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Abstract. In this paper we present a new RGB-D SLAM system specifically
designed for mobile platforms. Though the basic approach has already been pro-
posed, many relevant changes are required to suit a user-centered mobile envi-
ronment. In particular, our implementation tackles the strict memory constraints
and limited computational power of a typical tablet device, thus delivering in-
teractive usability without hindering effectiveness. Real-time 3D reconstruction
is achieved by projecting measurements from aligned RGB-D keyframes, so to
provide the user with instant feedback. We analyze quantitatively the accuracy
vs. speed trade-off of diverse variants of the proposed pipeline, we estimate the
amount of memory required to run the application and we also provide qualitative
results dealing with reconstructions of indoor environments.

1 Introduction

In the past decades, the problem of Simultaneous Localization And Mapping (SLAM)
has been mainly addressed by either expensive 3D sensors, e.g. laser scanners, or monoc-
ular RGB cameras. Laser scanners feature high precision and have enabled impressive
results in the SLAM realm [1,2]. However, their size and expensiveness limit the range
of addressable applications. On the other hand, monocular SLAM has reached a con-
siderable maturity [3, 4] but still mandates massive parallelization by GPGPU to attain
dense 3D reconstruction [5].

The availability of consumer-grade RGB-D cameras capable of delivering color
and depth information in real-time, such as the Microsoft Kinect and Asus Xtion Pro
Live, has fostered a new approach in solving the SLAM problem. Nowadays, a newer
generation of devices is appearing, e.g. the Structure sensor [6], the Creative Senz3D
[7] and Google’s Project Tango [8], which opens up new possibilities to introduce 3D
sensing into the mobile world. However, most RGB-D SLAM systems have not been
conceived for mobile platforms and typically rely on massive GPGPU processing to
reach real-time execution on desktop environments [9].

Very recently, though, the SlamDunk [10] RGB-D SLAM algorithm has been pro-
posed, which features a few threads, low memory consumption and can achieve real-
time operation without any GPGPU acceleration. As SlamDunk is quite accurate and
robust, it qualifies itself as a suitable reference design towards the creation of an RGB-D
SLAM framework for mobile platforms. Hence, rather than investigating on a possible
brand-new pipeline, in this paper we focus on the adaptation and implementation of the
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key steps of the SlamDunk algorithm on an Android-operated tablet, underlining the
difficulties faced and the solutions adopted to overcome them. Accordingly, our contri-
bution may pave the way for further research on the novel topic of interactive RGB-D
SLAM on mobile devices, as countless exciting applications and new scenarios may be
envisioned should this technology trend grow and reach maturity.

The remainder of this paper is organized as follows. The next section reviews re-
lated publications, including SlamDunk and similar approaches, so to better motivate
the adoption of the former as a SLAM reference design “to go mobile” as well as to
highlight the key steps that will be adapted to enable the actual mobile implementation.
Then, in Sec. 3 we briefly summarize the SlamDunk pipeline and in Sec. 4 present the
software architecture deployed in the final SLAM mobile application. Sec. 5 discusses
the adaptations made to the original algorithm, chiefly needed to improve efficiency and
better meet the computational requirement of a mobile platform. Experimental findings
are reported in Sec. 6, while in Sec. 7 we draw concluding remarks and point out the
major issues to be addressed by future work.

2 Related Work

In the field of RGB-D SLAM, most state-of-the-art proposals can now produce high
quality meshes in real-time. However, they usually require hardware acceleration by
massive GPGPU processing together with high-end desktop platforms [9, 11, 12]. As
such, these systems can hardly provide reference design guidelines towards rendering
interactive SLAM feasible on resource limited platforms such off-the-shelf mobile de-
vices. Among those not relying on GPGPU acceleration, RGB-D Mapping [13] has
been one of the first proposals aimed at exploiting RGB-D sensing for SLAM. Their
camera tracking is based on pairwise matching of image features, the system perform-
ing also global pose graph optimization to handle camera drift. To constrain nodes and
make the optimization effective, they look for possible loop closures by matching im-
age features within a subset of previous keyframes and perform a global pose graph
relaxation accordingly. Therefore, as the explored space gets wider and the graph size
increases, more time is spent in finding loop closures and optimizing poses. A similar
approach is deployed by RGB-D SLAM [14, 15], where, moreover, near real-time pro-
cessing (less than 15 FPS) is achieved by using the GPU for extraction of SIFT visual
features. Nonetheless, the speed usually drops after gathering many frames due to the
increasing complexity of the global optimization routine.

SlamDunk [10] is a very recent and particularly “lightweight” approach to RGB-D
SLAM. Unlike previous work, it builds a Local Map against which the camera is ro-
bustly tracked and avoids full-graph optimization to preserve real-time operation even
along large trajectories. Moreover, the Local Map enables implicit loop closure han-
dling and allows for efficient operation as the camera moves back and forth within an
already mapped portion of the workspace. As SlamDunk is computationally rather in-
expensive and can achieve real-time performance (i.e. more than 30 FPS) without any
GPGPU acceleration, it appears as an interesting approach for mobile RGB-D SLAM.

As regards SLAM systems specifically proposed for a mobile platform, we point
out that they usually rely on the RGB camera of the device and the internal sensors,
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Fig. 1. The SlamDunk pipeline comprises three main modules: Local Mapping, Camera
Tracking and Local Optimization.

e.g. accelerometer and gyroscope, while we target RGB-D data. Klein and Murray [16]
showed how to run PTAM [4] on an Apple iPhone 3G. However, while tracking is
typically carried out in 30ms, the bundle adjustment step may take seconds to complete.
Lee et al. [17] process frames off-line on a remote server, so the computation is not
performed on the device. Pan et al. [18] produces 3D reconstructions of very large
scenes on a phone. The models are suitable for AR, but the system does not run in real-
time and the user can perceive the result only after seconds of processing. More recently,
Tanskanen et al. [19] achieved real-time tracking on a smartphone by leveraging on
inertial sensing and GPU processing. Also, the system is designed for object capturing
with model reconstruction running at about 0.3-0.5Hz. In this paper we demonstrate a
much higher frame rate without exploiting any other sensors than the RGB-D camera.

3 SlamDunk System Overview

As depicted in Fig. 1, the SlamDunk algorithm [10] can be decoupled in three main
modules: Local Mapping, Camera Tracking and Local Optimization. Local Mapping
models the camera path as a collection of RGB-D keyframes and stores their poses
within a quad-tree data structure. The algorithm does not consider the full path for
tracking but, instead, selects a subset of spatially adjacent keyframes by retrieving an
Active Keyframe Window from the quad-tree. Local visual features associated with such
keyframes, e.g. SURF [20] or SIFT [21] descriptors, are gathered and stored into a local
Feature Pool, which is a KD-Tree forest [22] enabling efficient feature matching.

The Camera Tracking module is the first to execute, taking the RGB-D frame com-
ing from the sensor as input and returning the estimated camera pose. Purposely, visual
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features are extracted from the RGB image and matched into the feature pool to find
correspondences between the current frame and the local map. Using the associated
depth measurements, matching pixels are back-projected in the 3D space leading to 3D
correspondences. Accordingly, a full 6DOF pose can be robustly estimated by running
a standard Absolute Orientation algorithm [23] within a RANSAC framework. Camera
pose is represented as a 4×4 matrix in the following format:

T =

(
R t

0>3 1

)
, (1)

where R represents a 3×3 rotation matrix and t is a translation vector. Points are
projected onto the image plane by means of the camera matrix

K =

 fx 0 cx

0 fy cy

0 0 1

 , (2)

where fx, fy are the focal lengths and cx, cy the principal points. Then, given a pixel
position m = (u,v) and its associated depth measurement D, its 3D back-projection is
computed as

p = K−1 ·

u ·D
v ·D
D

 . (3)

Then, as detailed in [10], if the currently tracked frame exhibits a limited overlap
with respect to the Local Map, it is promoted as a new keyframe, thereby triggering the
Local Optimization module and updating the Local Map itself, which, accordingly, gets
centered around the newly spawned keyframe.

The Local Optimization module is in charge of optimizing poses across a pose graph
associated with the keyframes to minimize the reconstruction error. The cost function is
expressed as a sum of squared residuals, where each residual draws from a successful
match:

ri j = pi−T−1
i T jq j . (4)

Here, (pi,q j) is the 3D point pair derived from a 2D feature match, while Ti and T j
are the associated camera poses. The optimization considers only the keyframe poses
within a certain distance along the graph, in order to preserve local consistency while
being able to scale smoothly to large workspaces. Indeed, a global pose graph optimiza-
tion, though usually reaching a more accurate solution, would grow in complexity and
time requirements with the number of keyframes.

4 Software Architecture

A global system overview of the proposed framework is shown in Fig. 2. The applica-
tion consists of three main threads, namely, the Grabber (see Sec. 4.1), the Application
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Fig. 2. The software architecture of the mobile application, divided into three main ex-
ecution modules: Grabber, Application Manager and Renderer.

Manager (see Sec. 4.2) and the Renderer (see Sec. 4.3). The next sub-sections describe
these components, focusing on their specific implementation on an Android mobile
platform.

4.1 Grabber

The Grabber entity is used to abstract from the actual hardware device that would gather
RGB-D frames. In this way, the other modules can execute independently and the spe-
cific kind of sensor will not influence execution of the SLAM algorithm. This entity
is also used for testing purposes to emulate the behavior of an RGB-D camera. Differ-
ent implementations of the actual Grabber may be easily included in the future, thus
allowing for easy expansion of the range of sensors supported by the application.

The Grabber entity executes independently of the other components as a single
thread which takes the data coming from the specific RGB-D sensor (step 1 in Fig. 2)
and inserts them into a double buffer, called Concurrent Double Buffer (step 2 in Fig. 2).
The choice of a double buffer is used in a multi-threaded environment to handle con-
currency issues: the read operation on the buffer would block the associated thread if
the data were not yet available, while the write operation frees the threads waiting for
the data, if any.

4.2 Application Manager

The Application Manager is the most resource and time consuming thread, as it end-
lessly collects new data and runs the core SLAM algorithm, i.e. the adapted SlamDunk
pipeline. First, RGB-D data are read from the input buffer previously filled by the Grab-
ber (step 3 in Fig. 2). Then, the SlamDunk algorithm is executed (step 4 in Fig. 2). In
case of tracking failure, the frame is discarded, otherwise the estimated camera pose is
retrieved, together with updated keyframe poses had an optimization been run.
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Should tracking be successful and the current frame promoted to keyframe, each
pixel (u,v) on the RGB image is then expressed in 3D homogeneous coordinates and
its associated depth value D is applied as:

u ·D
v ·D
D

1

 , (5)

without including the effect of the camera parameters. This is the only projection
executed by the Application Manager, thus avoiding the multiplication with the inverse
of the camera matrix and then with the pose estimated by the SLAM algorithm. Instead,
we extend the inverse of the camera matrix to 4×4 as

K−1
e =

(
K−1 03

0>3 1

)
(6)

and produce the affine transformation which is given as input to the Renderer to-
gether with the partially projected points:

T f = T ·K−1
e . (7)

The point cloud generated by the projection, together with the model matrix and
the other matrices representing updated poses, are inserted into the Observable Double
Buffer (step 5 in Fig. 2). This buffer follows the Observer design pattern: the entity that
observes the buffer, in this case the Renderer, is notified whenever the data changes.
Accordingly, updates are promptly reported to the user interface as soon as new data
become available.

4.3 Renderer

The final module in our mobile application is the Renderer, which manages the user
interface. The Renderer is notified when a new keyframe has been detected or existing
poses have been updated in the Observable Double Buffer (step 5 in Fig. 2). Then, it
reads the points and the affine transformations (step 6 of Fig. 2) to show them properly
on the screen of the mobile device. The Renderer draws the new point cloud as well as
updates those that have their poses updated because of a local optimization.

To improve the overall efficiency, the actual multiplication between the points and
the corresponding affine matrix has been delegated to the graphical pipeline. In our
specific case, the rendering part has been developed using OpenGL ES 2 [24].

5 SlamDunk on a Mobile Platform

The SlamDunk pipeline proposed in [10] has been modified to better match the ca-
pabilities of modern mobile devices. The main changes refer to the feature detection,
description and matching approaches. Indeed, the visual features algorithms deployed
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by the desktop version, i.e. SURF [20] and SIFT [21], cannot be run at interactive
frame-rate on a modern mobile platform. Moreover, the descriptors generated by these
algorithms are quite long (up to 128 floating-point numbers), so that a nearest neighbor
search based on calculation of the Euclidean distance does not allow for sufficiently fast
matching, further limiting speed on a mobile platform.

To overcome these limitations, several other feature detectors and descriptors have
been considered. We list below the most promising variants and, in Sec. 6, compare
them in terms of both accuracy and speed:

– ORB keypoint detector and feature descriptor [25];
– ORB keypoint detector and BRISK feature descriptor [26];
– Upright-SURF (U-SURF) optimized keypoint detector and BRISK feature descrip-

tor.

The implementation of the above methods have been taken from the OpenCV library
[27]. However, we have further optimized the U-SURF detector for a mobile platform
by means of ARM NEON parallel instructions. It is noteworthy to point out that the
feature descriptors chosen, namely ORB and BRISK, are binary descriptors that allow
for replacing the Euclidean distance with the faster Hamming distance during nearest-
neighbor search.

6 Experimental Results

In this section we present quantitative and qualitative results obtained by running the
mobile version of SlamDunk with the different algorithms considered for feature de-
tection and description. We also present an estimate of the amount of memory used by
the application. Fig. 3 shows the user interface of the developed Android application.
The reference mobile platform used in all the experiments is a Samsung Galaxy Tab
Pro 10.1 tablet.

As for quantitative experiments, we have processed several sequences from the pub-
licly available TUM RGB-D benchmark dataset [14], which includes color and depth
streams acquired by a Microsoft Kinect and an Asus Xtion Pro Live, together with
ground truth data obtained by a motion capture system tracking camera movements.
Results are shown in Tab. 1. Clearly, the U-SURF + BRISK variant provides overall
the best accuracy. We ascribe this to the quality of SURF keypoints, which, in partic-
ular, show higher repeatability than ORB features across viewpoint changes. Indeed,
between the other two variants, i.e. ORB + ORB and ORB + BRISK, the difference is
far less evident. These two variations can be considered equivalent in terms of accuracy,
though they differ significantly in terms of timing performance, as discussed below.

As for the efficiency of feature algorithms, we have measured separately the mean
time spent for detection and description (see Tab. 2). As expected, the ORB detector is
much faster than U-SURF, due to the simpler pipeline of the algorithm. On the other
hand, the BRISK feature descriptor is considerably more efficient than ORB. Indeed, it
is also worth noticing that the combination ORB + BRISK is faster than ORB + ORB, the
former taking an average time of about 35 milliseconds compared to the 100 millisec-
onds required by the latter. The combination U-SURF + BRISK runs at an approximate
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Fig. 3. The user interface of the developed Android application.

Table 1. RMSE of the absolute trajectory error (meters) for several sequences of the
TUM RGB-D benchmark.

Sequence ORB + ORB ORB + BRISK U-SURF + BRISK

fr1/floor 0.058 0.055 0.051
fr1/desk 0.049 0.052 0.042
fr1/room 0.270 0.278 0.140

fr3/structure_texture_near 0.092 0.047 0.025
fr3/structure_texture_far 0.052 0.045 0.028

fr3/nostructure_texture_near_with_loop 0.046 0.057 0.030
fr3/nostructure_texture_far 0.178 0.139 0.083
fr3/long_office_household 0.058 0.063 0.041

speed of about 84 milliseconds. However, as shown above, it has the advantage of a
notably higher precision. Therefore, we consider U-SURF + BRISK as the preferred
feature detection and description approach for our current implementation of a SLAM
system in a mobile environment, while ORB + BRISK turns out a more favorable choice
than ORB + ORB due to faster speed and equivalent accuracy.

In Tab. 3 we highlight the efficiency of the other steps of the SlamDunk algorithm
in terms of maximum and minimum execution times. Though the actual times vary de-
pending on the observed scene, it is clear that graph optimization is by far the most
time consuming step, especially when a high number of feature matches constrains the
poses. However, a local optimization is run only when a new portion of environment
starts being explored and a new keyframe is spawn; thus we are able to run the applica-
tion at an average speed of about 10 frames per second using the ORB + BRISK variant,
while U-SURF + BRISK can work at an average speed of about 6-7 frames per second.
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Table 2. Average execution times (milliseconds) for the different feature combinations.

Algorithms Detection Description

ORB + ORB 28 72
ORB + BRISK 28 7

U-SURF + BRISK 70 14

Table 3. Execution times of the other SlamDunk modules.

Operation Time of Execution

Feature Matching 20-40 milliseconds
Robust Pose Estimation 1-10 milliseconds

Local Optimization 20 milliseconds - 2 seconds or more

The final reconstructions can also be qualitatively inspected. Fig. 5 and Fig. 6 show
two reconstructions from the TUM RGB-D benchmark, while Fig. 4 is an indoor en-
vironment explored by connecting an Asus Xtion Pro Live camera to our Galaxy Tab
Pro 10.1 tablet. These reconstructions have been attained using the U-SURF + BRISK
variant of the algorithm.

With regard to the memory footprint, we report now an estimate of the amount
of memory required by the SlamDunk algorithm as well as the visualization module.
Every keyframe stored in the map contains a list of features, each one having a length
set by the algorithm used for the extraction. Also, for each feature we keep the 3D
point representing the projected keypoint in camera space, expressed by 3 floating-
point values, and an integer index used to find the corresponding keyframe during the
feature matching operation. Considering both the ORB and BRISK algorithms, which
define, respectively, a 32- and 64-byte descriptor, the memory needed by 100 keyframes
is computed as follows:

MORB = (32B+3 ·4B+4B) ·100 ·500 = 2400000B≈ 2.3MB , (8)

MBRISK = (64B+3 ·4B+4B) ·100 ·500 = 4000000B≈ 3.8MB , (9)

where we have considered an average number of 500 features extracted from each
keyframe. It is worth to notice that the SIFT and SURF descriptors used by the desktop
version have a much higher memory consumption, being the feature vector composed
of 64 or 128 floating-point numbers.

As for the pose graph, for each node a quaternion and a translation vector are stored
as 7 double-precision floating point numbers, coupled with a unique integer index; con-
sidering 100 keyframe, it amounts to

Mposes = (7 ·8B+4B) ·100 = 6000B≈ 6KB . (10)
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Fig. 4. 3D reconstruction of a kitchen using the Asus Xtion Pro Live camera.

Fig. 5. 3D reconstruction of a wooden floor from dataset fr1/floor.
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Fig. 6. 3D reconstruction of some objects from dataset fr3/structure_texture_far.

For each feature match a constraint is created and the corresponding 3D points
are kept in double-precision format. Assuming an average number of 200 matches per
keyframe during the tracking phase, we get

Mmatches = 2 ·3 ·8B ·200 ·100 = 960000B≈ 938KB . (11)

The optimization routine allocates space for the Hessian matrix as a collection of
6×6 double-precision blocks, one for each keyframe and one for each pair of keyframes
connected by an edge in the graph. If each keyframe is connected, on average, to 10
other keyframes in the local map at the end of the tracking phase, we reach a memory
usage of

Mhessians = 6 ·6 ·8B · (1+10) ·100 = 316800B≈ 310KB . (12)

We are now able to estimate the memory usage of the entire SlamDunk algorithm
for both ORB and BRISK features:

MSlamDunkORB = 2.3MB+6KB+938KB+310KB≈ 3.5MB . (13)

MSlamDunkBRISK = 3.8MB+6KB+938KB+310KB≈ 5.0MB . (14)

These values highlight the low memory requirement of the SlamDunk framework
and, also, they are suitable for a mobile environment, which often shows limited mem-
ory availability. As for the storage and visualization of point clouds, for each 3D point
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its position and its color have to be saved, the former as three single-precision floating-
point values, the latter as three bytes accounting for the RGB components. Considering
100 keyframes at VGA resolution, we get:

MPointClouds = 640 ·480 · (3+3 ·4B) ·100 = 460800000B≈ 439MB . (15)

Although this value appears very high, usually not all the image pixels need to be
projected into the 3D space. Indeed, sub-sampling the depth images by a factor of two
can reduce the memory occupancy by 75%, i.e. ≈ 110MB.

7 Conclusions

We have presented an implementation of a state-of-the-art RGB-D SLAM algorithm
on a mobile platform. The original pipeline has been modified and adapted to better
cope with limited memory and hardware resources, leading to an application running at
interactive frame-rate on an Android tablet. We have investigated on diverse feature de-
tection and description approaches, thereby determining that the combination Upright-
SURF and BRISK provides the preferred trade-off between reconstruction quality and
responsiveness. Though our mobile SLAM application can run at about 6-7 Hz, or even
faster when deploying ORB keypoints (10Hz), the timing performance of the local op-
timization step should be addressed in the future. The main challenge here is to keep a
bounded maximum complexity, e.g. by marginalization of 3D point matches in terms
of pose-to-pose constraints, while locally refining the trajectory and reducing the over-
all reconstruction error. Finally, we hope that our work may foster further research on
the new topic of mobile RGB-D SLAM, so to devise soon more efficient solutions that
could deliver real-time operation together with high reconstruction quality.
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