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Abstract. Reconstruction of the surrounding 3D world is of particular
interest either for mapping, civil applications or for entertainment. The
wide availability of smartphones with cameras and wireless networking
capabilities makes collecting 2D images of a particular scene easy. In con-
trast to the client-server architecture adopted by most mobile services,
we propose an architecture where data, computations and results can be
shared in a collaborative manner among the participating devices with-
out centralization. Camera calibration and pose estimation parameters
are determined using classical image-based methods. The reconstruction
is based on interactively selected arbitrary planar regions which is espe-
cially suitable for objects having large (near) planar surfaces often found
in urban scenes (e.g. building facades, windows, etc). The perspective
distortion of a planar region in two views makes it possible to compute
the normal and distance of the region w.r.t the world coordinate system.
Thus a fairly precise 3D model can be built by reconstructing a set of
planar regions with different orientation. We also show how visualization,
data sharing and communication can be solved. The applicability of the
method is demonstrated on reconstructing real urban scenes.

1 Introduction

By the explosive growth in number of digital cameras and extensive internet
access, we can experience a huge increase in images taken from various scenes.
Photos of the same scene are usually taken from widely different viewpoints thus
yielding wide-baseline multiview images of the scene. A fundamental application
is 3D reconstruction of a large scene from a collection of such images. One
approach is to use thousands of images taken from the same scene available on
photo sharing services such as Flickr [1, 2]. The large amount of data is processed
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either on a cluster of computers [1], or on a single PC exploiting the parallel GPU
architecture [2]. Current state of the art methods provide a reconstruction result
in several hours on desktop PCs. The process can be considerably speeded up by
taking into account various constraints, e.g. considering building facades with
known (mainly vertical) orientations in urban scenes [3].

Similar smartphone applications are also emerging such as virtual view gen-
eration from stereo images [4] or virtual mobile tours [5]. An interesting new
mobile-related approach was introduced by Google by incorporating a depth
sensor into mobile devices and combine data with location and orientations sen-
sor information used for spatial reconstruction [6]. However, this approach is
focusing mainly to map the interior of rooms since depth sensors work best
for objects in close range to the device and they are not reliable under direct
sunlight.

3D reconstruction of buildings in urban scenes is a widely studied field in
literature [7–9]. Many urban scenes contain buildings having large (near) planar
facade regions. In our approach, if a planar image region (“patch”) is segmented
in one of the images, the task is to find its occurrence in the other image. Knowing
the intrinsic calibration parameters of the cameras and the homography between
corresponding planar image region pairs, the position and orientation of the 3D
planar surface can be computed [10]. By having a group of such region pairs, a
fast 3D reconstruction of the scene can be achieved by sequentially applying the
method on the individual patches.

In an interactive mobile application, the reconstructed planar regions can
be selected in one of the images and then automatically find their correspond-
ing position in the image of another participating smartphone. This is a classi-
cal problem in computer vision usually solved by detecting and matching key-
points [11–13], which works also efficiently on mobile devices [14, 15]. However,
in urban scenes low rank repetitive structures are common, which makes point
correspondence estimation unreliable [16]. In [17] it has been shown that due to
the overlapping views the general 8 degree of freedom (DOF) of the homogra-
phy mapping can be geometrically constrained to 3 DOF and the resulting seg-
mentation/registration problem can be efficiently solved by finding the region’s
occurrence in the second image using pyramid representation and normalized
mutual information as the intensity similarity measure.

In our approach we assume that a group of people is taking pictures of the
same scene approximately at the same time. Thus, utilizing wireless networking
capabilities, an ad-hoc mobile camera network can be created from the partici-
pating devices via the construction of a vision-graph [18]. The available sensory
data (location, orientation) can greatly help to determine camera pairs with over-
lapping views. We focus on exploiting these features to solve mobile computer
vision tasks in a collaborative manner. In this paper, we propose a complete pro-
cessing pipeline to reconstruct planar 3D surfaces from region-based correspon-
dences. This is the key step towards a fully distributed multiview reconstruction
of a scene.



Collaborative Mobile 3D Reconstruction of Urban Scenes 3

The theoretical background is summarized in Section 2 including the solution
of the patch correspondence problem, the direct formulas for planar surface re-
construction and characterizing the reconstruction uncertainty in order to detect
possibly wrong reconstructions. We also discuss possible collaborative scenarios
taking into account privacy issues in Section 3. The proposed reconstruction
pipeline is evaluated on images of real urban scenes in Section 4.

2 Pairwise Reconstruction Pipeline

In this section we present the key steps (see Fig. 1) of the reconstruction pipeline
that is based on a pair of stereo images and the detected planar patch corre-
spondences between them.

Initialization

• Image acquisition

• Using calibrated cameras

• External calibration

• Overlapping view detection

• Pose estimation

• Planar patch segmentation

Pairwise reconstruction

• Planar patch correspondence

• Rectification

• Constrained affine registration

• Un-rectification

• Homography-based reconstruction

• Plane normal and distance computation

• Uncertainty verification

• Reject patches of possible misregistration

Visualization

• 3D display and interaction

• Optimal texture selection

• Camera view direction

• Color equalization

Fig. 1. Main steps of the pairwise reconstruction method.

2.1 Image Acquisition

Typical mobile camera sensors are usually cheap and small sized. Although their
resolution is quite high (even 13-21 megapixels) they usually have problems in
low light situations and introduce large amount of noise, blurriness, JPEG ar-
tifacts and color distortions, which challenges correspondence across different
devices. In our test we used the following devices: HTC EVO 3D, Samsung
Galaxy S, Samsung Galaxy S3, Samsung Galaxy S4, Samsung Note 3 and HTC
One (M7) smartphones and Samsung Galaxy Note 10.1, LG G Pad 8.3 and
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Acer Iconia Tab 10 tablets. To compensate the various resolutions and comput-
ing capacities of these devices, we selected image sizes closest to 2 megapixels
resolution in 4:3 ratio (not all devices provide exactly 2 MP resolution). Since
our application scenario (collaborative data acquisition and processing) assumes
that images are taken almost the same time, this provides very similar conditions
and hence minimal lighting variation between participating devices. Sensory data
such as position, orientation, and gravity are also stored with the images, which
is subsequently used for visual graph construction and pose estimation. To detect
stereo camera pairs with overlapping view in an ad-hoc mobile camera network,
we can follow e.g. a vision-graph based approach using the sensor data of the
devices stored together with images [18]. Hereafter, we will thus concentrate
on a camera pair and show how to achieve 3D reconstruction of planar surface
patches.

2.2 Pose Estimation

Since mobile cameras are typically equipped with a fixed focus lens, the internal
camera parameters can be pre-calibrated in advance. In our tests, we used the
Matlab Camera Calibration Toolbox [19] for that purpose. In order to obtain
the full camera matrix, we have to compute the relative pose of the cameras.

Our processing pipeline assumes that the world coordinate system is fixed to
the first camera. We thus compute the relative pose of the other camera by es-
timating the essential matrix acting between the cameras. For that purpose, we
will establish point correspondences using ASIFT [20] and compute the funda-
mental matrix F using the Normalized 8-point algorithm [21]. Since the intrinsic
camera parameters K1 and K2 are known, the essential matrix E is obtained as
E = KT

2 FK1 and pose parameters R ∈ SO(3) and t ∈ R
3 are obtained by SVD

decomposition of E and testing for four-fold ambiguity [21]. Thus the camera
matrices have the following form:

P1 = K1[I | 0] P2 = K2[R | t], (1)

Finally, camera matrices are refined by minimizing the overall reprojection error
of the triangulated point pairs:

min
Xj ,P2

∑

j

‖P1Xj − xj‖
2 + ‖P2Xj − x′

j‖
2, (2)

where P1Xj and P2Xj are the backprojections of Xj in the cameras while xj

and x′

j denotes the true pixel coordinates on the first and the second cameras,
respectively. Note that, for this process P1 is fixed and the 3D points are ob-
tained by triangulating the point correspondences. To solve the above problem,
we used used the Generic Sparse Bundle Adjustment library from Lourakis et al.
[22], written in C++. The library is using the fact that the Jacobian of the prob-
lem given by (2) is sparse, thus it achieves high computational efficiency. The
demo implementation of this library is capable of dealing with several bundle
adjustment like problems, in our tests we used the sba_motstr_levmar driver,
with fixed intrinsic parameters.
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2.3 Planar Patch Correspondence

The theoretical foundation of planar surface reconstruction [10] relies on ho-
mographies computed between segmented corresponding planar regions in the
image pairs. In our interactive system, this is achieved by (interactively) seg-
menting an arbitrary planar region on the user’s mobile and then the system
finds its occurrending region in the second image on the other mobile device
(see Fig. 2) via a simultaneous segmentation/registration process. The adopted
algorithm is robust enough to sparse occlusions produced by e.g. electric wires,
trees, lamp post, etc.

The segmentation of a planar patch in the first image can be accomplished
in many ways and should not be a precise segmentation of a particular region.
The user can e.g. select a polygon in the first image delineating the borders of
the patch (see Fig. 2). This should not necessarily lie along object edges, can
be of arbitrary shape and can even be composed of non-connected parts. This
approach can be easily deployed to mobile devices by swiping near the borders or
inside regions in the displayed image. Region based segmentation could also be
used including region growing, graph-cut methods [23], MSER detection [24] or
mean-shift/camshift filtering [25]. Another possibility is to use automatic plane
detection methods [7, 8], or RANSAC-based homography constraints [9]. Since
the user has to decide anyway which regions he/she would like to reconstruct,
we do not use these approaches due to their complexity.

It is important to note that the shape of the patch can be arbitrary. We
define a pixelwise mask indicating which pixels are part of it. The segmented
patch can even be composed of non-connected parts. In an interactive system,
patches defined by polygonal borders are easy to specify and they also yield
visually more pleasing results.

Fig. 2. Segmented planar patches and correspondences for a stereo image pair. 5 polyg-
onal regions R1, . . . , R5 are segmented as planar patches in the left image. The border
of the regions are shown in red. We are seeking planar homographies HR1

, . . . ,HR5
to

establish correspondences. (Figure is best viewed in color.)



6 A. Tanács, A. Majdik, L. Hajder, J. Molnár, Zs. Sánta, and Z. Kato

Once a candidate region is marked by the user, the matching method pre-
sented in [17] is used to find a corresponding region on the other device. The
algorithm works as follows: Given a pair of cameras with overlapping views and
a region R1 in one image, corresponding to a planar 3D patch, we are looking for
the corresponding region R2 in the second image and the homography H align-
ing the regions such that R2 = HR1. Since the two cameras have an overlapping
view, their images are related by epipolar geometry [21]. Furthermore, we have
a set of inlier ASIFT keypoint pairs and the fundamental matrix determined
in the pose estimation step (see subsection 2.2). Hence we can transform the
images into a common image plane using a rectification algorithm provided by
OpenCV [26]. Rectification gives us two planar homographies denoted byH1 and
H2, which are applied to the images, respectively. This yields a pair of images
as if they were acquired by a standard stereo camera pair (parallel optical axes
and imaging planes of the cameras coincide) [21]. As a consequence, H1R1 and
H2R2 are related by an affine transformation A such that H2R2 = AH1R1.
Therefore, once A is determined, the homography H acting between the origi-
nal image regions is obtained as H = H−1

2
AH1. It is shown in [17], that A is a

special affine matrix having only 3 DOF:

A =





a11 a12 t
0 1 0
0 0 1



 .

Following [17], A is estimated by searching the best alignment of the rectified
patch H1R1 over the second rectified image using normalized mutual informa-
tion of the image intensities as the similarity metric [27]. The objective function
is optimized using a variant of Powell’s direction set method implemented in
C++ [28]. To speed up the search, we use a three-level Gaussian-pyramid rep-
resentation of the rectified images [29]. At the coarsest level first we do a full
search for the best translation parameter t taking into account every possible
pixel translations. Then, a 3 DOF search is started by initializing the scaling
parameter a11 = 1 and the shear parameter a12 = 0. The optimal parameters are
propagated to the finer levels. If computing time is of concern, the optimization
at the finest pyramid level can be omitted. As experimental tests proved [17],
it speeds up the process considerably (cca. 2.5×) causing only small degrada-
tion of precision on average. Computing time is usually around 12 seconds on a
Samsung Galaxy Note 3 device using a single threaded implementation. To fully
make use of the multi-core architecture of modern smartphones, either more
patch matchings can be run in parallel or the algorithm implementation could
be threaded.

2.4 Homography-based Reconstruction

Once the homography acting between the projections of a planar object is known,
the affine parameters can be accurately determined by calculating the partial
derivatives of the homography. It was shown in [10] that if the camera parame-
ters are also known then the normal of the corresponding 3D surface patch can
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be computed in real-time using a closed-form formula. Let us write the matrix
components of the Jacobian by taking the derivatives of an estimated homogra-
phy Hij acting between a pair of cameras i and j as

Jij =

(

a11 a12
a21 a22

)

=

(

h11−h31xj

r

h12−h32xj

r
h21−h31yj

r

h22−h32yj

r

)

with scale factor r = h31xi + h32yi + h33. We can form two vectors, both per-
pendicular to the surface normal [10]:

p = [a22(∇yi ×∇xj)− a11(∇yj ×∇xi)] ,

q = [a21(∇xj ×∇xi)− a12(∇yi ×∇yj)] .

The surface unit normal vector can then be obtained as:

n =
p× q

|p× q|
.

Knowing the normal vector n of the plane and the homography allows us to
determine the distance d from an observed planar patch by minimizing the geo-
metric error of the transferred points over the image regions:

arg min
d

=
∑

p

||Hijp−Ap||2 .

Note that the above minimization problem has also a closed form solution ob-
tained by looking for the vanishing point of the first derivative of the above cost
function w.r.t. d [10]. These parameters fully define the spatial position and ori-
entation of the planar patch in the 3D world coordinate system, hence providing
the 3D reconstruction of a matching pair of planar image regions.

2.5 Uncertainty Verification

Of course, as any 3D reconstruction method, our pipeline may also fail in many
situations (either due to degenerate camera-plane geometry or error in homogra-
phy estimation). It is thus crucial for a real-life application, that these errors be
detected and filtered out from the final reconstruction. A major issue in recon-
struction pipelines is false matching which makes the final reconstruction wrong.
Therefore, we try to make this part more robust by automatically detecting false
matches. The basic idea is that region-wise homographies estimated during our
region-matching step also contain the relative camera pose. Therefore, if a ho-
mography is correctly estimated then the relative pose factorized from it should
match the relative pose computed from point-correspondences in the first step
of our processing pipeline (see subsection 2.2).

Given an estimated region-wise homography by H, it can be factorized [30]
into camera and plane parameters as

K−1

2
HK1 = λ

(

R+
tnT

d

)
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where d is the spatial distance between the first camera center and the plane,
λ is the scale of the homography. The latter can be easily calculated: it is the
second singular value of K−1

2
HK1 as proved in [31].

If the camera parameters R and t are known, the product of the patch
normal n and the inverse of the distance d can optimally be estimated in the
least squares sense as

n/d =
tT

tT t

(

R−
1

λ
K−1

2
HK1

)

The scale of the 3D reconstruction is arbitrary due to the perspective scale
ambiguity, therefore, the normal estimation can be simplified by constraining
the second camera location as tT t = 1. Then the normal is estimated as n/d =
tT
(

R−K−1

2
HK1

)

. If the homography H is an outlier (i.e. it is mismatched),
then the normal estimation is uncertain. The uncertainty can be measured as
the difference of the original normalized homography K−1

2
HK1 and the one

computed using the estimated normal. Thus, we define the error matrix ǫERR

as
ǫERR =

(

ttT − I
) (

K−1

2
HK1 − λR

)

where I is the 3 × 3 identity matrix. The final uncertainty value is the norm of
ǫERR multiplied by the estimated depth d since the depth itself increases the
uncertainty of the 3D reconstruction. In our pipeline, the L2 (Frobenius) norm
was used. Other norms have been tested also, but we experienced similar results.

Six test cases containing outliers are listed in Table 1. The outliers are la-
beled by bold characters, they are selected visually based on patch matches.
The highest uncertainty value corresponds to the outlier for every test cases,
except test sequence #122 where the whole reconstruction is failed. However,
the differences between the values corresponding to outlier and inliers are not
very high for several test sequences. It is possible that not all the outliers can
be detected by the uncertainty calculation since a wrong camera pose can yield
relatively low uncertainty value with relatively low probability. Nevertheless, the
whole reconstruction pipeline has become more robust by the application of the
proposed uncertainty measurement.

Based on the above findings, if an uncertainty value is significantly higher
than the median, then the reconstructed plane is labeled as an outlier (we empir-
ically set the threshold to 1.7median). To demonstrate the efficiency of outlier
detection, 14 outlier-less test sequences were added to the ones listed in Table 1
including 69 patches. The outliers were correctly detected except the sequence
#122 in which there is no inlier. However, four quasi-correct homographies in
outlier-free test sequences were labeled as outliers. Therefore, visual verification
is proposed after the uncertainty measurement. Note that the proposed outlier
filtering method can only be applied if at least three homographies are given
due to the median calculation – but this is not a strict restriction in practical
applications.

Fig. 3 shows an example of outlier removal, where the transformed homogra-
phies of sequence #232 are drawn on the second image of the stereo pair. The
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third homography is an outlier since it should be between the second and fourth
walls. It does also not fit to the neighboring walls in 3D. The error for the patch
is significantly larger as it is seen in the last row of Table 1.

Table 1. Test results for outlier detection. Values are the Frobenius norm of the error
matrix ǫERR

Sequence No. Plane #1 Plane #2 Plane #3 Plane #4

108 0.0221 0.0115 0.014 —
121 0.0059 0.0059 0.0193 0.0071
122 0.0576 0.0543 0.0830 0.0503

203 0.0059 0.0050 0.0461 0.0051
231 0.0193 0.0145 0.0334 0.0154
232 0.0182 0.0112 0.0889 0.0112

Fig. 3. Top: Initial patches of sequence No. 232. transformed by estimated homogra-
phies. The third one is an outlier due to failed patch registration. Bottom: Two views
of the reconstructed 3D scene. The placement of the third planar patch is wrong but
this can be detected by validating the homographies.

2.6 Visualization

Once the normal vector and the distance of a planar patch is determined, for
each pixel of the planar patch its 3D coordinate can be computed w.r.t. the world
coordinate system defined by the first camera. Since we have polygonal planar
patches, it is sufficient to transform the defining points and image data from
the photos can be texture mapped over them. 3D visualization is implemented
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using OpenGL ES which requires triangle primitives. Also due to the perspective
distortion, the area of triangles should be small relative to the display size (we
set the threshold to 0.1% of the original image size). We produce the initial
triangulation using Delaunay method [32], then the triangles are recursively
subdivided into two smaller triangles until the size criterion is met.

Based on the established correspondences, we have two images of each planar
patch from the two cameras. We can select the texture information from the one
having the smaller perspective distortion based on the angle between the plane
normal and the camera directions – the smaller the better. We have to take into
account that the images might be acquired by different camera sensors thus color
representation can be different. If texture data is selected from both images, e.g.
color transfer between the images [33] can be applied to reduce this effect.

3 Collaborative Mobile Implementation

Of course, the proposed reconstruction method can be run on a single device.
Two images from different viewpoints should be taken, planar patches to be
segmented in one of the images and then the reconstruction result can be visu-
alized. Since smartphones are becoming more powerful nowadays and network
access is available, a much more interesting application scenario is to exploit this
connectivity in a collaborative manner: Connected smartphones form an ad-hoc
camera network where visual computations and results can be shared among the
participating devices. Note that the details of the low level network communi-
cation is out of scope of this paper – we assume that the devices can send and
receive data over network.

One task to solve is the pair formation: which device should talk to which
other device? Although we do not deal with this problem, a possible solution
based on constructing a vision graph has been proposed in [18]: From a col-
lection of images, cameras with overlapping views can be determined based on
the location and orientation sensor information and also taking into account the
image content. We also remark, that the vision graph also provides the relative
pose estimation between cameras, hence this step of our pipeline can be merged
into the vision-graph construction step. Other approaches are also possible [34].

The pairwise collaborative reconstruction can be implemented in several
ways, here we consider two possible scenarios. We assume that at least one of the
devices initiates the reconstruction process, others may share data and/or com-
puting resources. Considering privacy issues, a user can decide whether he/she
wants to share image data, or keep that private. In the latter case, though, com-
putation resources must be offered, i.e. image data from other devices should be
accepted and the reconstructed 3D geometry of the scene (without image data)
sent back. To make the situation simpler we can specify that the initiator should
conform to the policy of the contacted device (send image data if the other one
is not willing to). Fig. 4 shows the outline of this scenario. The initiator sends
the request to the contacted device which performs the computations and down-
loads the necessary data from the initiator. First, the keypoint+descriptor data
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is necessary for point pair matching. The data for one ASIFT keypoint takes
144 bytes. In our tests, the ASIFT detector produced around 7000–10000 points
on average yielding 1–1.5 MB of data. The calibration matrices (9 floating point
values) are necessary for the pose estimation. For matching, image patches are
also needed, which can be transferred either by sending the whole image and
the polygonal border data (cca. 1 MB) or – if occupying less space – the patch
regions as compressed images. The contacted device then performs the compu-
tations and sends the reconstruction parameters without image data. This takes
another 4 floating point numbers for each patch. Notice that the contacted device
can also use the results for 3D visualization. The drawback is that the initiator
can only use its own image data for texturing.

If the contacted device is willing to share image data an analogous approach
is possible. Here both devices can utilize the image contents of both photos for
texturing. Since the relative poses can be concatenated, available pairwise re-
construction results can be further propagated in the network1 see Figs. 5–6).
Thus planar regions from many cameras can be shared with the peers and visu-
alized in any single mobile device. This also opens a way for a bundle adjustment
involving more cameras and their views.

Calibration matrix K1

Image A Keypoints+descriptors
ASIFT

Planar patches Si

Segmentation

Image BKeypoints+descriptors ASIFT

Inlier point pairs
Pairing

F, E, P1, P2

8-point +

SBA
Calibration matrix K2

Rectified B

Rectification H2

F

Rectified patches Ri

Rectification H1

Hi = H2
-1AiH1

Constrained affine

region correspondences Ai

Mobile device #1 Mobile device #2

Ni, di

Confidence verification
Interactive 3D view

E, P2

Interactive 3D view

Fig. 4. A possible collaborative solution. Mobile device #1 initializes the process, Mo-
bile device #2 keeps its image data private but provides the reconstruction computa-
tions and sends back the results. Both devices can visualize the result.

1 The free scale parameter of the separate reconstructions can be computed as the
ratio of the distance reconstruction parameter of the same patch.
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Fig. 5. Ad-hoc camera network. Red stripped lines connect cameras with overlapping
view suitable for reconstruction. Note that planar region B is visible only in one cam-
era thus cannot be reconstructed. Results of pairwise reconstruction can be further
propagated in the network.

Fig. 6. Reconstruction result from three cameras (right) merging two pairwise recon-
structions (left and middle). The planar patch that is visible in both reconstructions
is marked in red border. It is used to fix the free scale parameter of the individual
reconstructions.

4 Experimental Results and Discussion

We tested the performance of the proposed reconstruction pipeline on a dataset
of 52 real image pairs. Images were taken using different smartphones as de-
scribed in subsection 2.1, each image pair consisted of photos from different
devices and 2–6 planar regions were interactively selected as a polygonal bound-
ary. The results were evaluated visually by classifying them into three groups
corresponding to good (at most smaller orientation errors), acceptable (visible,
but acceptable errors) and failed reconstruction. About half of the cases pro-
duced good results (24 cases), 10 of them was acceptable and 18 cases failed.
If we allow the patch correspondence method to do full optimization, results
improve to 27 good, 12 acceptable and 13 failed cases – at the price of an in-
creased computational time. Failure often occurred because the camera baseline
was not wide enough or the ASIFT feature-based rectification was not correct.
Some results are shown in Fig. 7.
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We run an offline test on a Samsung Galaxy Note 3 smartphone. (Note that
an Android demo implementation will be made available). ASIFT pairing took
around 45 seconds (7 seconds for each keypoint detection and half a minute for
pairing) and an average 12 seconds was necessary for solving one correspondence
problem. Other parts of the method (pose estimation, rectification, reconstruc-
tion) take only fractions of a second regardless of the platform.

The computing time requirement might seem excessive but the causes are
platform specific implementation issues, not algorithmic ones, and there is still
room for several improvements:

– The patch correspondence search can be run in parallel forking multiple
threads for each patch. We experienced that a quad-core smartphone is able
to execute four such processes without significantly slow down (overhead
needed for the OS and background tasks was below 10%). Note that octa-core
processors are appearing right now allowing even more parallel processes.

– The region matching part could be implemented using the SIMD (Single In-
struction Multiple Data) paradigm of the GPU with OpenGL ES 2.0 shaders.

– The real bottleneck of our pipeline is keypoint detection and pairing. Al-
though the ASIFT method produces sufficient number of inliers, it is time
consuming especially since the current Android implementation does not
make full use of all the processor cores contrary to the PC version. Thus,
there is potential for further improvement.

– Also, the keypoint detection part can be executed in the background right
after taking the picture while the user is busy with planar patch selection
and initiating the collaborative reconstruction. Therefore we can assume that
keypoint and descriptor data are available with the image at the beginning of
the reconstruction process. Other point detectors and pairing methods could
also be used but our experience is that many times those produce insufficient
number of pairs for accurate pose estimation.

– We can experience a constant, significant growth in the processing power of
smartphones. For example, based on our reconstruction tests, the Samsung
Galaxy Note 3 proved to be 1.25×, 1.58× and 4.67× faster than the Galaxy
S4, S3 and the original (4 years old) Galaxy S devices, respectively. Note
that we use top-of-the-line smartphones of year 2013.

5 Conclusions

In this paper we proposed an interactive reconstruction pipeline that can be used
in a mobile collaborative framework. The reconstruction is based on segmented
planar regions imaged from two different viewpoints. Homography correspon-
dence is established from which spatial orientation and distance can be readily
computed. An overview of the major steps was given and reconstruction perfor-
mance was presented on urban scenes. Future work will concentrate on extending
the reconstruction pipeline to multi-view scenarios, which would certainly im-
prove reconstruction quality and – based on our outlier filtering – can correct
false reconstructions if a better view is available in the network.
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Fig. 7. 3D reconstruction of images taken by different mobile cameras. Orig-
inal images (left and right columns). The outlines of the segmented patches
can be seen in the original image (left column). Visualized reconstructed pla-
nar patches (center column). Further examples are available at http://www.inf.u-
szeged.hu/rgvc/projects.php?pid=patchrecon.
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16 A. Tanács, A. Majdik, L. Hajder, J. Molnár, Zs. Sánta, and Z. Kato
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