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Abstract. Expressions are facial activities invoked by sets of muscle
motions, which would give rise to large variations in appearance main-
ly around facial parts. Therefore, for visual-based expression analysis,
localizing the action parts and encoding them effectively become two es-
sential but challenging problems. To take them into account jointly for
expression analysis, in this paper, we propose to adapt 3D Convolution-
al Neural Networks (3D CNN) with deformable action parts constraints.
Specifically, we incorporate a deformable parts learning component in-
to the 3D CNN framework, which can detect specific facial action parts
under the structured spatial constraints, and obtain the discriminative
part-based representation simultaneously. The proposed method is eval-
uated on two posed expression datasets, CK+, MMI, and a spontaneous
dataset FERA. We show that, besides achieving state-of-the-art expres-
sion recognition accuracy, our method also enjoys the intuitive appeal
that the part detection map can desirably encode the mid-level seman-
tics of different facial action parts.

1 Introduction

Facial expression analysis plays an important role in many computer vision ap-
plications, such as human-computer interaction and movie making. Many works
have been done in the literature [1, 2], but it remains unsolved. One of the key
problems is how to represent different facial expressions. In the past decade, all
kinds of local features have been exploited for facial expression analysis. Howev-
er, making use of these hand-crafted local features might be essentially not good
(if not wrong), considering that these features are also successfully exploited by
face-based identity recognition methods. In principle, features for expression and
identity recognition should be somehow exclusive.

To step out the trap, instead of manually designing local features, data-
driven representation learning or deep learning is becoming popular more re-
cently, which emphasizes to hierarchically learn features that can be optimal to
specific vision task. Among them, Convolutional Neural Network (CNN) [3] is
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one of the most successful ones for still image classification. Later on, it is fur-
ther extended to 3D CNN [4] in order to deal with video-based action recognition
problem. Our initial thought is applying CNN or 3D CNN directly to expression
analysis, but we soon find it is even not better than hand-crafted features, e.g.
HOG 3D [5] or LBP-TOP [6].

So, we realize that deep learning methods like CNN also need to be adapted
to some new problems by incorporating the priors in the specific domain. In the
case of expression analysis, studies in psychology have shown that expressions
are invoked by a number of small muscles located around certain facial parts,
e.g. eyes, nose, and mouth. These facial parts contain the most descriptive in-
formation for representing expressions. This observation brings us to the same
spirit of the Deformable Part Model (DPM) [7], a state-of-the-art method in ob-
ject detection. In DPM, an object is modeled by multiple parts in a deformable
configuration and a bank of part filters can be simultaneously learned in a dis-
criminative manner. The difference in our case is that the parts here are action
parts, which dynamically change with the episode evolution of the expression.

With above ideas in mind, in this paper, we make an attempt to adapt 3D C-
NN for jointly localizing the action parts and learning part-based representations
for expression analysis, by imposing the strong spatial structural constraints of
the dynamic action parts. Fortunately, we found that the CNN framework has
offered flexible structures to address the above problem: 1) CNNs have explicitly
considered the spatial locality especially for 2D images or 3D videos, which can
generate the underlying feature maps similar to HOG features used in DPM;
2) CNNs apply multiple trainable filters in each layer, which can be naturally
incorporated with the deformation operations of part filters. Thus it is intuitive
to embed such a deformation layer into the CNNs framework for learning these
part locations as well as their representations.

To implement the above main ideas, i.e., achieve joint action part localiza-
tion and part-based representation learning under CNN framework, we employ
3D CNN [4] as the basic model for its ability of motion encoding in multiple
contiguous frames. Specifically, to adapt it for our goal, a bank of 3D facial part
filters are designed and embedded in the middle layer of the networks (referring
to Fig. 1), and the deformable action parts models are trained discriminatively
under the supervision provided by class labels in the last layer. The deep net-
works increase the interactions among different learning components, thus we
can obtain a globally optimized model.

2 Related Works

Many existing works on dynamic expression recognition attempt to encode the
motion occurring in certain facial parts. One category of the methods is based on
local spatio-temporal descriptors, e.g. LBP-TOP [6] and HOG3D [5]. The fea-
tures extracted in local facial cuboid have possessd the property of repeatability,
which makes it robust to the intra-class variation and face deformation. However,
such rigid cuboids can only capture low-level information that lacks of semantic
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meanings, and they can hardly represent the complex variations over those mid-
level facial action parts. Another category of the methods attempt to encode
the motion of facial action parts using a certain number of facial landmarks. For
example, in [8] and [9], Active Appearance Model [10] and Constrained Local
Model [11] are used to encode shape and texture variations respectively. Howev-
er, it is difficult to achieve accurate landmarks (or action parts) detection under
expression variations due to the large non-rigid deformation. In addition, all the
methods mentioned above treat the feature learning separately without consid-
ering the final objective of classification, thus making the learned feature and
model lacking of specificity and discriminative power.

Owing to the ability of organizing several functional components as cas-
caded layers into a unified network, the deep model is especially suitable for
integrating the action parts detection, feature construction within the classifier
learning procedure. For video-based classification tasks, 3D CNN [4] is shown to
be one of the state-of-the-art models in action recognition field which considers
the motion information encoded in multiple contiguous frames. However, except
for the additional temporal convolutional operations, there is no structure de-
signed specifically for locating or encoding semantic action parts, which makes
it unsatisfactory for direct using in expression recognition task. Considering the
structured property of human face, a DPM inspired deformable facial part model
can also be learned for dynamic expression analysis. Meanwhile, [12] proposed
to embed a deformation handling layer into the traditional 2D CNN for robust
pedestrian detection. However, without consideration of temporal variations, this
method cannot be directly applied to deal with video-based classification tasks.

To cope with the limitations in current works, in this paper we make two
improvements: (1) We extend the traditional 2D deformable part model to 3D,
which models dynamic motion in more complex videos rather than static ap-
pearance in simple still images. (2) We transform the binary detection model
into multi-class classification model, and even continuous prediction model due
to the regression capability of neural networks. Such adaptation enables us to
accomplish expression intensity estimation and discrete expression recognition
simultaneously.

3 Method

3.1 Overview

As mentioned above, our method is an adapted 3D CNN, which jointly takes
into account two goals: localizing the facial action parts and learning part-based
representations. Overall, our deep architecture is shown in Fig. 1. As can be
seen, there are seven successive layers in our deep network:

Input video segments are n contiguous frames extracted from a certain
expression video. The face in each frame is detected and normalized to the size
of 64x64 pixels.

Underlying feature maps are obtained by convolving the input data us-
ing 64 spatio-temporal filters with the size of 9x9x3. For translation invariance
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Fig. 1. An overview of the proposed deep architecture. The input n-frame video data is
convolved with 64 generic 3D filters, and then mean-pooled to generate the underlying
feature maps. Then the feature maps are convolved by 13 ∗ c ∗ k specific part filters
to obtain the facial action part detection maps (where 13 is the number of manually
defined facial parts, c is the number of classes, and k is the number of filters for one
certain part in each class. The different colors represent the filter maps corresponding
different parts). After the deformation maps weighting, the summed maps are processed
by part-wise discriminative training to obtain the part-based estimation scores. Finally
a full connection layer is used to predict the class label. Best viewed in color.

and dimension reduction, the filtered maps are then mean-pooled within non-
overlapping 2x2x1 spatial local region.

Action part detection maps are obtained by convolving the pooled un-
derlying feature maps using a bank of class-specific 3D part filters. There are k
filters for one certain part in each class to handle various manners of different
people posing the same expression. Each detection map can be also regarded
as response values of the whole face to a certain part filter. It is expected that
the actual position of a detected action part arouses the largest response of the
corresponding filter.

Deformable detection maps are obtained by summing up the part detec-
tion map and several deformation maps with learned weights. The deformation
maps provide spatial constraints for detection maps according to the priors of
facial configuration, which can fine-tune the detection scores and lead to a more
reasonable result.

The partial connection layer concatenated to the deformable detection maps
performs a part-wise discriminative learning for the part filters. As illustrated
in Fig. 1, the different colors represent the detection maps corresponding to
different facial action parts (We define 13 parts in this work). Totally 13 ful-
l connection structures are constructed for each part respectively for learning
class-specific filters and outputs the part-based estimation scores. Finally we
use a full connection layer to predict the expression label. The whole model is
optimized globally with back-propagation.
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3.2 3D Convolution

In 2D CNNs, convolutions are applied on 2D images or feature maps to encode
only spatial information. When processing video data, it is desirable to consid-
er the motion variation in temporal dimension, i.e. multiple contiguous image
frames. In [4], the 3D convolution is achieved by convolving the 3D kernels/filters
on the cube constructed by image frames. Generally, we use the central symmet-
ric gijm with respect to fijm to give an element-level formulation:

V xyzij = σ(
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

V
(x+p)(y+q)(z+r)
(i−1)m · gpqrijm + bij), (1)

where V xyzij is the value at position (x, y, z) on the j-th feature map in the i-th
layer. Pi, Qi, Ri are the sizes of the 3D filters (Ri is for temporal dimension,
and gpqrijm is the (p, q, r)-th value of the filter connected to the m-th feature
map in the (i − 1)-th layer). The function σ(x) = max(0, x) is the nonlinear
operation used in our model, named Rectified Linear Units (ReLU) [13]. Such
non-saturating nonlinearity can significantly reduce the training time compared
with those saturating functions, e.g. sigmoid and tanh [14]. Extending the ∗
operation from 2D to 3D, we also have a simplified version:

Vij = σ(
∑
m

V(i−1)m ∗ fijm + bij) (2)

3.3 Deformable Facial Action Parts Model

Taking the same spirit of the Deformable Part Model (DPM) [7], in our task,
the model of a face with N parts (we set N = 13 in this work, see Fig.2) can be
defined as a set of part models (P1, P2, ..., PN ), where Pl = (Fl, vl, sl, dl).

Fig. 2. The anchor positions of facial action parts (left) and illustration of the learned
action parts filters for different expressions (right). For easy of visualization, we demon-
strate the middle frame of the 3D filters. Best viewed in color.

Different from the original DPM, here Fl = {f[l,θ]|θ = 1, 2, ..., c ∗ k} is a
set of class-specific filters for detecting the l-th action parts of each expression
respectively. vl is a vector specifying the “anchor” positions for part l in the
video, sl is the size of the part detecting box, here the size is fixed by our
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3D part filters in C3 layer, i.e. 9x9x3. dl is a weights vector of deformation
maps specifying coefficients of a quadratic function defining deformation costs
for possible placements of the part relative to the anchor.

Given the feature maps of a sample (i.e. the S2 layer), the l-th action part
detection maps (i.e. the C3 layer) are obtained by convolving with a bank of part
filters F3l for response values. After the mean-pooling, the detection maps are
summed with a set of weighted deformation maps to compute the deformable
detection maps (i.e. the D5 layer). Note that here we process the operation for
each 3D detection map separately corresponding to each single filter f3[l,θ] in Fl.
Formally, the scores on the map filtered by f3[l,θ] in D5 layer is

D5[l,θ] = S4[l,θ] − dl · φd(dxl, dyl, dzl) + b,

S4[l,θ] = pool(C3[l,θ]),

C3[l,θ] = σ(
∑
m

(S2m ∗ f3[l,θ]m) + b3[l,θ])),

(3)

where [l, θ] is the global index for the θ-th filter of the l-th part.

(dxl, dyl, dzl) = (xl, yl, zl)− vl (4)

gives the displacement of the l-th part relative to its anchor position, and

φd(dx, dy, dz) = (dx, dy, dz, dx2, dy2, dz2) (5)

are deformation maps. In general, the deformation cost is an arbitrary separable
quadratic function of the displacements [7].

𝑑𝑙 ∙ 𝜙𝑑(𝑑𝑥𝑙 , 𝑑𝑦𝑙 , 𝑑𝑧𝑙) 

𝑑𝑥𝑙 𝑑𝑦𝑙 𝑑𝑧𝑙 𝑑𝑥𝑙
2 𝑑𝑦𝑙

2 𝑑𝑧𝑙
2 

Underlying 

feature maps 

Action Part 

Detection maps 

Deformable 

Detection maps 

Low 

value 
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value 

Part Filters  

(the left mouth corner) 

Weighted Deformation Maps: 

Fig. 3. An illustration of the deformable facial action part model. The part filters of
left mouth corner may induce large response on the similar appearance position, e.g.
eye corner. The spatial constraints provided by the deformation maps can effectively
refine the detection maps. Best viewed in color.

In [12], only the maximum values of each deformable detection map are treat-
ed as the part scores for further prediction. However, in our multi-class recog-
nition task, more diversified patterns are needed for describing each category
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particularly, rather than only tell “there is or not” in detection task. There-
fore, the whole maps are retained for providing more information about the part
filtered responses. Similar to [7] and [12], we conduct part-wise discriminative
learning by partial connection to layer P6. Specifically, full connection structure
are constructed for the maps of each part respectively and all the parameters in
the part models (Fl, vl, sl, dl) are optimized during the back-propagation.

4 Model Learning

4.1 Parameter Initialization

Training our deep model is a difficult task due to the millions of parameters.
Therefore, we first initialize some important parameters and then update them
all in the globally fine-tuning as in [15]. In this work, all the 3D convolution
filters and the last two layers connection weights are chosen to be initialized.

Initialization of the filters. There are two kinds of filters in our model,
i.e. the generic filters {f1m} and the specific part filters {f3[l,θ]}. Inspired by
the work [16], we apply K-means clustering to learn centroids from the former
feature maps and take them as the convolution filters. Specifically, we first learn
64 3D centroids from the input video, i.e. {f1m}. Then we can obtain the C1
layer as

C1m = σ(Vinput ∗ f1m + b1m). (6)

The part filters {f3[l,θ]} are learned from the pooled S2 layer. In the training
set, we take the automatically detected N = 13 landmarks (as shown in Fig. 2,
the initial anchor points are detected by SDM [17]) as the anchor positions of
action parts, and sample the 9x9x3 3D cuboids around the anchors. The cuboids
coming from the same position and same expression class are grouped up to learn
k centroids, which are served as the class-specific part filters for layer C3. Totally
there are N ∗ c ∗ k filters in {f3[l,θ]}.

Initialization of the connection weights. After deformation handling
layer D5, all the values of the same part, denoted as D5[l,·], are fully connected to
a subset of units in P6 layer, namely P6l. We use W6l to represent the connection
weights corresponding to the l-th part, then

P6l = σ(WT
6l span(D5[l,·])). (7)

where span(·) defines the operation of vectorization. Then the P6 is fully con-
nected to F7:

F7 = WT
7 P6[·], (8)

where P6[·] represents the concatenated N part-based estimation scores, i.e. P6l,
in P6 layer. For initialization, we can directly use a linear transform for approx-
imation. Therefore, the W6l can be learned by a linear regression.

W6l = Y T span(D5[l,·])(span(D5[l,·])
T span(D5[l,·]) + λI)−1 (9)

where Y is the ground truth label matrix. Similarly, the W7 can be learned as

W7 = Y TP6[·](P
T
6[·]P6[·] + λI)−1 (10)
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4.2 Parameter Update

We update all the parameters after initialization by minimizing the loss function
of square error

L(F ,D,W) =
1

2
||F7 − Y ||2 =

1

2
e2, (11)

where e = F7− Y is the error vector. F = {F1, ..., FN} and D = {d1, ..., dN} are
part filters and weights vectors of deformation maps.W = {{W61, ...,W6N},W7}
are connection matrices. The gradients of W7 and P6l can be computed by

∂L

∂W7
= P6[·]e

T , (12)

∂L

∂P6l
=

∂L

∂P6[·]
◦Maskl = W7 e ◦Maskl = δ6l, (13)

where “◦” represents element-wise multiplication and Mask1 is a 0-1 vector to
retain the connections only for the l-th part. For easy to express, we denote the
gradient of P6l as δ6l. Then the gradients of W6l and D5[l,·] are

∂L

∂W6l
= span(D5[l,·])δ

T
6l ◦ I(P6l > 0), (14)

∂L

∂D5[l,·]
= W6lδ6l ◦ I(P6l > 0), (15)

where I(·) is an index function to compute the derivative of ReLU. Given the
gradient of D5[l,·], we can obtain the the gradient of D5[l,θ] at the same time by
a simple reshape operation. The weights of deformation maps dl can be updated
according to its gradient

∂L

∂dl[t]
=

∑
θ

∂L

∂D5[l,θ]
◦ φd[t], (16)

where dl[t] is the t-th component of the weights vector dl and φd[t] is the t-th
component of the deformation maps. Note that the ∂L/∂D5[l,θ] and φd[t] are
both 3D feature maps. According to Eqn. (3), we also have

∂L

∂S4[l,θ]
=

∂L

∂D5[l,θ]
= δ4[l,θ], (17)

then the gradient of f3[l,θ] can be calculated as

∂L

∂f3[l,θ]
= δ4[l,θ]

∂S4[l,θ]

∂C3[l,θ]

∂C3[l,θ]

∂f3[l,θ]

=
∑
m

S2m ∗ (up(δ4[l,θ]) ◦ I(C3[l,θ] > 0)).
(18)

where up(·) is the up-sampling using the same definition in [18].
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The gradient of the first convolutional layer f1m can be calculated with the
chain rule in the same way as f3[l,θ]. When obtain all the gradient, we can
update the parameters using the stochastic gradient descent as in [15]. Take W7

for example, the update rule of of W7 in the k-th iteration is

∆k+1 = α ·∆k − β · ε ·W k
7 − ε ·

∂L

∂W k
7

, (19)

W k+1
7 = ∆k+1 +W k

7 , (20)

where ∆ is the momentum variable [19], ε is the learning rate and α, β are
tunable parameters. In the training process, the learning rate is set as a fixed
value 0.01.

5 Experiments

We evaluate our model on two posed expression datasets, CK+ [8], MMI [20],
and a spontaneous dataset FERA [21] in four aspects: (1) visualization of the
deformable part detection maps; (2) the loss of training/test sets before and
after parameter updating; (3) qualitative results of expression intensity predic-
tion; (4) quantitative results of average expression recognition rate and overall
classification accuracy.

5.1 Data

CK+ database contains 593 videos of 123 different subjects, which is an ex-
tended version of CK database [22]. All of the image sequences vary in duration
from 10 to 60 frames and start from the neutral face to the peak expression.
Among these videos, 327 sequences from 118 subjects are annotated with the
seven basic emotions (i.e. Anger (An), Contempt (Co), Disgust (Di), Fear (Fe),
Happy (Ha), Sadness (Sa), and Surprise (Su)) according to FACS [23].

MMI database includes 30 subjects of both sexes and ages from 19 to 62.
In the database, 213 image sequences have been labeled with 6 basic expressions,
in which 205 are with frontal face. Different from CK+, the sequences in MMI
cover the complete expression process from the onset apex, and to offset. In
general, MMI is considered to be more challenging for the subjects usually wear
some accessories (e.g. glasses, mustaches), and there are also large inter-personal
variations when performing the same expression. The number of samples for each
expression in CK+ and MMI are illustrated in Tab. 2.

Table 1. The number of samples for each expression in CK+ and MMI database.

Expression An Co Di Fe Ha Sa Su

CK+ 45 18 59 25 69 28 83

MMI 31 – 32 28 42 32 40

FERA database is a fraction of the GEMEP corpus [24] that has been
put together to meet the criteria for a challenge on facial AUs and emotion
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recognition. As the labels on test set are unreleased, we only use the training set
for evaluation. The training set includes 7 subjects, and 155 sequences have been
labeled with 5 expression categories: Anger (An), Fear (Fe), Joy (Jo), Sadness
(Sa), and Relief (Re). FERA is more challenging than CK+ and MMI because
the expressions are spontaneous in natural environment.

Table 2. The number of samples for each expression in FERA database.

Expression An Fe Jo Sa Re

FERA 32 31 30 31 31

We adopt the strictly person-independent protocols on both two databases for
evaluation. In detail, experiments are performed based on 15-fold cross validation
in CK+ and 20-fold cross validation in MMI, exactly the same as that in [25] for
fair comparison. For FERA, as the labels on test set are unreleased, we adopt
leave-one-subject-out cross-validation on the training set.

5.2 Evaluation of the Model

The deep model requires equal size of image cube, i.e. n frames as shown in
Fig. 1. Given a T -frame video, we can pick up T − n + 1 cubes as the input
data. For training samples, according to the expression varying manner in a
sequence, we assign soft label values to the T − n+ 1 training sample, i.e. video
segments, using a gaussian function. For test samples, there is no need to know
the ground truth of expression frames. After obtaining the T − n + 1 predict
label vector, an aggregation strategy proposed in [26] is employed to generate
the final recognition result of the whole video.

Fig. 4. Part detection maps of different part filters for different expressions. (We show
the responses of all parts in one image by averaging the detection maps in the middle
frame). Best viewed in color.
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Fig. 5. The loss of training and test sets on CK+ and MMI database.

(a) An example on CK+ database. (Surprise)

(b) An example on MMI database. (Angry)

Fig. 6. The expression intensity prediction results for two test sequences. The predicted
scores are all for a video segments. For easy to visualization, we demonstrate the middle
frame of each video segment to show the temporal variations of the expression.

After training the deep model, the part based representation can be obtained
in D5 layer, i.e. the deformable detection maps. Each map is composed of the
response values of a certain part filter, which depict various appearance patterns
of different expressions. In Fig. 4, we provide a visualization of some selected
deformable part detection maps learned by our model.

Moreover, to evaluate the learning ability of our deep model, we demonstrate
the loss (defined in Equ. 11) of training/test set before and after parameter
updating in Fig. 5. As for validation purpose only, we conduct such experiments
on one fold of CK+ and MMI respectively. In each figure, the blue curve is the
loss of model using the initialized parameters for comparison. The red curve is
the loss during the parameter updating, which shows a consistently decreasing
trend on the training sets of both databases. However, it is easy to witness
overfitting at a small number of iterations on the test sets, especially on CK+.
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Our model can also provide the expression intensity prediction due to the
regression ability of the neural networks. As presented in Sec. 5.1, a T -frame
test sequence can generate T − n + 1 sub-segments for equal length inputs.
Thus we can obtain T − n + 1 predict values for describing the changing of
intensity during the whole expression process. We show some typical results of
the intensity prediction along with the image/video data in Fig. 6.

5.3 Comparisons with related works

We compare our method, denoted by 3DCNN-DAP (Deformable Action Parts),
with other related works under the same protocols adopted in [25]. Both average
recognition rate and overall classification accuracy are measured. The results are
listed in Tab. 3 and 4 for CK+, Tab. 5 and 6 for MMI, Tab. 7 and 8 for FERA.

Table 3. The average expression recognition rates on CK+ database.

Method An Co Di Fe Ha Sa Su Average

CLM [9] 70.1 52.4 92.5 72.1 94.2 45.9 93.6 74.4
AAM [8] 75.0 84.4 94.7 65.2 100 68.0 96.0 83.3

HMM [25] – – – – – – – 83.5
ITBN [25] 91.1 78.6 94.0 83.3 89.8 76.0 91.3 86.3

HOG3D [5] 84.4 77.8 94.9 68.0 100 75.0 98.8 85.6
LBP-TOP [6] 82.2 77.8 91.5 72.0 98.6 57.1 97.6 82.4

3DCNN [4] 77.8 61.1 96.6 60.0 95.7 57.1 97.6 78.0
3DCNN-DAP 91.1 66.7 96.6 80.0 98.6 85.7 96.4 87.9

Table 4. The overall classification accuracy on CK+ database.

Method CLM AAM ITBN HOG3D LBP-TOP 3DCNN 3DCNN-DAP

Accuracy 82.3 88.3 88.8 90.8 88.1 85.9 92.4

Table 5. The average expression recognition rates on MMI database.

Method An Di Fe Ha Sa Su Average

HMM [25] – – – – – – 51.5
ITBN [25] 46.9 54.8 57.1 71.4 65.6 62.5 59.7

HOG3D [5] 61.3 53.1 39.3 78.6 43.8 55.0 55.2
LBP-TOP [6] 58.1 56.3 53.6 78.6 46.9 50.0 57.2

3DCNN [4] 58.1 21.9 25.0 83.3 53.1 62.5 50.7
3DCNN-DAP 64.5 62.5 50.0 85.7 53.1 57.5 62.2

Table 6. The overall classification accuracy on MMI database.

Method ITBN HOG3D LBP-TOP 3DCNN 3DCNN-DAP

Accuracy 60.5 56.6 58.1 53.2 63.4
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Table 7. The average expression recognition rates on FERA database.

Method An Fe Jo Sa Re Average

HOG3D [5] 43.8 33.3 74.2 54.8 48.4 50.9
LBP-TOP [6] 59.4 40.0 35.5 61.3 61.2 51.5

3DCNN [4] 34.4 26.7 64.5 51.6 54.8 46.4
3DCNN-DAP 50.0 58.1 73.3 51.6 48.4 56.3

Table 8. The overall classification accuracy on FERA database.

Method HOG3D LBP-TOP 3DCNN 3DCNN-DAP

Accuracy 51.0 51.6 46.5 56.1

Specifically, to evaluate the most relevant work, the 3D CNN [4] fairly, we
also conduct a similar parameter initialization using the same number of filters in
each convolutional layer and a linear regression in the last full connection layer.
The significant improvement shows that our deformable action part learning
component has great advantages on task-specific feature representation.

6 Conclusions

In this paper, by borrowing the spirits of Deformable Part Models, we adapt
3D CNN to deeply learn the deformable facial action part model for dynam-
ic expression analysis. Specifically, we incorporate a deformable parts learning
component into the 3D CNN framework to detect special facial action parts un-
der the structured spatial constraints, and obtain the deformable part detection
maps to serve as the part-based representation for expression recognition. Such
a deep model makes it possible to jointly localize the facial action parts and
learn part-based representation. Impressive results beating the state-of-the-art
are achieved on two challenging datasets.

To put it in another perspective, we have actually extended the deformable
static part models to deformable dynamic part models under the CNN frame-
work, which might also be validated by video-based event or behavior analysis. In
the future work, we will also try to consider more complex patterns of the action
parts, e.g., of different sizes and shapes, or even with different time durations,
to generate more flexible description of the facial expressions.
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