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Abstract. In this paper, we present a wearable face recognition (FR)
system on Google Glass (GG) to assist users in social interactions. FR
is the first step towards face-to-face social interactions. We propose a
wearable system on GG, which acts as a social interaction assistant, the
application includes face detection, eye localization, face recognition and
a user interface for personal information display. To be useful in natural
social interaction scenarios, the system should be robust to changes in
face pose, scale and lighting conditions. OpenCV face detection is im-
plemented in GG. We exploit both OpenCV and ISG (Integration of
Sketch and Graph patterns) eye detectors to locate a pair of eyes on the
face, between them the former is stable for frontal view faces and the
latter performs better for oblique view faces. We extend the eigenfeature
regularization and extraction (ERE) face recognition approach by intro-
ducing subclass discriminant analysis (SDA) to perform within-subclass
discriminant analysis for face feature extraction. The new approach im-
proves the accuracy of FR over varying face pose, expression and lighting
conditions. A simple user interface (UI) is designed to present relevant
personal information of the recognized person to assist in the social in-
teraction. A standalone independent system on GG and a Client-Server
(CS) system via Bluetooth to connect GG with a smart phone are im-
plemented, for different levels of privacy protection. The performance on
database created using GG is evaluated and comparisons with baseline
approaches are performed. Numerous experimental studies show that our
proposed system on GG can perform better real-time FR as compared
to other methods.

1 Introduction

Knowing the identity of a person is the first step in a face-to-face social interac-
tion. When meeting an unknown or unfamiliar person, recognizing who he/she
is and knowing the essential personal information about him/her, such as name,
job and working company, can be very helpful in engaging with the person for
an interaction or conversation. Sometimes it is embarrassing when we are un-
able to recall somebody’s name with whom we have met and/or interacted for
a sufficiently long time in the near past. Hence, it has become an interesting
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research topic on developing wearable systems that can aid visual memory to an
individual, especially in remembering names or recognizing people with whom
we meet/recall or have interests [1–3]. Such wearable system will also be very
helpful to persons with difficulty in remembering and recognizing faces, such as
some form of prosopagnosia [4] which causes difficulty in distinguishing facial
features and differentiating people in their social lives [5–8].

With the emergence of popular wearable devices like Google Glass, it has
become possible to develop wearable FR system for users as an online assistant
for social interactions. We propose a real-time wearable FR system on GG that
can recognize persons with various face poses under natural lighting conditions
and provide essential personal information for social interactions. This helps to
log interaction events automatically, remember names of the person and hence,
acts as a memory aid and information service to an individual. One important
capability of wearable FR for social interactions is the ability to recognize faces of
various poses, scales and under varying lighting conditions. For example, before
a formal face-to-face engagement, you may not have been able to capture a
frontal view of the person from your view point. Next is that the user would
prefer to perform FR locally, e.g. solely on GG or just connecting to the user’s
smartphone, because of the fact that the face and personal information are highly
private. There are a few existing FR systems with GG, like NameTag [9], but
they are not meant to be used as an online assistant for social interactions.

In this paper, we first enhance the face detection from OpenCV [10] for
non-frontal views of faces. Next, we integrate two eye detectors, OpenCV [10]
and ISG [11] eye detectors, for better performance on FPV videos. We improve
the eigenfeature regularization and extraction (ERE) [12, 13] face recognition
approach by introducing subclass discriminant analysis (SDA) [14] to perform
whole space subclass discriminant analysis (WSSDA) for face feature learning
and face recognition. We implement two architectures on GG, i.e. one local
scheme solely on GG and another Client-Server scheme using Bluetooth to con-
nect GG to the user’s smartphone, for the tradeoff of computational burden on
GG and privacy protection levels. Details of evaluations and comparisons with
baseline approaches are presented.

The remainder of the paper is organized as follows. The next subsection
discusses related work. The system configuration and modules on face detection,
eye localization, face recognition, and implementations on GG are described in
Section 2. The evaluation of performance for eye localization, face recognition
and computational efficiency are presented in Section 3. Finally, conclusions and
future work are discussed in Section 4.

1.1 Related Work

Face recognition (FR) is perhaps one of the most well studied computer vision
research problems. Researchers from diverse areas have been studying problems
associated with FR for over four decades [15]. Recently, good progress has been
made in recognizing frontal face images with even lighting conditions and toler-
ance to large variations in expressions. However, the performance drops to a very
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large extent for changes with pose, uneven lighting conditions and ageing [16–
18]. A systematic independent evaluation of recent face recognition algorithms
from commercial and academic institutions can be found in the face recognition
vendor test (FRVT) 2013 report [19].

There are a few systems proposed for wearable FR [1–3]. Krishna et al. [1],
developed an iCare Interaction Assistant device for helping visually impaired
individuals for social interactions. Their evaluations are limited to only 10 sub-
jects’ face images captured under tightly controlled and calibrated face images
using classical subspace methodologies like principal component analysis (PCA)
and linear discriminant analysis (LDA). Utsumi, et al. proposed a coarse-to-fine
scheme for FR based on simple image matching [2]. In [3], a simple HMM model
is used to capture engagement faces from online FPV videos. However, none of
them has been implemented on GG.

Another eye wearable system for improving social lives of prosopagnosics is
developed by Wang et al. [8]. This system enables prosopagnosic patients to
identify the people they come across. Due to their high processing requirements,
their modules run on a smartphone. The camera and display units are placed
in the wearable eye glass (Vuzix STAR 1200XL third generation augmented
reality device). For this system also, the performance evaluations are limited to
20 subjects using local binary pattern (LBP) features.

We propose and implement a FR system on GG with improved face detection,
eye localization and face recognition for various face poses and lighting conditions
naturally observed from FPV videos in social interactions.

2 The Proposed System

In this section, system configuration and implementation of the main modules
are described.

2.1 System Overview

Fig. 1 shows the block diagram of our wearable FR system on GG for social
interaction assistance. The input FPV image is captured by the camera in GG
and then face detection is performed using OpenCV face detector. A pair of
eyes are located by fusing the results from OpenCV eye detector [10] and ISG
(integration of sketch and graph patterns) eye detector [11]. Using the detected
eye coordinates, faces are aligned, normalized and cropped following the CSU
Face Identification Evaluation System [20]. Normalized face image is used for
FR. According to the FR result, the person is identified and his/her personal
information is retrieved from the database. The most relevant personal infor-
mation is displayed on the screen of GG to assist the user in social interaction.

Training for FR is performed using within-subclass based statistical learning
method extended from [12, 13]. Low dimensional face discriminative features
are extracted and stored in the database. Any incoming novel image is first
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Fig. 1. Our algorithm design flow in Google Glass for face recognition.

converted into features and then compared against those stored in the database
and a matching ID is obtained using minimum distance measure.

2.2 Face Detection and Eye Localization

The original API (application protocol interface) provided in GG allows us to
capture images at 30 frames per second (fps). However, to reduce the computa-
tion burden on GG, we reduce the capturing rate to 5 fps. Firstly, OpenCV face
detector [21] is applied to find faces in the incoming images. It is very robust
in finding frontal faces, as it is trained with a huge number of training sam-
ples. However, it cannot detect faces with pose variations. In a ten-minute video
recording of an interaction involving 3 people, the OpenCV detector can only
detect about 40% of the faces in the poses of looking at the GG (frontal faces).
At all other times it fails due to non-frontal view faces, motion blurry, severe
shadows and other poor lighting conditions. Therefore, we train a new face de-
tector specially for the non-frontal view faces using the OpenCV face detection
algorithm, i.e., the algorithm based on Harr features and Adaboost classifier
[10]. Both face detectors are applied to find faces in the input image frame.

OpenCV eye detector [10] performs well to locate eyes in the front-view face
images, even with closed eyes. But it often fails to locate the pair of eyes in
an oblique-view face (poses other than frontal views) or face of smaller scale
(people who are at far distances). To alleviate these problems, we use the ISG
eye detector developed for human-robot-interaction in [11]. It is re-trained for
detecting and locating a pair of open eyes in both frontal-view and oblique-
view faces. It performs much better to detect and locate a pair of open eyes in
oblique-view faces than the OpenCV eye detector. Also, using this eye detector,
the correct detection rate is much higher for faces of small scales in the image
compared to OpenCV eye detector. However, it might fail to find the correct
locations of closed eyes. Through the integration of both eye detectors, we are
able to achieve high success rate of eye localization in the face images of FPV
for both frontal and non-frontal faces at various scales (sizes).

Using the eye coordinates, faces are aligned, eye coordinates are placed at
fixed distances, cropped and re-sized to 67 × 75 pixels. We use the face nor-
malization technique described in [20]. The images collected using GG are often
blurry in nature as the person wearing the GG moves his/her head quite fre-
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quently. Also, sometimes the images are out of camera focus. The face and eye
detectors also serve as filters to remove images with large motion blur or poor
image quality.

2.3 Within-Subclass Subspace Learning for Face Recognition

To make natural social interactions online viable, the wearable system should
be able to recognize person’s faces with various poses and lighting conditions.
Especially, recognizing a person’s face and providing the related personal infor-
mation, even before the person is engaged in the interaction process. In such
situations, often the person has not directly faced the user yet, so no frontal
view face image might be available to the user’s FPV observations.

Traditional discriminant analysis employs between-class and within-class scat-
ter information for face pattern classification [15]. When applied to uncontrolled
illumination, expression and multi-pose FR, it may lose crucial discriminant
information in individual’s face images [22–25]. In this system, we propose to
introduce the subclass discriminant analysis (SDA) [14] into existing subspace
learning approach for FR.

In training stage, for each person enrolled in the database, seven face images
of different poses, e.g. looking front, up, down, left and right, are collected. All
these face images are normalized and preprocessed following the CSU Face Iden-
tification Evaluation System [20]. The training face images of each person are
clustered into subclasses using mixture of Gaussians representation as done in
[14]. Then, we compute the within-subclass scatter matrix. Eigenfeature regular-
ization scheme [22] is applied to regularize features obtained from whole space
within-subclass scatter matrix. On these regularized features, total-subclass and
between-subclass scatter matrixes (depending on the clusters for each person
and the number of people in the database [22, 26]) are computed. Finally, only
those features are used for which the corresponding eigenvalues (variances) are
largest.

This kind of regularized features are reported to perform better for both the
tasks of FR, which are face identification (FI) [22] and face verification (FV)
[12, 27] as compared to other subspace methods (like Eigenfaces [28], Fisherfaces
[29], Bayesian FR [30, 31] and other variants of Fisherfaces [32–35]) and local fea-
tures [36]. Particularly, we selected this method because the features obtained
are optimal as they are extracted after the whole space discriminant analysis
[22]. Also, this method achieves good recognition rates with very small num-
ber of features [22, 23]. The proposed method is named as whole space subclass
discriminant analysis (WSSDA) for FR. The proposed method has been eval-
uated on the challenging YouTube face (YTF) database following the existing
protocol for FR [37]. Fig. 2 shows the average receiver operating characteristics
(ROC) curves that plots the true acceptance rate (TAR) against the false accep-
tance rate (FAR) following the 10-fold cross-validation pairwise tests protocol
suggested for the YTF database [37]. It can be seen that our method performs
better among the popular baseline approaches like mixture discriminant analysis
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(MDA) [38], SDA [14], mixture subclass discriminant analysis (MSDA) [39] and
ERE [22, 23] for FV task.
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Fig. 2. Average of 10-folds of cross-validation ROC curves plotting true acceptance
rate against the false acceptance rate on YouTube database [37] (best viewed in color).

After training, only the gallery features and transformation matrix are stored
in the system. When more people have to be enrolled in the database, the in-
coming face images are transformed using the above generated training module
(transformation matrix) and only the gallery features are stored.

In recognition stage, any incoming face image vector is converted into a
feature vector using the transformation matrix learned by WSSDA method. The
feature vector is used to perform recognition by matching it with the gallery
features. We use cosine distance measures with 1-nearest neighbor (NN) as the
best match for each of the faces in a frame.

2.4 User-Interface Design

The resolution of GG’s display is of 640 × 360 pixels. Keeping the small display
resolution in mind, we design a simple user interface with large fonts of brief
description of personal information. Another consideration for designing a simple
interface is to cause less distraction to the natural social interactions. The app
interface has three main components: (i) an option menu to trigger the start
of recognition, (ii) a guided viewfinder for positioning of the portrait face and
(iii) a three-page display showing the personal information of the recognized
person, as shown in Fig. 3. App navigation and control is performed via touch
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gesture: (1) menu options are activated and canceled by tapping and swiping
down respectively and (2) navigation is done by swiping to the left or right.

Fig. 3. Face recognition process flow in Google Glass (best viewed in zoomed version).

During test, the guided viewfinder will guide the user to capture a good
face image of the targeted person. Once a face image is captured resulting in
a successful face recognition, related information is displayed on the screen of
GG. The displayed personal information include name, job title, company and
portrait of the recognized person in the first page. Information on education,
age, hobby, city, and food are displayed in second and third pages of the GG
screen.

2.5 Implementation

GG runs on a dual core System on Chip (SoC) with 1GB RAM. The image cap-
tured by GG camera has resolution of 640×360 pixels. To investigate the tradeoff
between computational complexity and privacy protection level, we designed and
implemented two types of architectures for the system:

1. Local architecture solely on GG and
2. Client-Server (CS) architecture via Bluetooth to connect GG and a smart-

phone.

For the Local architecture GG, the whole process runs entirely on GG as a
standalone system. The images captured using GG camera are processed directly
on GG CPU and recognition results are shown on GG screen. For the Client-
Server architecture (CS), GG serves as the client in charge of image acquisition
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and result display, and a smartphone serves as a server performing face recogni-
tion. Images captured on GG are compressed to 95% JPEG quality and cropped
to 360 × 240 pixels before sending over to the smartphone. Upon receiving each
image, the smartphone proceeds to perform face recognition. Recognition results
are then sent back to GG. Finally, GG displays the results on its screen.

For coding development, we are using Eclipse IDE with Android Development
Toolkit (ADT). The smartphone is HTC One M8. The target SDKs on Glass and
smartphone are Glass Development Kit Preview (GDK) 4.4.2 and Android 4.4.2
respectively. Face recognition algorithms are written in native C/C++ codes
and the Java/C++ interfacing is done via Java Native Interface (JNI). Android
codes for the user-interface and Bluetooth communication are written in Java.
OpenCV 2.4.8 is used for image capturing as well as processing.

3 System Evaluation

In this section, we present experimental evaluations on eye localization, recog-
nition and computational costs for wearable FR on FPV videos from Google
Glass.

3.1 Eye Localization

To be adaptive to head pose and lighting changes in FPV videos for eye localiza-
tion, two eye detectors are employed in this system. The two detectors perform
differently for front-view and oblique-view faces. The benefit of integration is
also evaluated.

From FPV videos captured using GG, we randomly select 2675 detected
faces. Among them, we further randomly select 100 frontal faces and 118 non-
frontal faces. Both the sets have large changes in scales (near and far away faces).
We perform the eye detection study using three methodologies: OpenCV, ISG
and Fusion. For all the cases, if both eyes are successfully detected then it is
considered to be a success, otherwise it is a failure. In our evaluation, it is found
out that for both frontal and non-frontal views, the two eye detectors perform
complementary roles. So a fusion of these two detectors gave us an improved eye
detection results in FPV videos. As shown in Fig. 4, our Fusion system achieves
over 90% accurate rate for frontal view cases and over 70% accurate rate for non-
frontal view cases. This significantly increases the chance to recognize a person
using GG before initiating an social interaction engagement.

3.2 FPV Database Description

To evaluate the performance of face recognition on FPV images [40], we use
the face images collected using two wearable devices: Google Glass and head
mounted webcam connecting to a tablet. This database contains faces of per-
sons observed from FPV in natural social interactions, where people are involved
in group meetings, indoor social interactions, business networking and all other
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Fig. 4. Eye Detection Rate (%) using OpenCV, ISG and Fusion computed using Google
Glass database (best viewed in color).

activities in indoor office environment. There are large changes in poses, expres-
sions, illuminations and jitters because of head and/or camera movement. It is
collected between Sep 2012 to Aug 2014 comprising of 7075 images of 88 people
(average 80.4 images per person). Out of which 46 people are collected using
Logitech C190 webcam and rest 42 people by using first version of the Google
Glass [41]. The database is composed of 9 females and 79 males across 9 races.
One sample image captured by GG and the extracted and normalized face im-
ages are shown in Fig. 5. The red box is shown in the face image where both
the eye coordinates are successfully detected and blue box shows a face in which
either one of the eye coordinates is not detected.

Fig. 5. Left, original image captured by Google Glass. Right, extracted normalized
face images (red boxes: both eye coordinates are detected, blue box: either of the eyes
is not detected). (Best viewed in color.)



10 Mandal et al.

3.3 Evaluation of Face Recognition on FPV Database

We evaluate the proposed face recognition algorithm WSSDA on the database
built from FPV videos. We randomly select images of 42 people for training and
images of the remaining 46 people are used for testing. We test the performance
of face recognition for two application scenarios. In the first case, only one frontal
view face image for each person is stored in the gallery database, rest all images
in the probe database (termed as G1 for each of the compared methods in Fig. 6).
This is similar to the commercial database of personal information containing
only one mug shot image for each person. As mentioned previously and presented
in the recent state-of-the-art wearable FR devices [1, 2], that keeping one mug
shot image in the gallery may not be suitable for wearable FR for natural social
interactions. However, in this work we perform experiments for such challenging
scenarios.

In the second case, we select 7 images of different poses for each person and
use them to form the gallery database and the remaining images are used as
probe images (termed as G7 for each of the compared methods in Fig. 6). Two
methods, i.e. LDA and PCA are selected as baseline methods for comparison
as they are recommended for wearable FR in [1]. The comparison with previ-
ous method of eigenfeature regularization and extraction (ERE) on within-class
subspace [22] is also performed.

Fig. 6 shows the plots of recognition rates (%) against the number of features
used in the matching for two application scenarios: G1 (left) and G7 (right). It
can be seen that the first scheme with only one mug shot image per person in the
gallery database cannot generate satisfied result for wearable FR. In the second
scheme, when using dimension of 100 features, the accuracy rate is close to 91%.
For any kind of wearable device like GG, it is really very important to achieve
good recognition rates while using small number of features. Evidently, a little
more efforts would be required to build the gallery database as compared to the
first simpler scheme in real-world applications.

3.4 Evaluations on Computational Efficiency and Battery Life

Computational Efficiency

The computational efficiency is crucial for real-time apps on GG and other mobile
devices. If we run the whole FR process fully on GG, it turns hot in a short span
of time (4-6 minutes, also depending on the number of recognitions performed)
and the processing frame rate drops significantly. We performed an analysis of
computational cost for FR on both GG alone and smartphone Client-Server via
Bluetooth, and then, selected practical strategies of task arrangement for both
the implementations.

The timings taken for FR on GG is shown in Fig. 7, left. The timings are taken
for 100 successful recognitions performed consecutively. It can be seen that the
timings are quite long and unstable when solely running on GG, however, on the
Client-Server Bluetooth architecture, timings are shorter and much more stable
as compared to GG, as shown in Fig. 7, right. The statistics and comparisons
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Fig. 7. Timings taken for 100 consecutive successful face recognitions on Google Glass
(Left) and Smartphone (Right) with Client-Server Bluetooth architecture.
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are shown in Table 1. The descriptions of the various timing breakdowns are as
follows:

(a) Face Recognition refers to performance of the face recognition algorithm.

(b) Bluetooth Image Transmission refers to the timing needed to transfer the
input image from GG to mobile device (not required for Local architecture).

(c) Total refers to the total round trip execution timing when GG acquires the
input image till when the recognition result is achieved.

During our evaluation, we found that the Local architecture placed a huge
strain on the Glass hardware, resulting in GG heating up quickly and perfor-
mance degrades significantly. To minimize this heating effect, we stopped all
recognition operations and allow GG to cool down for about 1 min, after each
set of 10 recognitions.

Table 1. Performance comparison between the Local architecture and Client-server
Bluetooth architecture for 100 successful recognitions.

Local Architecture Client-server Bluetooth

Average (sec) Stand. Deviation Average (sec) Stand. Deviation

Face Recognition 1.4973 0.6409 0.0520 0.0025

Bluetooth Image - - 0.2808 0.0897
Transmission

Total 1.4973 0.6409 0.3328 0.0922

From Fig. 7 and Table 1, it can be seen that the performance of the GG
Client-Server architecture is much more consistent as compared to the Local
GG architecture. The time fluctuations is mainly due to the heating up of the
GG, when used as a standalone device. For Local mode, the time taken from
capturing raw image to final recognition ID takes about 1.5 seconds, whereas for
CS architecture, the total time taken is only 0.33 seconds. So our system can be
applied as a real-time FR on the GG in real-world condition.

Battery Life

For battery life evaluation, we recorded the battery consumption for performing
100 consecutive recognitions on both Local and Client-Server architectures in
Table 2. Both the GG and smartphone were unplugged and not connected to
any power outlet.

From Table 2, it is evident that the battery life drops significantly when
GG performs FR as a standalone device. However, the battery life drops only a
little when FR is performed on smartphone operated in Client-Server Bluetooth
mode.
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Table 2. Battery life comparison between the Local architecture and Client-server
Bluetooth architecture for 100 consecutive recognitions.

% Battery Remaining

Number of recognitions Local (GG) Client-Server Bluetooth

Google Glass Mobile Device

0 100 100 100

10 92 97 100

20 87 94 100

30 80 91 100

40 74 88 99

50 67 85 99

60 60 82 99

70 52 79 99

80 45 76 98

90 39 73 98

100 33 70 97

4 Conclusions and Future work

In this paper, we have described a wearable FR system on GG for assisting
people in social interactions. Our proposed system works in two modes of op-
erations: local (standalone) and client-server Bluetooth (with a mobile phone)
architectures. Numerous existing methodologies achieving high accuracy rates
might not be suitable for wearable devices because of their limited hardware
computing and power resources. We propose a system that includes multiple
face and eye detections, regularized subspace based methods for training and
testing of individuals in an unconstrained environment. Our system is able to
achieve 91% accuracy rates with 7 face images in the gallery database. Out of the
two modes of operations, local standalone system takes 1.4973 seconds for each
recognition and client-server Bluetooth architecture takes only 0.3328 seconds,
which is a real time implementation of FR on GG.

In future, we plan to improve the accuracy of FR, considering outdoor busi-
ness meeting, social interactions and other group meeting scenarios. We intend
to optimize our code and reduce the time taken for recognition in both local and
client-server Bluetooth modes of operations. The optimization may also help
in reducing of the build up of heat on GG, leading to better performance and
usability for natural social interactions.
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