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Abstract. Optical strain characterizes the relative amount of displace-
ment by a moving object within a time interval. Its ability to compute
any small muscular movements on faces can be advantageous to subtle
expression research. This paper proposes a novel optical strain weighted
feature extraction scheme for subtle facial micro-expression recognition.
Motion information is derived from optical strain magnitudes, which is
then pooled spatio-temporally to obtain block-wise weights for the spa-
tial image plane. By simple product with the weights, the resulting fea-
ture histograms are intuitively scaled to accommodate the importance of
block regions. Experiments conducted on two recent spontaneous micro-
expression databases– CASMEII and SMIC, demonstrated promising im-
provement over the baseline results.

1 Introduction

Facial based emotion recognition attracts research attention both in the com-
puter vision and psychology community. Six basic facial expressions which are
commonly considered are happy, surprise, anger, sad, fear and disgust [1]. Con-
tributing to this interest in emotion recognition is the increased research into
affective computing, i.e. the ability for software and machines to react to human
emotions as they are performing their tasks.

Facial micro-expressions were discovered by Ekman [2] in 1969 when he an-
alyzed the interview video of a patient stricken with depression who tried to
commit suicide. According to Ekman, micro-expressions cannot be controlled by
humans and they are able to reveal concealed emotions. Micro-expressions occur
at a high speed (within one twenty-fifth to one fifth of a second) and they are
usually involuntary facial expressions [3]. The fact that they occur in a short
duration and potentially in only one part of the face makes it hard to detect
them with naked eye in real-time conversations.
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There are various applications that support why micro-expressions are im-
portant to be analysed, such as clinical diagnosis, national security and interro-
gation [4–6]. To date, detection of micro-expressions is still a great challenge to
researchers in the field of computer vision due to its extremely short duration
and low intensity.

Optical strain is the relative amount of deformation of an object [7]. It is
able to calculate any small changes on the facial expression, including small
muscular movements on the face. In this paper, we propose a new optical strain
weighting scheme that utilizes the block-based optical strain magnitudes to ex-
tract weighted spatio-temporal features for subtle micro-expression recognition.
Firstly, the optical strain map images are computed and normalized from the op-
tical strain magnitudes. Then, the spatial plane (XY) is partitioned into N ×N
non-overlapping blocks, where spatio-temporal pooling is applied to obtain a
single magnitude for each block. The histograms obtained from the feature ex-
tractor are then multiplied with the optical strain weights to form the final
feature histogram.

2 Related Work

Optical strain patterns justify its superiorty over the raw image in face recog-
nition as the computation of the magnitudes is based on biomechanics. It is
also robust to the lighting condition, heavy make up and under camouflage [8,
9]. In [10], Shreve et al. used the optical strain technique to automatically spot
macro- and micro- expressions on facial samples. They could achieve 100% ac-
curacy in detecting seven micro-expressions in the USF dataset. However the
micro-expressions in the database are posed expression rather than spontaneous
ones.

Two years later, [11] an extensive testing was carried on two larger datasets
(Canal-9 [12] and found videos [13]), containing a total of 124 micro-expressions
by implementing a modified algorithm to spot the micro-expressions. To over-
come the noises caused by irrelevant movements on the face, some parts of the
face were masked. The face was partitioned into eight regions for the optical
strain magnitude to be calculated locally. They extended the work by modifying
the algorithms [14]. However, they mentioned that the background and some
parts of the face should be masked to avoid the inaccurate optical flow values
affect the spotting accuracy.

Block-based method in feature extraction process is widely used in detecting
or recognizing micro-expressions, as demonstrated in [15–18]. The face image
is partitioned into multiple N ×N non-overlapping or overlapping blocks. The
Local Binary Pattern with Three Orthogonal Planes (LBP-TOP) histograms in
each block are computed and concatenated into a single histogram. By doing so,
the local information of facial expression at its spatial location are taken into
account.

Pooling is a method to decrease the number of features (lower dimension) in
image recognition. If all the features are extracted, it may result in overfitting.
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Spatial pooling summarizes the values in the neighbouring locations to achieve
better robustness to noise [19]. In [20], Philippe. et. al. demonstrated several
combinations of temporal pooling over a time period and it has been proven to
improve the performance of automatic annotation and ranking music audio.

Gaussian filter is one of the effective and adaptive filters to remove Gaussian
noises on an image [21]. To track the action units (AUs) on facial expressions
using Facial Action Coding System (FACS) [22], a 5 x 5 Gaussian filter is applied
to smooth the images and different sizes of gradient filter are used on different
regions of face [23]. In [24], an adaptive Gaussian filter is used to reduce the
noises on images in order to compute the illumination change of one person or
Expression Ratio Image (ERI) resulted from deformation of the person’s face.

To analyze the micro-expressions through a recognition system, it is necessary
to have a database to act as a test data set for the researchers to be able to
compare the results. There are plenty of facial expression databases available
for evaluation [25]. However, there are only a few well-established databases
for micro-expressions. This brings to an even bigger obstacle in classifiying the
micro-expressions and training the detection algorithms. For example, the micro
expressions are posed rather than spontaneous in USF-HD [26] and Polikovsky’s
database [27]. On the other hand, there are insufficient videos in YorkDDT [28]
and SMIC [17] databases.

3 Motion and Feature Extraction

3.1 Optical Flow

Optical flow specifies the velocity of each image pixel’s movement between ad-
jacent frames [29]. Computation of differential optical flow is by measuring the
spatio and temporal changes of intensity to find a matching pixel in the next
frames [30]. As this estimation method is highly sensitive to any changes in
brightness, hence it is assumed that all temporal intensity changes are due to
motion only. There are threee assumptions to measure the optical flow. First,
brightness constancy, where the brightness intensity of moving objects between
two image frames are assumed to remain constant. Second, spatial coherence,
where the pixels in a small image window are assumed to be originating from the
same surface and having similar velocity. Third, temporal persistence, where it
assumes objects changes gradually over time. The optical flow gradient equation
is often expressed as:

∇I • p + It = 0, (1)

where I(x,y,t) is the image intensity function at point (x, y) at time t. ∇I =
(Ix, Iy) is the spatial gradients and It denotes the temporal gradient of the
intensity function. p = [p = dx/dt, q = dy/dt]

T represents the horizontal and
vertical motion vector.
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3.2 Optical Strain

Using optical strain in identifying deformable results performs better than optical
flow [31] as it can well distinguish the time interval of the occuring of micro-
expressions. A deformable object can be described in two dimensional space by
using a displacement vector u = [u, v]T. Assuming that the moving object is in
small motion, the finite strain tensor can be represented as:

ε =
1

2
[∇u + (∇u)T ] (2)

or in an expanded form:

ε =

 εxx = ∂u
∂x εxy = 1

2 (∂u
∂y + ∂v

∂x )

εyx = 1
2 ( ∂v

∂x + ∂u
∂y ) εyy = ∂v

∂y

 (3)

where (εxx, εyy) are normal strain components and (εxy, εyx) are shear strain
components.

The magnitude of the optical strain can be computed as follows:

ε =
√
εxx2 + εyy2 + εxy2 + εyx2 (4)

An optical strain map (OSM) provides a visual representation of the motion
intensity for each pixel in a video frame. To visualize the OSM, the optical strain
magnitudes for each point (x, y) in image space at time t can be normalized to
intensity values 0-255. By observing the OSM, we can clearly notice regions in the
image frame that contain the most prominent (large values) or least prominent
(small values) motion in terms of spatial displacement. To obtain a summed
OSM for the entire sequence, all the individual generated OSMs can be summed
across the temporal dimension. This accumulates all motion displacements in the
whole sequence, a pooling operation that will be discussed later in Subsection
4.2. Fig. 1 shows a sample optical strain map image (for two adjacent frames),
and a summed optical strain map image (for all frames, temporal sum pooled)
after applying intensity normalization.

3.3 Block-based LBP-TOP

Block-based LBP-TOP is implemented by partitioning each frame of the video
into N × N non-overlapping blocks then concatenate them into a single his-
togram. Fig. 2 shows the process of extracting the features from three orthogonal
plane for one block volume and concatenate them into a histogram. The feature
histogram of block-based LBP-TOP [15] can be defined as follows:

Hi,j,c,b =
∑
x,y,t

Ifc(x, y, t) = b, b = 0, . . . , nc − 1; c = 0, 1, 2; i, j ∈ 1 . . . N (5)



Subtle Expression Recognition using OSW Features 5

Fig. 1. Example of optical strain map for two image frames (top row) and for all the
frames in sequence (bottom row) for a tense micro-expression

where nc is the number of different labels produced by the LBP operator in the
cth plane (c = 0 : XY, 1 : XT and 2 : Y T ), fc(x, y, t) is the LBP code of the
central pixel (x, y, t) in c-th plane, x ∈ {0, . . . , X − 1}, y ∈ {0, . . . , Y − 1}, t ∈
{0, . . . , T − 1},

I{A} =

{
1, if A is true;

0, otherwise.
(6)

The histogram is normalized to get a coherent description:

Hi,j,c,b =
Hi,j,c,b

nc−1∑
k=0

Hi,j,c,k

(7)

We denote LBP-TOP parameters by LBP-TOPPXY,PXY,PY T,RX ,RY ,RT
where

the P parameters indicate the number of neighbor points for each of the three
orthogonal planes, while the R parameters denote the radii along the X, Y, and
T dimensions of the descriptor.



6 Liong et al.

Fig. 2. Block-based LBP-TOP: Feature extraction from three orthogonal planes for
one block volume

4 Proposed Algorithm

4.1 Block-wise Optical Strain Magnitudes

The magnitude of optical strain for each pixel is very small. Much of the sur-
rounding pixels that contain very little flow corresponds to very minute values.
As such, we hypothesize that using the optical strain map magnitudes directly
as features or by extraction of LBP patterns for classification may result in a
loss of essential information from its original image intensity values.

However, optical strain maps provide valuable motion information between
successive frames, more so in the case of subtle expressions that may be difficult
to distinguish at the feature level. In this paper, we propose a new technique
that uses optical strain information as a weighting function for the LBP-TOP
feature extractor. This is because pixels with a large displacement in space (large
optical strain magnitude) indicate large motion at that particular location and
vice versa. Hence, we can increase (or decrease) the importance of the extracted
features by placing more (or less) emphasis through the use of weights.

To obtain the optical strain magnitudes, first, horizontal and vertical op-
tical flow vectors, (p, q) are calculated for each image frames in a video [32].
Then optical strain magnitude, ε of each pixel for each frame in a video will be
computed.

4.2 Spatio-temporal Pooling

Spatial sum pooling is applied on each optical strain image, where each of the
strain map image will first be partitioned into N × N non-overlapping blocks,
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Fig. 3. Spatial-temporal sum pooling of a strain image divided into 5 × 5 non-
overlapping blocks

then all the pixels in that particular block will be summed up. Spatial sum
pooling can be computed for each block in an image as follows:

si,j =

jH∑
y=(j−1)H+1

iL∑
x=(i−1)L+1

εx,y, i, j ∈ 1 . . . N (8)

where (i, j) and (X,Y ) are the block’s coordinate and width and height of the
frame in (x, y). L and H are equal to X/N and Y/N respectively. Temporal sum
pooling is then performed by summing up the resultant optical strain magnitudes
of each block from the first frame, fi to the last frame, fF .

Hence, for each video, a weight matrix W = {wi,j}Ni,j=1 is formed using
spatial-temporal sum pooling (process illustrated in Fig. 3) where each block
weight value is given by

wi,j =

F∑
t=1

si,j =

F∑
t=1

jH∑
y=(j−1)H+1

iL∑
x=(i−1)L+1

εx,y (9)

4.3 Obtaining Block Weights for XY Plane Histogram

Subsequently, all weight matrices are max-normalized to increase the significance
of each weighting value. As optical strain magnitudes only describe the expres-
sion details in spatial information, the weighting values should be effective on
the XY plane only. As such, the resultant histogram is obtained by multiplying
the histogram bins of the XY plane with the weighting values, as illustrated in
Fig. 4. The new feature histogram is given as:

Gi,j,c,b =

{
wi,jHi,j,c,b, if c = 0

Hi,j,c,b, else
(10)
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Fig. 4. Multiplication of weighting matrix to X-Y plane of histogram bins

5 Experiments

5.1 Subtle Expression Databases

There are only a few known subtle or micro-expression databases available due
to numerous difficulties in the creation process; proper elicitation of stimuli and
ground-truth labelling. To evaluate our proposed methods, we consider two of
the most recent and comprehensive databases: CASMEII [16] and SMIC (Spon-
taneous Micro-expression Database) [17]. The databases are recorded under con-
strained lab condition and all the images have been preprocessed with face reg-
istration and alignment.

CASMEII consists of 26 candidates (mean age of 22.03 years), containing
247 spontaneous and dynamic micro-expression clips. The videos are recorded
using Point Grey GRAS-03K2C camera with a frame rate of 200fps and a spatial
resolution of 280 × 340 pixels. There are 5 micro-expression classes (tense, re-
pression, happiness, disgust and surprise) and selection was done by two coders
then marked based on the AUs, participants’ self report as well as the content
of the clip episodes. Each sample contains the ground-truth of onset and off-
set frames, emotions labeled and AUs represented. The baseline performance
reported in CASMEII for 5-category classification is 63.41%. This was obtained
using a block-based LBP-TOP consisting of 5×5 blocks. Support Vector Machine
(SVM) was used as classifier with leave-one-out cross validation (LOOCV).

SMIC contains 164 micro-expression samples from 16 participants (mean age
of 28.1 years). The camera used to capture participant’s face is a high speed
camera (PixeLINK PL-B774U) with 100fps and a resolution of 640 × 480 pix-
els. There are three classes of micro-expressions: positive (happy), negative (sad,
fear, digust) and surprise. The micro-expressions are selected by two coders
based on participants’ self report and the suggestion by [2] to view the video
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frame-by-frame with increasing speed. The reported baseline 3-class recogni-
tion performance for SMIC is 48.78% using polynomial kernel of degree six in
SVM classifier based on leave-one-subject-out cross-validation (LOSOCV) set-
ting. All image frames from each video are first interpolated to ten frames by
temporal interpolation model (TIM) [18], while features were extracted using
LBP-TOP4,4,4,1,1,3 with block size of 8× 8.

5.2 Pre-processing

Gaussian Filtering. Since the motions characterized by the subtle facial ex-
pressions are very fine and we are using the cropped and resampled frames for
both databases, it is likely that the presence of unwarranted noise from the ac-
quisition or down-sampling process might be incorrectly identified as fine facial
motions. Thus, as a feasible pre-processing step, all the images are filtered by
5× 5 pixel Gaussian filter (σ = 0.5) to suppress the background noise present in
the images. The filter size and standard deviation value are empirically deter-
mined. Fig. 5 shows the difference of an image before and after filtering.

Fig. 5. Sample image from CASMEII before (left) and after (right) applying Gaussian
filter

Noise Block Removal. The two bottom corner blocks (bottom left and bot-
tom right) are removed entirely from consideration in the feature histogram by
setting their respective weights to zero, i.e. {wN,1, wN,N} = 0. This results in
only the remaining N2 − 2 weights to be effective on the XY-plane histograms.
The reason of removing these 2 blocks from consideration is because there are un-
expectedly high optical strain magnitudes that do not correspond to the desired
facial movements but are rather unfortunately caused by background/clothing
texture noise or wirings from the headset worn by the participants. This problem
is consistent across both CASMEII and SMIC datasets, as can be clearly seen
in Fig.6. Analogously, the authors of [11] and [14] applied masking technique at
consistently noisy regions of the face that unnecessarily affect the optical strain,
such as eyes (blinking) and mouth (opening/ closing) regions.
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Fig. 6. Top row: sample image from SMIC (left) and its optical strain map image
(right). Bottom row: sample image from CASMEII (left) and its optical strain map
image (right).

5.3 Results and Discussions

Experiments were conducted on both CASMEII and SMIC databases based
on carefully configured settings in order to validate the effectiveness of our pro-
posed method in improving recognition of subtle facial expressions. In our experi-
ments, we performed classification using SVM with leave-one-out cross-validation
(LOOCV) in CASMEII and leave-one-subject-out cross-validation (LOSOCV)
in SMIC in order to appropriately compare with the baselines reported in the
original CASMEII and SMIC papers. In our work, CASMEII is evaluated using
linear and RBF kernel, whereas SMIC uses linear, RBF and polynomial kernel
with degree six. There are two ways to calculate the classification performance
in LOSOCV approach, which are macro- and micro-averaging. Macro-averaged
results are the average accuracy of per-subject results. Micro-averaged results
are the average accuracy across all individual results (per sample) which can be
obtained from the confusion table that summarizes the overall performance.

To establish our baseline evaluation, the standard methods employed by the
original authors of CASMEII and SMIC [16, 18]— LBP-TOP for feature extrac-
tion and SVM for classification, were used. For CASMEII, we opt for the best
reported configuration, that is LBP-TOP4,4,4,1,1,4. As for SMIC, we used both
LBP-TOP4,4,4,1,1,3 and LBP-TOP4,4,4,1,1,4. CASMEII baseline used the block
configuration of 5× 5 blocks, whereas SMIC used 8× 8 blocks.
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Table 1. Accuracy results (%) on CASMEII database based on LOOCV

Methods SVM kernel: RBF Linear

Baseline: LBP-TOP 63.97 61.94
OSW-LBP-TOP 65.59 62.75

Table 2. Accuracy results (%) on CASMEII database based on LOOCV with pre-
processing (PP)

Methods SVM kernel: RBF Linear

Baseline: LBP-TOP (with PP) 63.56 63.97
OSW-LBP-TOP (with PP) 66.40 62.75

In our experiments, we evaluated our proposed Optical Strain Weighted
(OSW) LBP-TOP method (denoted as OSW-LBP-TOP in table of results)
against the baseline method of LBP-TOP. Apart from that, we also examined
the method with pre-processing, which filters all the images using Gaussian filter
and removes two specific “noise blocks” that are contributing to surplus motions
unrelated to facial expressions. For the basic weighted method, all (N×N) weight
coefficients are multiplied with the respective histogram bins of the XY plane.
The tables shows the recognition accuracy of the evaluated methods for both
CASMEII and SMIC, using SVM classifier with leave-one-out cross-validation
(LOOCV) and leave-one-subject-out cross-validation (LOSOCV) respectively.

Generally, the recognition capabilities of the LBP-TOP descriptor demon-
strated encouraging signs of improvement when the features are weighted using
the proposed scheme. The pooled optical strain magnitudes as block weights
intuitively increases the classification accuracy. Crucially, more weightage is as-
signed to blocks that exhibit more movements, and vice versa, so that the signif-
icance of each block histogram can be scaled accordingly. The OSW-LBP-TOP
method, with pre-processing obtained the best CASMEII result of 66.4% (RBF
kernel), an increase of 2.84% over the baseline. It managed to achieve 65.59%
(RBF kernel) without pre-processing, an increase of 1.62% over the baseline.
The recognition results of CASMEII are illustrated in Table 1 and 2.

On the other hand, the OSW-LBP-TOP method is consistently superior in
the SMIC database. With the LBP-TOP4,4,4,1,1,3 setting from the original pa-
per [17], we are able to obtain an improvement of 3.6% (linear and RBF kernel)
without pre-processing and 4.49% (polynomial kernel) of increment with pre-
processing, as shown in Table 3 and Table 4 respectively. However, we discovered
that with parameters LBP-TOP4,4,4,1,1,4, we are able to generate better base-
lines while the proposed OSW-LBP-TOP method performed even better with
pre-processing. An increment of 1.83% (polynomial kernel) and 5.13% (RBF ker-
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Table 3. Accuracy results (%) on SMIC database using LBP-TOP4,4,4,1,1,3 based on
LOSOCV

Macro Micro
Methods SVM kernel: RBF Linear Poly RBF Linear Poly

Baseline 43.11 43.11 51.63 43.29 43.29 48.78
OSW-LBP-TOP 46.71 46.71 51.70 46.34 46.34 49.39

Table 4. Accuracy results (%) on SMIC database using LBP-TOP4,4,4,1,1,3 based on
LOSOCV with pre-processing (PP)

Macro Micro
Methods SVM kernel: RBF Linear Poly RBF Linear Poly

Baseline (with PP) 44.06 44.06 48.94 42.07 42.07 46.34
OSW-LBP-TOP (with PP) 47.17 47.17 53.43 46.34 46.34 50.00

nel) were achieved in cases of without and with pre-processing, as tabulated in
Table 5 and Table 6 respectively.

The improvement in accuracy is apparent on both databases, albeit the fact
that the choice of SVM kernel seems to play an equally important role as well.
Notably, the OSW-LBP-TOP methods easily outperform the CASMEII baseline
result when the RBF kernel is used for the SVM classifier. In the case of SMIC
when the OSW-LBP-TOP methods are used, all the three kernels consistently
produced improved results. This is an interesting finding that requires further
investigation as to how these weights impact and alter the sample distribution
to the advantage of specific linear or nonlinear (RBF in this case) kernel types.

Another observation that is worth highlighting for subtle micro-expression
research is that sufficient attention should be given to deal with the impact of
noise on the recognition performance. The addition of essential pre-processing
steps to suppress image noise and remove the noisy blocks are able to produce
better results. This can be attributed to the discarding of the histogram bins
(set to zero) or features that belong to those noisy regions of the image.

6 Conclusion

In this paper, we have presented a novel method for recognizing subtle expres-
sions in video sequence. The proposed optical strain weighted feature extraction
method for subtle expression recognition is able to achieve 66.4% accuracy for
a five-class classification on CASMEII database and a 57.71% accuracy for a
three-class classification on SMIC database. However, due to the subtlety of fa-
cial micro-expressions, the presence of image noise is a challenging problem that
requires attention. For future works, the weighting scheme can be extended to
the classifier kernel distances to further increase the effectiveness and robustness
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Table 5. Accuracy results (%) on SMIC database using LBP-TOP4,4,4,1,1,4 based on
LOSOCV

Macro Micro
Methods SVM kernel: RBF Linear Poly RBF Linear Poly

Baseline 55.65 55.65 57.63 51.83 51.83 51.83
OSW-LBP-TOP 57.34 57.34 57.71 53.05 53.05 53.66

Table 6. Accuracy results (%) on SMIC database using LBP-TOP4,4,4,1,1,4 based on
LOSOCV with pre-processing (PP)

Macro Micro
Methods SVM kernel: RBF Linear Poly RBF Linear Poly

Baseline (with PP) 51.66 51.66 55.04 47.56 47.56 50.00
OSW-LBP-TOP (with PP) 56.79 56.09 57.54 53.05 52.44 53.05

in the classification stage. Also, noise suppression schemes can also be introduced
reduce the impact of noisy textures.
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