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Abstract. We propose a novel foreground object segmentation algo-
rithm for a silhouette-based 3D reconstruction system. Our system re-
quires several multi-view images as input to reconstruct a complete 3D
model. The proposed foreground segmentation algorithm is based on
graph-cut optimization with the energy function developed for planar
background assumption. We parallelize parts of our program with GPU
programming. The 3D reconstruction system consists of camera calibra-
tion, foreground segmentation, visual hull reconstruction, surface recon-
struction, and texture mapping. The proposed 3D reconstruction process
is accelerated with GPU implementation. In the experimental result, we
demonstrate the improved accuracy by using the proposed segmentation
method and show the reconstructed 3D models computed from several
image sets.

1 Introduction

Three-dimensional reconstruction from multi-view images is a challenging prob-
lem in computer vision. In general, most previous 3D reconstruction systems are
based on point correspondences between multi-view images [1-3]. In this paper,
we develop a 3D object reconstruction system based on visual hull, which does
not require any point correspondences on the object. In this work, we use a
handheld camera to capture images surrounding the target object freely from
different views. Compared to other handheld devices (e.g. Kinect[4]), our system
has the advantages of low cost and ease of use. An example of input images are
shown in Figure 1, and the flow chart of our system is depicted in Figure 2.
Inspired by GraphCut algorithm, many papers apply GrphCut algorithm
into image segmentation such as Boykov and Jolly’s work [5], Pham et al. [6],
and Rother et al. [7]. The image segmentation method proposed in this paper
is aspired by [6,7]. We assume that the target object be placed roughly in the
middle of each image. So firstly, we define a fixed bounding box in the center
region to reduce user interaction. Then we compute the homography between
the pattern image and input image to obtain an initial guess of the bounding
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box. Finally we use GraphCut optimization to label the region in the bounding
box.

Fig. 1. The left top image is the pattern image. The others are input images to our
system. The target object is placed in the middle of each image. These images are
taken from various viewpoints around the target object.

The segmentation methods in [6, 7] can be applied for images of natural en-
vironment because pixels with color similar to those of the reference background
will be labeled as foreground as long as there is a little difference between them.
However, this property may not be appropriate for our dataset. With illumina-
tion change and different shadow of different view point, the background in the
bounding box may contain some difference to the reference background outside
the box. In this work, we propose to combine the color distribution constraint
[6] and the multi-view homography analysis (MHA) to solve this problem. We
speed up the entire system toward segmentation and image-based visual hulls
via GPU programming. For segmentation, we use GraphCut to label each pixel
with foreground or background. We take each working item to roughly compute
each pixels initial label for GraphCut. In image-based visual hull, each working
item converts the 2D pixels to 3D points and find local neighbors for each 3D
point to compute its normal vector. The 3D reconstruction process is quite time
consuming, and it can be sped-up by taking advantage of parallel computing.
The remainder of this paper is organized as follows. Section 2 introduces our
3D reconstruction system. In section 3, we are going to describe our proposed
segmentation method in this paper. And we describe the GPU acceleration of
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Fig. 2. The flow chart of our system. Our system only needs some pictures as in-
put images to reconstruct the 3D model. It consists of camera calibration, foreground
segmentation, image-based visual hulls, surface reconstruction, and texture mapping.

the proposed 3D reconstruction system in section 4. The experimental results
are given in section 5, followed by conclusion in section 6.

2 Proposed 3D reconstruction system

2.1 Foreground Segmentation

In the beginning of our 3D reconstruction system, we need to extract the fore-
ground region (the object we would like to reconstruct) from the background
which has a preset dot pattern. The dot pattern is used for camera calibration in
step 2.2. One of the challenges in foreground segmentation step is to remove the
background which has dot pattern. Most segmentation methods lead to unfavor-
able segmentation results in this case, since they tend to be regard the black dot
as the foreground. As a result, we propose a novel approach for image segmenta-
tion, which can produce a better result by solving the foreground segmentation
for multiple images of the scene simultaneously in a graphcut framework. In
this paper, we focus on the foreground segmentation algorithm, which will be
described in details in section 3.

2.2 Camera Calibration

Our calibration utilizes a dot pattern to compute the associated camera projec-
tion matrix [8]. It is based on using a multi-view stereo algorithm to calibrate
an image sequence, which is a dot pattern on the planar in calibration. We print
the dot pattern paper provided from the website, and then place the object on
the top of the dot pattern paper. The pattern is designed for detecting the dots
from a different view and then finding the corresponding dots in each different
view. We can take images around the object on the pattern to obtain camera
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Fig. 3. The flow chart of our 3d resconstruction system.

intrinsic and extrinsic parameters. Once both camera parameters are obtained,
we can compute the camera projection matrix. Thus the homography matrices
can be estimated by the corresponding dots from every two images.

2.3 Visual Hull

In this step, we will obtain a point cloud of 3D object and the normal vectors
for all data points by applying the image-based visual hulls (IBVH) [9] after
we compute the camera projection matrix and a set of silhouettes of foreground
images. The IBVH algorithm [9] is an efficient image-based approach to comput-
ing and shading visual hulls from silhouette image data. In our system, we use
the IBVH algorithm [9] to obtain the point cloud of 3D object, and we perform
surface reconstruction from the point cloud in step 2.4.

2.4 Surface Reconstruction

The mesh of a 3D model is reconstructed in this step. After obtaining a point
cloud for a 3D object in step 2.3, we apply the Poisson surface reconstruction
[10] to reconstruct the mesh of a 3D object. Poisson surface reconstruction for-
mulates surface reconstruction as the solution to a Poisson equation, and creates
watertight surfaces from oriented point sets finally.
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2.5 Texture Mapping

The last step is texture mapping. The texture mapping technique used in this
work is multiresolution spline [11]. This method combines two or more images
into a larger image mosaic, and we map this image mosaic to the mesh generated
in step 2.4.

3 Proposed Foreground Segmentation Method

We define a fixed bounding box (see Fig. 4(a)) and users are requested to place
the target object in the middle of images. Inspired by [6], we state this problem
as an energy minimization problem (see Fig. 4(b)). Then we add a multi-view
homography constraint term into the energy function. Unlike the iterated dis-
tribution matching in [6], we use homography relationship between the input
image and pattern image to compute a good initial guess. Hence we can obtain
the segmentation result efficiently by using GraphCut to minimize the energy
function.

3.1 The Color Distribution Method (CDM)

According to the three conditions and the method in [6], we implement their
energy function and find that their method is sensitive to the small color distance.
Even if there only exists small color difference between the pixel color values in
the bounding box and the reference background, their method may determine the
pixel as foreground (see Fig. 5), which is not appropriate. With the illumination
change and different shadow due to different viewpoint, the background in the
bounding box may exist some difference to the reference background outside the
box (see Fig. 6).

Inspired by Pham et al.’s work [6], we state the problem as the minimization
of an energy function, and apply the following function as the energy function.

Ey(L) =B (P (L),H) =B (P (L), H) + AS (L) (1)

Fi(L) Fa(L)

There exists a segmentation L that separates the image region into background
Ry = {p|L, =0} and R¥ = {p|L, =1}. Where P; (L) is the distribution of
the region RF and B (f,g) is the Bhattacharyya distance which expresses the
similarity of the two distributions. The terms Fy (L) and F» (L), which evaluate
global similarities between distributions, cannot be express purely in the form of
data and smoothness terms. It follows that cannot be solved directly by Graph-
Cut. Therefore, Pham et al.[6] estimated an upper bound of F} + F» and it can
be expressed purely by data terms. S (L) is a smoothness term that enforces
smoothness property to L.

1 €
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Fig. 4. In (a), the red frame is the fixed bounding box (i.e., each of our image has the
same bounding box). (b) shows the energy minimization problem. Each pixel is a node
and the sum of all edge weights is the total energy. We can minimize the energy by
using GraphCut algorithm.
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3.2 Multi-view Homography Analysis (MHA)

To decrease the error resulting from shadow or illumination changes, we apply
multi-view homography analysis with the homography matrix, H, obtained from
calibration to integrate more reliable information into the data term of the energy
function. Let F? be the i-th frame, N be the number of neighbor frames which
are included into the multi-view analysis for F. In our experiment, we set N to
6. Let F™ be a neighbor frame of F | and the set of all neighboring frames are
denoted by :

) N N
F“N:{F"|i—2<n<i—|—2;n7§i} (3)

If n is less than 0, we take neighbor frames from the tail frame. For each pixel
p in F*, there is a likelihood, W}, which ranges from 0 to 1.

i 1,C 1,G
Wi = AVEC + (1= NV (4)

The higher value W; is, the more probable it is a foreground pixel. Otherwise,
the pixel is more probable to be background. W;) is determined by the color

distortion V;;C and gain information Vpi{G. A is used to control the importance

of these two terms. Vpii’c is the color distortion of p on the i-th frame, which is
related with the angle between two color vectors.

V;{c =1—exp <— (P;;C>2 * a> (5)

S e fea (B By

PiC — - (6)
mmwmwﬂﬁﬂ) (7)

Here, R means the color vector [r, g,b] of pixel b in the a-th frame. p**"
means the corresponding pixel of p* on the neighbor frame via homography
matrix, H;y,

P = Hy 5! (8)

If R;,i and R;‘!‘fﬂ are similar (e.g. dark green and light green), the angle will be
smaller, hence VZ,;C will be more capable to overcome the problem of illumination

variation. Vi;G is the gain information of p* on the i-th frame, which is related
with illumination as follows:
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VlG—l—exp( (P;G) ) (9)

S nens foain (I L)

Pe = (10)
|Ia — Ib‘

ain Ia>I =
fg ( b) I,

(11)

Here, I means the intensity of pixel b in the a-th frame. The gain value will
be high when the brightness difference between two pixels is large. Since the gain
value for background shadow is still relatively small with foreground, it can be
used to overcome the shadow problem. Vpﬁ?c and VPZ{G are the color distortion
and gain information in F*. Exponential function is used to convert the range to
(0,1]. To expand the difference between the foreground and background values,
we take the square of P;;C and then multiply it by a constant «. Similarly, we

take the square of P;;G and multiply it by a constant 5.

3.3 Initial Guess and Energy Minimization

We add the MHA information into the data term of the energy function referred
to [6] and it can be denoted as follows:

Q(L,L*, )
=Y my (1) + Wy + (sign (F (L") a +1) Y m, (0) (12)
PER{‘ peRé

where m,, (1) and m,, (0) are data terms given for each p:

iy (1) = 52 S K (1) |2

24 (RY") ~ PL™ (2)

Or;=0 H (z) ‘
(R (;K( Woere tHEE ))
F (L)

Here, 0 is the Kronecker delta function. When R¥™ = ()(empty), we consider
A(RF") and PL(2) as 1.

We use homography projection to warp each image onto pattern image and
use the color distance to obtain an initial guess. Unlike the iterated distribu-
tion matching in [6], we use homography relationship between the input image
and pattern image to compute a better initial guess, hence we can obtain the
segmentation result quickly by using GraphCut.
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Fig. 5. The results of [6]. This method can discriminate small color difference between
foreground and background. (image source: [6])

Fig. 6. The method in [6] is too sensitive to consider the shadow region to be fore-
ground.

3.4 Model Reconstruction

When we have camera projection matrix and a set of silhouettes of foreground
images, we can obtain a point cloud for the 3D object by applying the image-
based visual hulls (IBVH) [9], which recovers the space of 3D viewing cones by
intersecting them from different views decided by the known camera information.
We set a virtual desired view that is above the model on the pattern in our
system, and the remaining images are reference views. There are dense rays
from the desired view that intersect with other reference views rays, and then
project onto each reference view to get the set of intersecting lines. Finally, we
project the intersecting lines on each reference view to the 3D space to get the
model crave by the silhouette of foreground object. The algorithm can be speded
up by using epipolar constraint [9]. Thus, we can obtain a set of vertices in 3D
coordinates. The vertices are point cloud of the 3D model which is segmented by
silhouette of reference views. We then compute the normal of each 3D vertex by
finding the neighbor vertices. It is based on using the viewing direction of the ray,
the segmented information provided by the reference image and the neighbors of
the ray on the desired view. While we have point cloud and the normal vectors
for all data points, we can apply Poisson surface reconstruction technique [10]
and texture mapping algorithm to create the reconstructed 3D model.
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4 GPU Acceleration

In the 3D reconstruction system, we speed up the foreground segmentation and
image-based visual hulls components via parallelization with GPU programming.
We are going to illustrate each part in details in the following.

4.1 Speed up Foreground Segmentation

In foreground segmentation, in order to determine each node’s label, we apply
GraphCut to solve this problem. We assume each node is a pixel that limit to
two possible labels: foreground pixel, background pixel. It is necessary to give
an initial label as input to the GraphCut procedure.

We take each GPU working item to compute each image view’s color dis-
tribution and each pixel’s color distance. Each GPU working item represents a
pixel in the whole image. We set the homography matrix as global parameters
and every GPU working item can compute the color distance from pattern view
to other view through the homography matrix. Once obtaining each pixel’s color
distance, we can roughly decide the initial label from the distance.

4.2 Speed up Image-Based Visual Hull

In the image-based visual hulls, we parallelize two parts in our 3D reconstruction
system to speed up the computation. For every reference view and the desired
view on the ray intersection, we can obtain the visual hull vertices, which come
from the 2D image on a pixel required by the known camera projection infor-
mation, and they are converted to 3D spatial coordinates. Thus, we first assign
each pixel to GPU working item to calculate their 3D coordinates by known
projection matrix.

Second, we parallelize the procedure of finding each voxel’s neighbors for
calculating a voxel’s normal, which is required in the Poisson surface reconstruc-
tion. Against all of the 3D points we look for the neighbor-ray, and for every ray
we select a closest point. Once we obtain a certain number of neighbors of a 3D
point, the normal vector of 3D point can be determined by the set of neighboring
points.

The GPU acceleration of the above components in our 3D reconstruction
system can speed up the computational performance and the result will be shown
in section 5.3.

5 Expermemtal Results

In this section, we demonstrate the performance of the proposed segmentation
method and compare the segmentation results with the GrabCut algorithm [7]
implemented by OpenCV. Besides, we show our reconstruction system by using
three image datasets. There are 14 images of resolution 608x456 in each dataset.
We evaluate the results of segmentation and 3D model reconstruction.
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input GrabCut CcDM CDM+MHA input GrabCut Ccbm CDM+MHA

Fig. 7. Comparison of segmentation results. Each row shows results from a different
dataset. The columns show (1,5) input image, (2,6) the results of OpenCV GrabCut,
(3,7) the results of CDM, and (4,8) the results of CDM with MHA.

5.1 Evaluation of Segmentation

We manually label the ground truth and employ error rate as a measurement to
evaluate the results

No.of misclassified pizels
errorrate =

No.pizelsininference region

Figure 7 shows the segmentation results of our proposed method and prior work
on several datasets. For each dataset, we report the average error rate in Table 1.
According to Table 1, the experimental results show that the average error rate
of GrabCut [7] is about 10%, and the average error rate of the Color Distribution
Method (CDM) [6] is much less than the error rate of GrabCut [7]. Our proposed
method outperforms the CDM [6] since we include the Multi-view Homography
Analysis (MHA) to improve better results. Furthermore, the average error rate
of our proposed method is less than 2% in average from the three datasets, and
these errors has quite small influence to the 3D reconstruction results.
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Table 1. Comparison of the average error rate

Dataset GrabCut [7] CDM [6] CDM with MHA

(%) (%) (%)

Turtle 10.99 2.99 0.31
Cookie 9.54 4.31 1.22
Pig 10.73 4.10 2.95

5.2 Evaluation of Reconstructed 3D Model
We use the coverage rate to evaluate 3D models:

Poer NP

Coverage rate =
Per

where P; is the plane pixels projected by 3D model reconstructed from segmenta-
tion results of i-th method. The coverage rate is the number of pixels overlapped
by Pgr and P; divided by the number of all pixels on Pgp. The results are
reported in Table 2. Our 3D reconstruction results are depicted in Figure 8.

Table 2. Comparison of the coverage rates

Method Coverage rate (%)
GrabCut [7] 84.99
CDM [6] 88.17
CDM with MHA 93.50

5.3 Performance by GPU Acceleration

We have developed a set of parallel algorithms to speed up the original sequential
version of the 3D reconstruction system, which includes foreground segmenta-
tion and image-based visual hulls. In GPU version, each part is speded up by
about 4-7 times. The sequential version of the 3D reconstruction process is time
consuming, taking about 40 to 60 seconds, and for the parallel version it takes
only 20 to 40 seconds. The GPU acceleration was implemented on AMD Radeon
TM HD 7850 Graphics with OpenCL, and the CPU version was implemented on
a Intel 15-3570 CPU with 8GB RAM. The results are shown in Table 3.

In addition, we also run our system on InFocus M320 mobile phone. Its CPU
version uses MediaTek MT6592, 1.7GHz, 8 core, and the GPU version uses Mali-
450. As fig. 9, we port our system to Android 4.2.2 to evaluate its performance.
The kernel which includes segmentation and image-based visual hulls part in the
sequential version takes about 153.3481 seconds for a 3D reconstruction task,
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Fig. 9. Our system’s srceenshot on mobile phone
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while the parallel version only takes about 26.34496 seconds. In other words,
comparing with the sequential C program, the kernel with GPU acceleration
can achieve about 5.8 times speedup in this case.

Table 3. Comparison of the execution time by the parallel algorithm by GPU and
sequential version on CPU on PC platform

Module GPU(sec) CPU(sec) speedup ratio

Segmentation 2.208 17.413 7.89

Visual hulls

(2D to 3D) 0.009 0.037 4.11
Visual hulls

(find neighbor) 0.646 3.983 6.15

Execution time 24.757 43.504 1.76

Table 4. Comparison of the execution time between the parallel algorithm with GPU
speedup and the sequential version on ImFocus M320 mobile phone

Sequential (sec) Parallel (sec) speedup ratio

Kernel 153.3481 26.34496 5.820777
Total 211.7985 92.04223 2.301102

6 Conclusion

We propose a novel approach for image segmentation from multi-view images,
which is included in an automatic 3D reconstruction system. For each view,
we compute the homography with the first view, and we analyze the multi-
view information about the color distortion and gain value. We use these multi-
view information to improve the segmentation results of CDM [6]. From our
experimental results, we can see the reconstructed 3D model is satisfactory from
its visual appearance. In addition, the 3D reconstruction system is quite efficient
by using GPU implementation to speed up the computation.
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