are extracted at six operating point (512B, 1KB,
2KB, 4KB, 8KB, and 16KB), and the target number of selected features are 250
(512B, 1KB, 2KB), 300 (4KB), 500 (8KB), and 650 (16KB), respectively. For
feature selection, the conditional probabilities of correct match in TM11 were
used. MPEG CDVS datasets [9] were used in matching and retrieval experiments
as described in Table 3. In retrieval experiment, 7814 images were queried to
retrieve relevant images in a dataset of 1 million images including distractor set
collected from Flicker.

Time Complexity. Time complexity was measured for each operating point
of CDVS. The other condition is the same of Section 4.1 Time Complexity, but
extraction time measures whole processing time including image loading, resizing
and descriptor encoding in this case, because all of TM11 feature extractors are
built on the same framework.

The results are shown in Fig.6 (a), and average extraction time for six oper-
ating points and speed-up factor compared to ALP are shown in Table 5.

For ALP BF and ALP low memory cases, the extraction times over six op-
erating points are nearly constant because that features are selected after SIFT
extraction for their block-based processing to achieve low memory usage. For

2 TFS : Two-stage feature selection, GM : Gradient map.
PGC : Partial gradient computation, DGC : Direct gradient computation.

12 Keundong Lee, Seungjae Lee, Weon-Geun Oh

512B 1KB 2KB 4KB 8KB 16KB

0.05

0.1

0.15

0.2

0.25

CDVS Operating Point

E
xt

ra
ct

io
n

tim
e

[s
ec

]

ALP
ALP Fast (proposed)
ALP BF
ALP lowmemory

(a) Time complexity

TPR Localization Accuracy mAP Top Match
0.5

0.6

0.7

0.8

0.9

1

R
at

e

ALP
ALP lowmemory
ALP Fast
ALP BF

(b) Matching and Retrieval accuracy

Fig. 6. Comparison of feature extractors of CDVS TM11.

ALP and the proposed method (ALP Fast mode), the extraction time is in-
creased according to the target number of selected features (250 features are
selected at 512B, 1KB, 2KB).

The proposed method outperforms the others in terms of extraction time
at every operating point. Especially, the proposed method at 16KB, where 650
features are selected, is faster than other methods at 512B, where only 250 fea-
tures are selected. On average, the proposed method is more than 1.5 times
faster compared to ALP and ALP BF, and 2.94 times faster compared to ALP
low memory mode. From these results, it is verified that the proposed method
significantly improved the time complexity of feature extraction in CDVS TM.
Morover, in [2], they examined ALP, ALP low memory and ALP fast mode (pro-
posed method) on ARM based device (LG Nexus5) and reported the proposed
method is not only faster than the other methods, but also consumes the lowest
energy (about 0.75 ∼ 0.95 J per image) because of its shorter extraction time.

Memory Usage. In this section, memory usages of the proposed method (ALP
fast mode), and other ALP variants of TM11 in feature extraction are examined
by profiling with their binaries. All the binaries of four different feature extractor
were compiled in 64bit release mode, and Visual Studio 2010 performance wizard
in CPU sampling method was used as profiling tool. While extracting feature
of 250 randomly selected VGA images at 512B and 16KB operating point, the
actual memory used by the extraction binaries were measured by Working Set
Peak memory counter on i7-2600 @ 3.4GHz / 16GB RAM PC. The definition of
Working Set Peak is as follows from [15]:

– Working Set : The current number of bytes in the working set of the process.
The working set is the set of memory pages touched recently by the threads
in the process. It includes both shared and private data.

– Working Set Peak : The maximum size, in bytes, in the working set of the
process at any point in time.

Accelerating Local Feature Extraction 13

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

time stamp

M
B

yt
es

Working Set Peak

ALP
ALP Low memory
ALP Fast
ALP BF

(a) 512B

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

time stamp

M
B

yt
es

Working Set Peak

ALP
ALP Low memory
ALP Fast
ALP BF

(b) 16KB

Fig. 7. Memory Profiling Results.

Profiling results are shown in Fig. 7. In this figure, both of extraction speed and
memory usage can be compared. Memory usage of ALP BF and ALP Low mem-
ory was lower than the other methods at 512B, 16KB operating point both. This
is because two methods are based on block-wise processing. The maximum of
working set peak in this figure is presented in Table 5. The proposed method uses
3.1 MB and 4.7 MB more than ALP BF at 512B and 16KB, respectively. Even
though, the proposed method is based on whole-image processing, the memory
usage difference with that of feature extractor based on block-wise processing is
not huge. It is because two-stage feature selection is helpful to keep less features
in feature extraction process.

Matching and Retrieval Performance. Matching and retrieval performance
of the proposed method, and other feature extractors of TM11 are compared on
MPEG CDVS evaluation framework. For pair-wise matching performance, true
positive rate (TPR) at a fixed false positive rate (1%), and localization accuracy
were measured. Mean average precision (mAP) and success rate for top match
were measured for retrieval performance. All of measures were measured for each
dataset at each operating point, and their average values are compared.

Experimental results are shown in Fig.6 (b). It shows that the performance
is similar for all methods.

5 Conclusion

In this paper, a fast feature extraction method based on two-stage feature se-
lection and efficient partial gradient computation is proposed. SIFT with the
proposed method is compared to SIFT and SURF with [7]. With the proposed
scheme, feature selected SIFT is not only much faster than SURF, but also
outperforms in terms of matching accuracy.

14 Keundong Lee, Seungjae Lee, Weon-Geun Oh

Also, the proposed method applied to ALP detector is compared to other
feature extraction methods of TM11 on CDVS evaulation framework. Exper-
imental results show that the proposed method significantly reduces the time
complexity while maintaining the matching and retrieval performance of TM11.
Moreover, the proposed method are compared to ALP and ALP low memory
on ARM-based device (LG Nexus5) in [2]. From the results of [2], the proposed
method is not only faster than the other methods, but also consumes the lowest
energy (about 0.75 ∼ 0.95 J per image) because of its shorter extraction time.

From the results, we can conclude that the proposed method significantly
reduces the time complexity of feature extraction without affecting the matching
and retrieval accuracy, and this method will be useful for fast extraction of the
high accuracy feature on mobile devices, where the use of computational resource
is limited.

For further work, the proposed method can be easily extended to SURF
framework, and time complexity can be further reduced when combined with
parallel processing or GPU implementation. Memory usage can be also improved
considering block-based processing.

Acknowledgement. This work was supported by the ICT R&D program of
MSIP/IITP. [2014(R2012030111), Development of The Smart Mobile Search
Technology based on UVD(Unified Visual Descriptor)]

References

1. Balestri, M., Francini, G., Lepsøy, S., Lee, K. D., Na, S. I., Lee, S. J.: CDVS: ETRI
and TI’s response to CE1 - ”An invariant low memory implementation of the ALP
detector with a simplified usage interface”. 107th MPEG Meeting, M31987 (2014)

2. Ballocca, G., Mosca, A., Fiandrotti, A., Mattelliano, M.: CDVS: TM10 Extraction
Evaluation on ARM Architectures. 109th MPEG Meeting, M34086 (2014)

3. Bay, H., Ess, A., Tuytelaars, T., Van G. L.: Speeded-up robust features (SURF).
Computer Vision and Image Understanding 110 (2008) 346–359

4. California Institute of Technology: Pasadena Buildings 2010 dataset. http://www.
vision.caltech.edu/archive.html (accessed 2014)

5. Chen, J., Duan, L. Y., Huang, T., Gao, W., Kot, A. C., Balestri, M., Francini,
G., Lepsøy, S.: CDVS CE1: A low complexity detector ALP BFLoG. 108th MPEG
Meeting, M33159 (2014)

6. Francini, G., Balestri, M., Lepsøy, S.: CDVS: Telecom Italia’s response to CE1 -
interest point detection. 106th MPEG Meeting, M31369 (2013)

7. Francini, G., Lepsøy, S., Balestri, M.: Selection of local features for visual search.
Signal Processing: Image Communication 28 (2013) 311–322

8. Hervé, J., Matthijs, D., Cordelia, S.: Hamming embedding and weak geometric
consistency for large scale image search. European Conference on Computer Vision
1 (2008) 304–317

9. ISO/IEC JTC1/SC29/WG11: Evaluation Framework for Compact Descriptors for
Visual Search. 97th MPEG Meeting, N12202 (2011)

10. ISO/IEC JTC1/SC29/WG11: Study text of ISO/IEC DIS 15938-13 Compact De-
scriptors for Visual Search. 109th MPEG Meeting, N14681 (2014)

Accelerating Local Feature Extraction 15

11. ISO/IEC JTC1/SC29/WG11: Test Model 11: Compact Descriptors for Visual
Search. 109th MPEG Meeting, N14682 (2014)

12. Lee, K. D., Na, S. I., Lee, S. J., Balestri, M., Francini, G., Lepsøy, S.: CDVS: ETRI
and TI’s Response to CE1 - A fast feature extraction based on ALP detector. 107th

MPEG Meeting, M31991 (2014)
13. Lepsøy, S., Francini, G., Cordara, G., de Gusmao, P. P. B.: Statistical modelling

of outliers for fast visual search. IEEE International Conference on Multimedia and
Expo (ICME) (2011) 1–6

14. Lowe, D. G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

15. Microsoft: Counters in Process performance object. http://msdn.microsoft.com/
en-us/library/ms804621.aspx (accessed 2014)

16. OpenCV Library: http://opencv.org/ (accessed 2014)
17. Telecom Italia: 201 Books, InternetArchive and DistractorPairs dataset. http:

//pacific.tilab.com/ (accessed 2013)
18. University of Oxford: The Oxford Buildings Dataset. http://www.robots.ox.ac.

uk/~vgg/data/oxbuildings/ (accessed 2014)
19. VLFeat Library: http://www.vlfeat.org/ (accessed 2014)

