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Abstract. In this paper, we propose a novel method for generating 3D
line segment based model from an image sequence taken with a RGB-D
camera. Constructing 3D geometrical representation by 3D model is es-
sential for model based camera pose estimation that can be performed
by corresponding 2D features in images with 3D features of the cap-
tured scene. While point features are mostly used as such features for
conventional camera pose estimation, we aim to use line segment fea-
tures for improving the performance of the camera pose estimation. In
this method, using RGB images and depth images of two continuous
frames, 2D line segments from the current frame and 3D line segments
from the previous frame are corresponded. The 2D-3D line segment cor-
respondences provide camera pose of the current frame. All of 2D line
segments are finally back-projected to the world coordinate based on the
estimated camera pose for generating 3D line segment based model of the
target scene. In experiments, we confirmed that the proposed method can
successfully generate line segment based models, while 3D models based
on the point features often fail to successfully represent the target scene.

1 Introduction

Generating 3D geometrical models of the environment is an essential technology
for a lot of vision-based applications. For example, it is almost impossible to
estimate camera pose for AR applications from the captured image sequence
without such geometrical 3D model of the object environment. For constructing
3D models, Structure-from-Motion (SfM) approaches are often used. Traditional
SfM approaches like [1] take correspondences from images, then recover 3D ge-
ometrical model of the scene and pose of the camera at each frame. To obtain
these correspondences, feature points are generally detected, and then the de-
tected features are matched between different frames. For the matching, feature
point descriptors such as the scale-invariant feature transform (SIFT)[2] and
speeded-up robust features (SURF)[3] are often used. However, in the situation
where only a few feature points are detected, feature point matching may fail,
therefore reconstructed objects are inaccurate. In man-made environment, there
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are usually a lot of untextured objects which do not provide sufficient number
of feature points.

Line segment features can be considered as an alternative feature to solve
this problem. A lot of line segments are detected in a man-made situation even
where only a few feature points are detected. Over the years, several methods
about line based 3D reconstruction have been reported. Comparing with feature
point based reconstruction, the number of researches about line based is very
few. This is mainly because line segment matching is still challenging task. Line
segments have less distinctive appearance so that a descriptor of line segment fea-
ture is difficult to be defined. Therefore, some existing methods[4–6] do not rely
on appearance-based line segment matching. However, recently, researches about
line segment feature descriptor such as the mean standard-deviation line descrip-
tor (MSLD)[7] or the Line-based Eight-directional Histogram Feature(LEHF)[8]
have been reported. With these line segment feature descriptors, line segment
based 3D model can be generated in man-made environment.

As one more advantage of line segments, line segment matching can be robust
to large viewpoint changes. This is because line segments provide more infor-
mation from their length, geometry characteristics and relative positions. One
of the applications for generated 3D models is the estimation of camera pose
using 3D models. With 3D models which consists feature points, the camera
pose estimation cannot deal with large viewpoint changes because feature point
matching is not robust to changes in perspective. On the other hand, thanks to
the line segment’s advantage, 3D line segment based model and estimation of
the camera pose from it can deal with the perspective changes. Therefore, gen-
erating 3D line segment based model is also important for the large viewpoint
change situation.

In this paper, we propose a novel method for generating 3D line segment
based model from an image sequence taken with a RGB-D camera. For obtain-
ing line segments matching between images, we use Directed LEHF[9] which is
an improved version of LEHF[8]. In the proposed method, 2D line segments are
first detected from RGB images. Then, 2D line segments between consecutive
two frames are matched by Directed LEHF. From this matching, the 2D line
segments of the previous frame can be transferred to 3D line segments in the
world coordinate. Then, the current frame’s 2D line segments and the previous
frame’s 3D line segments can be corresponded. These 2D-3D correspondences
give camera pose of the current frame by solving the Perspective-n-Lines (PnL)
problem. With this estimated camera pose, the 2D line segments of current
frame are translated to 3D line segments. This procedure is repeated and ob-
jects represented by 3D line segments are obtained as a 3D model. We have
experimentally demonstrated the performance of the proposed method by com-
parison with other 3D reconstruction methods. The experimental result shows
that our proposed method using line segment matching can generate an accurate
3D model in the situation which has few feature points. Moreover, we demon-
strated that our 3D line segment based model can use for estimating camera
poses in the large viewpoint changes situation.
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Fig. 1. Detection of 2D line segments. The blue line segments from I
i−1
rgb and the yellow

line segments from I
i
rgb are Li−1 and Li, respectively.

2 Proposed Method

In this section, we describe the proposed method for generating a 3D line seg-
ment based model of a target scene from an image sequence captured by moving
a RGB-D camera, such as Kinect. N multiple images of a target scene are cap-
tured by RGB-D camera. Suppose we have N RGB images {INrgb} and N depth

images {INd } captured with the Kinect. The basic idea is that each frame’s cam-
era pose can be estimated from its previous frame’s camera pose, and then 2D
line segments on RGB Images are back-projected into the 3D world coordinate
by the estimated camera pose. The camera pose at ith frame is represented a
transform matrix RT i

cw = [Ri|ti] containing a 3×3 rotation matrix (Ri) and 3D
translation vector (ti). In the following subsections, we describe 3D geometry
of the consecutive two frames, (i − 1)th and ith frame. Then we will describe
the way of computing RT i

cw using known (i− 1)th frame’s camera pose RT i−1
cw .

We set the first frame’s camera pose RT 0
cw as 4× 4 Identity matrix, because we

assume that the world coordinate is defined by the camera coordinate of the first
frame.

2.1 Detection of 2D line segments

First, 2D line segments are detected from RGB images, by employing the fast
line segment detector (LSD)[10]. Using LSD, we can obtain end points of each
2D line segment. As shown in Fig. 1, two sets of line segments detected from

Ii−1
rgb and Iirgb by LSD are indicated by Li−1 = {l0i−1, l

1
i−1, · · · , l

Mi−1

i−1 } and Li =

{l0i , l
1
i , · · · , l

Mi

i }, respectively.

2.2 Creation of 3D line segments

We also have depth images, Ii−1
d and Iid. Therefore, the positions of the 3D

line segments in the camera coordinate of (i − 1)th frame and ith frame are
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(a) (b) (c)

Fig. 2. The way to create 3D line segments. (a) 2D points on the line segment, (b) 3D
points in the camera coordinate, (c) the 3D line segment and fixed end points.

Fig. 3. Creation of the 3D line segments. Fig. 4. Directed LEHF matching.

obtained, so that we can create 3D line segments in the camera coordinate.
Suppose we choose one 2D line segment in Li−1 and Li. First, as shown in
Fig. 2(a), we get equally-spaced points on the line segment between the start
point and the end point. These acquired points, the start point and the end
point are translated from the image coordinate to the camera coordinate using
depth value. These translated 3D points are supposed to be on the same 3D
line. However, because of the Kinect ’s depth value error, the 3D points also
have error, therefore, they are not on the same 3D line. To decrease the error,
RANSAC[11] is used to find inliers of the 3D points. Thus, we can eliminate
points which stay from the others. In this process, as shown in Fig. 2(b), the
two points which are located at the either end of the inliers are assumed as a
tentative start 3D point and end 3D point. Next, we compute a 3D line which
minimizes the lengths of perpendiculars from each inlier point to the 3D line.
Finally, we chose the extremities of the perpendiculars from the tentative start
point and end point as a fixed start 3D point and a fixed end 3D point. Therefore,
connecting these fixed start 3D point and end 3D point, we obtain a 3D line
segment. Fig. 2(c) shows the fixed two points and the obtained 3D line segment.
By applying this procedure to every line segment in Li−1 and Li, we obtain

Li−1
c = {L0

c,i−1, L
1
c,i−1, · · · , L

Mi−1

c,i−1} and Li
c = {L0

c,i, L
1
c,i, · · · , L

Mi

c,i }, where Lc,i is

translated from li into the camera coordinate. These 3D line segments in Li−1
c is

translated from the camera coordinate to the world coordinate by known RT i−1
cw .

Therefore, we get Li−1
w = {L0

w,i−1, L
1
w,i−1, · · · , L

Mi−1

w,i−1}, where Lw,i is translated
from li into the world coordinate, as shown in Fig. 3.



3D Line Segment Based Model Generation by RGB-D Camera for Camera 5

Fig. 5. The 2D-3D line segment correspondences. l
g(j)
i−1 from Li−1 and l

f(j)
i from Li are

matched. l
g(j)
i−1 is transfered to L

g(j)
c,i−1 in Li−1

c . Then L
g(j)
c,i−1 is translated to L

g(j)
w,i−1 in

Li−1
w . Therefore L

g(j)
w,i−1 and l

f(j)
i are corresponded.

2.3 Matching 2D line segments by Directed LEHF

Next, we obtain 2D line segment matching between two images. To evaluate
similarity of 2D line segments, we use Line-based Eight-directional Histogram
Feature (LEHF)[8]. LEHF is a descriptor of line segments based on the gradi-
ent histogram for eight different directions along with the line segment. LEHF
descriptor cannot deal with rotation change more than 180 degree. To get match-
ing of the opposite direction line segments, LEHF needs to compute descriptor
distances from two directions, forward direction and inverse direction. However,
if the descriptor distances from the two directions are similar, mismatching is
occurred. To improve the matching performance, we proposed Directed LEHF
[9]. We adopt Directed LEHF as a line segment feature descriptor.

Using a method explained in [12], the Directed LEHF defines the direction of
each 2D line segment by the average intensity of the gradient of the perpendicular
direction with the line segment at all the points on the line segment. The sign
of the average determines the direction of the line segment. The direction of the
line segment determines the start point and end point of each 2D line segment
in Li−1 and Li.

We search for 2D line segment matchings with Li−1 and Li by the Directed
LEHF matching. The resulting set of matching 2D line segment is represented
as

LMi = {(l
g(j)
i−1 , l

f(j)
i ), j = 0, 1, · · · ,Ki}, (1)

in which (l
g(j)
i−1 , l

f(j)
i ) represents a pair of matching 2D line segments g(j) ∈

[0,Mi−1] and, f(j) ∈ [0,Mi], as shown in Fig. 4.

2.4 2D-3D line segment correspondences

In the 2D line segment matching LMi, l
g(j)
i−1 from Li−1 and l

f(j)
i from Li are

matched. The 3D line segment back-projected from l
g(j)
i−1 into the world coor-
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Fig. 6. Camera pose estimation by solving the PnL problem.

dinate is L
g(j)
w,i−1 in Li−1

w . Then, the 3D line segment in Li−1
w and the 2D line

segment in Li are brought to be correspondence with the matching of LMi. The
set of 2D-3D line segment correspondences is represented as

LCi = {(L
g(j)
w,i−1, l

f(j)
i ), j = 0, 1, · · · ,Ki}, (2)

in which (L
g(j)
w,i−1, l

f(j)
i ) represents a pair of 2D-3D line correspondences g(j) ∈

[0,Mi−1] and f(j) ∈ [0,Mi]. The position of the 2D line segment and the 3D
line segment is shown in Fig. 5.

2.5 Solution for the PnL problem

Given a set of 2D-3D line correspondences, we solve the PnL problem, then esti-
mate the camera pose. (The PnL problem is a counterpart of the PnP problem
for point correspondences.) However, there is a fear that LCi contains some mis-
matches. We use a method which solves the PnL problem with an algorithm like
RANSAC explained in [9], and estimate the camera pose RT i

cw. This method
mainly use RPnL[13] for solving the PnL problem. Suppose we have LCi which is
Ki sets of 2D-3D line segment correspondences, we randomly select four 2D-3D
line segment correspondences from LCi. This is because the program of RPnL
needs at least four correspondences. Let the four set of 2D-3D line segment
correspondences be represented as

LCi
four = {(L

a(k)
w,i−1, l

b(k)
i ), k = 0, 1, 2, 3}, (3)

in which (L
a(k)
w,i−1, l

b(k)
i ) represents four pairs of 2D-3D line segment correspon-

dences a(k) ∈ [0,Mi−1] and b(k) ∈ [0,Mi]. Then, the rest of (K
i−4) 2D-3D line

segment correspondences are represented as

LCi
rest = {(L

g(j)
w,i−1, l

f(j)
i )|0 ≤ j ≤ Ki, g(j) ̸= a(k), f(j) ̸= b(k), k = 0, 1, 2, 3}.

(4)
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Fig. 7. The 3D line segment based model.

With LCi
four, we solve the PnL problem using RPnL and estimate the camera

pose RT ′

cw. The 3D line segments in Li
c which are back-projected from l

f(j)
i in

LCi
rest are translated from the camera coordinate into the world coordinate by

RT ′

cw. Let the 3D line segment in the world coordinate translated by RT ′

cw be

L
′f(j)
w,i . We calculate the error e(j) between L

g(j)
w,i−1 from LCi

rest and L
′f(j)
w,i . We

define e(j) as

e(j) = S(j)/(lengthw,i−1 + lengthi), (5)

where S(j) is an area of rectangle obtained by connecting four end points of

L
g(j)
w,i−1 and L

′f(j)
w,i , lenghtw,i−1 is length of L

g(j)
w,i−1, and lengthi is length of L

′f(j)
w,i .

The total of e(j) is defined as error given by RT ′

cw.

We also randomly select another set of LCi
four and repeat the steps ex-

plained above NRANSAC times to estimate RT ′

cw. We choose RT ′

cw which gives
the smallest total of e(j) as a tentative camera pose tentativeRTcw. Next, using
tentativeRTcw, all of the 3D line segments in Li

c which are back-projected from

l
f(j)
i are translated to the 3D line segments in the world coordinate L

′f(j)
w,i . We

calculate e(j) and if e(j) is less than threshold (THe), we save the 2D-3D line
segment correspondences as inlier.

Finally, we compute the camera pose of ith frame using another algorithm for
the PnL problem proposed by Kumar and Hanson[14]. This algorithm estimates
the camera pose iteratively. It needs a set of 2D-3D line segment correspondences
and initial camera pose as inputs. We take the inliers and tentativeRTcw as
inputs, and obtain the camera pose of ith frame RT i

cw as output of the algorithm.
Fig. 6 shows this procedure.

Once RT i
cw is obtained, all of the 3D line segments in the i th camera co-

ordinate Li
c are translated to the 3D line segments in the world coordinate Li

w.
These procedures discussed above are repeated in every consecutive two frame.
Then, each frame’s camera pose and 3D line segments in the world coordinate
are obtained. The 3D line segments of every frame are 3D line segment based
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Fig. 8. Parts of the input RGB images.

Fig. 9. The 3D line segment based model of proposed method.

model as an output of our proposed method. Fig. 7 shows the concept of the 3D
line segment based model generation.

3 Experiment

We conducted two experiments for generating 3D models. One is to show that
our proposed method can generate a 3D model of the scene where other methods
cannot generate accurate models. Another is for demonstrating that camera pose
estimation by our proposed model can perform well in large viewpoint changes.
In both experiments, we compared our proposed method with a method which
uses SIFT feature point matching instead of Directed LEHF matching. For model
generation by our method, we set NRANSAC to 5000 and THe to 0.003.

3.1 Experiment 1 : Generating 3D model

First of all, we generated 3D model of a scene by our proposed method. We
used 81 frames as input image sequence. Fig. 8 shows some of the input RGB
images. Fig. 9 shows the 3D line segment based model of the scene as an output
of our proposed method. Each frame’s camera pose was estimated and 2D line
segments detected in RGB images are back-projected into the 3D coordinate.
With the estimated camera poses and each frame’s depth image, we also back-
projected every points from RGB images into the world coordinate. Then we
obtain reconstructed object shape of the scene represented by colored point
clouds. Fig. 10 shows virtual viewpoint images of the point clouds. In Fig. 9,
line segments on the same physical edges of the door structure detected in the
different frames are almost overlapping in the 3D space. This demonstrates that
the camera poses of the image sequence are correctly estimated by our method.

Fig. 10 also demonstrates the same fact, because the colors rendered by back
projection from different frames are almost matching so that the virtual view
images are synthesized without any blur.
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Fig. 10. The reconstructed object shape represented by point clouds.

Fig. 11. The 3D line segment based model using SIFT feature point matching.

Fig. 9 and Fig. 10 demonstrate that our proposed method could estimate
accurate camera pose of each frame and generate 3D models.

For comparison purpose, we conducted the same experiment with SIFT fea-
ture point matching instead of Directed LEHF matching for estimating camera
pose of every frame. After camera pose estimation, the same procedure of gen-
erating the 3D line segment based model is also performed for detected line
segments by LSD, which is also the same as our proposed method. Fig. 11 shows
the 3D line segment based model using the camera pose estimated by SIFT fea-
ture point matching. Compared with Fig. 9 and Fig. 10, camera poses estimated
by the method with feature point matching are less accurate than proposed
method. This is because the scene does not provide sufficient number of SIFT
feature points.

Next, we tried to get a 3D model of the same scene by other methods. Fig. 12
shows the 3D model reconstructed by Autodesk 123D Catch[15]. Autodesk 123D
Catch is a free web service which reconstructs 3D object from images. We used 70
images which are included in the 81 images used in previous model generation. As
shown in Fig. 12, the reconstructed model is distorted and inaccurate. Autodesk
123D Catch needs images which are captured from various angles. However,
especially in terms of this kind of planar object, various viewpoint images cannot
be obtained. Compared Fig. 12 with Fig. 10, our proposed method can generate
better 3D model.

Fig. 13 shows the reconstructed model of KinectFusion[16]. At this time, the
KinectFusion which we used was the open source Kinfu code in the Point Cloud
Library (PCL) fromWillow Garage[17]. UsingKinfu, Kinect’s RGB image, depth
image and camera pose of each frame are obtained. Therefore, with the camera
pose which KinectFusion estimated, we also obtain reconstructed object shape
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Fig. 12. The 3D model generated by 123D Catch.

Fig. 13. The 3D model generated by KinectFusion.

represented by colored point clouds. Fig. 13 is virtual viewpoint images of the
reconstructed object shape. KinectFusion estimates the camera pose using the
alignment of point clouds such as ICP algorithm[18]. However, with this kind
of planar object, point clouds alignment is failed, and the estimated camera
pose has some error. Therefore, the reconstructed model shown in Fig. 13 is not
accurate.

As shown in Fig. 9, Fig. 11, Fig. 12 and Fig. 13, in this situation, our proposed
method can reconstruct an accurate 3D model.

3.2 Experiment 2 : On-line camera pose estimation with 3D model

One of the possible applications of the 3D line segment based model generated
by using the proposed method is on-line camera pose estimation for mobile AR.
We suppose that line segment based model of the target scene for mobile AR
is generated by the proposed method. In this model generation phase, the 3D
line segments’ position in the world coordinate and their Directed LEHF value
from their projected 2D line segments on RGB images are stored as 3D line
segment database. Then a mobile camera pose of each frame can be estimated
on-line process as described below. First, 2D line segments and Directed LEHF
values are extracted from the input image. Second, a 3D line segment which
has a similar value to the 2D line segment’s Directed LEHF value is searched
into the 3D line segment database. Then, the 2D line segment from the input
image and the 3D line segment in the database are brought to correspondences.
These 2D-3D line segment correspondences may have some mismatching. This
mismatching is eliminated by RANSAC. Finally, the camera pose of the input
image is computed from the 2D-3D matching by RPnL.
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(a)

(b)

Fig. 14. Parts of the input RGB images for experiment 2, (a) the desk scene, (b) the
white-board scene.

(a)

(b)

Fig. 15. The 3D line segment based models for experiment 2.

In this experiment, we captured two scenes using Kinect and generated the
3D line segment based model of each scene. One scene is about a desk on which
two displays and books are put and another scene is about a white-board on
which the word ”HVRL” is written. We used 101 frames for the desk scene and
11 frames for the white-board scene. Some of RGB images for the two scenes
are shown in Fig. 14. Note that we captured the scenes from the front view of
the objects as shown in Fig. 14. Therefore, the 3D line segment based models do
not contain line segments from side view of the scenes. Fig. 15 shows generated
3D line segment based models of each scene. With these models, we constructed
3D line segment databases for both scenes. As well as Experiment1, we con-
ducted the same experiment with SIFT feature point matching instead of Di-
rected LEHF matching. Then, we also constructed SIFT feature point databases
which contained 3D points’ position in the world coordinate and SIFT feature
value.

We estimated 27 camera poses of input images for the desk scene and 86
camera poses of input images for the white-board scene with each 3D line seg-
ment database and SIFT feature point database. For evaluating the accuracy of
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(a) (b)

Fig. 16. The four points of each scene used for measuring re-projection errors.

(a)

(b)

Fig. 17. The result images for evaluating the estimated camera pose. (upper row :
proposed method, lower row : feature point matching)

the estimated camera poses, we re-projected four points in each scene which are
shown in Fig. 16 to the input images, and their re-projection errors are mea-
sured. Fig. 17 shows the images which have the re-projected four points. The
images on the upper low of Fig. 17(a) and (b) show example images of the result
images by our proposed method, and the images on the lower row show example
images based on SIFT feature points, respectively. Moreover, the line segments
and feature points which used for estimating camera pose are shown on the im-
ages in green. These green line segments and feature points include no outlier of
RANSAC.

As shown in Fig. 17, in the case of feature point matching, estimated camera
poses are not accurate and few feature points are used. On the other hand, our
proposed method can estimate the camera poses more accurate and many line
segments are used for estimation.
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(a) (b)

Fig. 18. Re-projection errors.

Fig. 18 shows the re-projection errors. The camera pose estimation by SIFT
feature failed in these situations due to the lack of the correspondences, however,
the camera poses which are estimated by proposed method show smaller re-
projection errors.

In the case of the desk scene, as shown in Fig. 17(a), the input images are
taken from left side view of the desk. However, the 3D line segment based model
of the scene contains line segments only from front view of the desk. Therefore,
a large viewpoint change is occurred between model and input images. With
this, Fig. 17 also shows that feature point matching cannot deal with a change
in perspective but line segment matching with our proposed model is robust for
this large viewpoint change. This is the advantage of using line segments instead
of feature points.

4 Conclusion

We propose a method for generating 3D line segment based model from a RGB-D
image sequence captured by RGB-D camera. In this method, 2D line segments
are detected by LSD from the RGB image sequence. Each 2D line segments
are then associated with depth image for defining a 3D line segment. The line
segments are matched between consecutive frames using Directed LEHF for com-
puting camera pose of each frame of the input image sequence. The camera poses
of all frames finally generate a 3D model represented by the 3D line segments.

In the experiments, we demonstrate that the proposed method can generate
3D line segment based models even in the case that a few feature points can be
detected. We also demonstrate the on-line camera pose estimation for mobile AR
application can effectively performed by the use of the 3D line segment based
model generated by the proposed method.
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