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Abstract. In this work, we propose a scheme to estimate two-dimensi-
onal full-body human poses in a monocular video sequence. For each
frame in the video, we detect the human region using a support vector
machine, and estimate the full-body human pose in the detected region
using multi-dimensional boosting regression. For the human pose esti-
mation, we design a joints relationship tree, corresponding to the full
hierarchical structure of joints in a human body. Further, we make a
complete set of spatial and temporal feature descriptors for each frame.
Utilizing the well-designed joints relationship tree and feature descrip-
tors, we learn a hierarchy of regressors in the training stage and employ
the learned regressors to determine all the joint’s positions in the testing
stage. As experimentally demonstrated, the proposed scheme achieves
outstanding estimation performance.

1 Introduction

Human pose estimation is an important research topic with many potential ap-
plications, e.g., image- and video-based event detection, interactive video gam-
ing and human-computer interaction. Nevertheless, accurate and efficient human
pose estimation has been a challenging problem. Challenges mainly come from
the fact that the human body is an articulated object with many degrees of
freedom and there are too many complicating factors like clothing, lighting and
occlusion.

During the recent years, intensive research has been conducted in human
pose estimation. However, most of the published schemes work on a single still
image, and many of them conduct pose estimation for only the upper human
body. There have been very few works on estimating human poses in video
sequences. In particular, two-dimensional (2D) full-body human poses estimation
in monocular video sequences is largely underrepresented in the research, to the
best of our knowledge.

In this work, we propose a scheme to estimate two-dimensional (2D) full-body
poses of a human in a monocular video sequence, which extends an existent
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Fig. 1. Left: Joints Relationship Tree (JRT); Right: the joints marked in an image
corresponding to the nodes of the JRT. The red rectangle represents the detected
human region; a human body pose is represented as 10 sticks each connecting two
joints in the image, which are head, torso, upper and lower arms and upper and lower
legs; the yellow circle is at 1/2 width and 1/3 height of the human’s bounding rectangle.
Node 15 is at the center of Node 2 and Node 3.

scheme [1] for estimating upper-body human poses in still images. Compared
with [1], major extensions of our work include: 1) we employ the support vector
machine (SVM) method and the histogram of oriented gradients (HOG) descrip-
tor to detect the human region in each frame, 2) we design a full-body JRT as
the basic structure for pose representation and estimation, 3) we propose a mo-
tion feature descriptor and use it together with the spatial one to describe local
image features, and 4) we construct a database of videos each with annotated
full-body human regions and poses, which we use for both training and testing
result verification.

The rest of this paper is organized as follows. Related work is introduced
in Section 2, the proposed scheme is described in Section 3 and experimental
results are given and analyzed in Section 4. Finally, this work is concluded in
Section 5.
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2 Related Work

Human pose estimation has been intensively researched in the past decade or
so. We briefly review recent work in this section, while comprehensive surveys
on earlier algorithms can be found in references [2, 3].

A large class of algorithms is based on the pictorial structures (PS) mod-
el [4–9], which represents the human body as a series of rigid parts and a set
of relations between certain pairs of parts. Approaches extending the PS model
have also been proposed, such as the deformable structures model [10, 11] and
the cascade of pictorial structure models [12]. These structure-model-based al-
gorithms require a large number of constraints and correspondingly intensive
computation.

Methods have been proposed which use machine learning techniques for hu-
man pose estimation. Okada and Soatto [13] propose a piecewise linear regression
method for human pose estimation. In their approach, they train several local
linear regressors (which are based on pose clusters generated by K-means) and
a support vector machine for estimating the human pose from the histogram of
oriented gradients (HOG) feature vector. However, the accuracy of linear regres-
sion method is limited, due to the diversity of human poses. Dantone et al. [8]
employ two-layered random forests as joint regressors, but this method needs
a large search space, negatively affecting its computational efficiency. Hara and
Chellappa [1] propose to use multidimensional output regression tree with de-
pendency graph for upper-body human pose estimation. Their algorithm breaks
a complex problem of human pose estimation down into a sequence of local
pose estimation problems which are less complex. As a result, it achieves a good
tradeoff between accuracy and efficiency.

Research has also been conducted recently on estimating the human pose
from a single depth image. Some methods base on the random forest have been
proposed, such as [14–16]. These methods work efficiently, assuming that the
positions of human parts or labels of pixels are independent. Sun et al. [17]
present a conditional regression forest model which takes the dependency rela-
tionships among the human parts into account. However, this method requires
prior knowledge about torso orientation, human height, etc.

All the above-reviewed algorithms work on still images. By contrast, there
has been far less work published on video-based human pose estimation. In
particular, the work which can estimate two-dimensional (2D) full-body human
poses in monocular video sequences is largely underrepresented in the research,
to the best of our knowledge. Bissacco et al. [18] propose multi-dimensional
boosting regression with appearance and motion to address the problem of three-
dimensional (3D) human pose estimation in video sequences. They utilize both
2D videos and 3D motion data to train the regressors and the trained regressors
map the Haar features of a detected human region directly to an entire set of 3D
joint angles representing the full-body pose. Zuffi et al. [11] combine the dense
optical flow with the deformable structures model [10] to address the upper-
body human pose estimation in monocular video sequences. However, significant
computation and memory use is introduced by the dense optical flow.
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Fig. 2. The process of training. Left: The video dataset and preprocessing. In the
preprocessing stage, we detect a rectangular region containing the human’s image and
annotate the full-body human poses. Center: Training data extraction. Here, di,j
represents the normalized offset vector between each parent-child joint pair based on
the JRT in each video frame, and fi,1 · · · fi,n represent the HOG feature vector for the i-
th joint, computed from the subimage centered on its parent joint, in each video frame.
The bottom part represents the optical flows computed, the images warped according
to the optical flows, and the absolute frame difference images computed. More HOG
features are further computed on the frame difference images. Right: Training of 14
regressors. For each edge in the JRT (See Fig. 1), we train a regressor that maps the
local features around the parent joint to an offset between the parent and the child.
The training of regressors is based on the extracted training data, i.e., HOG features
and offsets, as illustrated in Center.

3 Proposed Scheme

We assume as input to our scheme a monocular video sequence of a human.
Our aim is to, for each video frame, estimate the full-body human pose that is
represented as 2D positions of pre-defined human joints.

To the best of our knowledge, most of the researches based on regression
for full-body human pose estimation are to learn a mapping function from the
features computed from a local image region that contains an entire human
body to a human pose. Those methods have a defect that the local image region
should be large enough to contain the human body and thus may contain a large
background region as well, increasing the complexity of human pose estimation.
Therefore, we choose to extend the work by Hara and Chellappa [1] since it has
achieved a good balance between accuracy and efficiency for estimating upper-
body human poses in still images.
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Fig. 3. Human regions detected on several video frames using the SVM and HOG
approach.

At each video frame, we first detect a rectangular region containing the hu-
man’s image, utilizing the SVM method and the HOG descriptor. Thereafter,
we estimate the full-body human pose in this detected region. Specifically, we
design a joints relationship tree (JRT) corresponding to the hierarchy of joints
in a full human body (see Fig. 1). The root joint is always fixed at 1/2 width
and 1/3 height of the human’s bounding rectangle. For each of the other joints,
its position relative to its parent is determined via regression on the features
of a temporally and spatially local region around its parent. The hierarchy of
regressors at all the non-root nodes are learned in a training stage (see Fig. 2).
Details of the proposed scheme are given in the following subsections.

3.1 Human Region Detection

We utilize a linear SVM classifier on HOG features [19, 20] to detect the human
region in each video frame. In the training stage, we randomly sample rectangular
regions of N×M (we use 64×128 in experiments) in the video frames. If a sample
contains a human or part of a human, we label it as positive; otherwise, we label
it as negative. Next, we extract all the sample regions’ HOG features, and train
a linear SVM classifier on those HOG features. In the testing stage, We slide a
rectangular window of N ×M over each video frame, from top to bottom and
from left to right. Each window is classified as positive or negative, utilizing the
trained SVM classifier. The tight bounding rectangle of all the positive samples
then give the detected human region in each frame. As examples, the results of
human region detection for several video frames are illustrated in Fig. 3.

It is worth mentioning that Hara and Chellappa [1] do not conduct human
region detection in their algorithm but directly use the annotated human region
information in their test image datasets.
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3.2 Joints Relationship Tree

We design a joints relationship tree for the full human body, which extends the
dependency graph in reference [1]. The JRT we construct is illustrated in Fig. 1,
where the left part shows the JRT structure and the right part marks the joints
in an image corresponding to the nodes in the JRT. As shown in Fig. 1, there are
totally 15 nodes in the JRT, which are numbered from 0 to 14 and correspond
to a root location and 14 joints in a human body.

Denoting the image of the t-th frame as It, and the estimated position of the
i-th joint in It as Jt,i. With each parent-child pair, (i,j), in the JRT, we associate
a mapping function, Gi,j(Xt,i), which gives the normalized offset vector from Jt,i
to Jt,j based on the spatially and temporally local feature vector, Xt,i, around
Jt,i in It. That is,

Jt,j = Gi,j(Xt,i) · St + Jt,i (1)

In Eq. 1, St is the normalizing factor used when training Gi,j(·). We define St

as proportional to the width of the detected human region in It and St = Wt/K
(K = 64 in our method) where Wt is the width of the detected human region in
It. The mapping function, Gi,j(·), is the regression function that we learn from
manual annotations of the joint positions in the training video frames. How the
feature vector, Xt,i, is computed and how the regression function, Gi,j(·), is
learned are described in the following subsections.

3.3 Local Features

As described in Section 3.2, the regression between each parent-child joint pair
is based on spatially and temporally local features around the parent. Therefore,
for the i-th joint in the t-th frame, we need to compute a local feature vector,
Xt,i, around Jt,i, as detailed below.

In order to characterize the spatially local features around Jt,i, we take a
K ×K (K = 64 in our method) appearance patch, It,i, centered on Jt,i from It,
and then compute the HOG feature vector [20], Ht,i, of It,i as

Ht,i =
[
ft(i, 1), ft(i, 2), · · · , ft(i, n)

]
(2)

where n is the dimensionality of the vector and ft(i, j) (j = 1, · · · , n) is an item
of the HOG feature descriptors.

As we known from previous researches, motion feature can enhance the per-
formance of still image based pose estimation methods by utilizing the temporal
correlation between temporally close frames. Motion features are particularly
helpful in two cases that are often hard for still image based methods: 1) occlud-
ed body part, and 2) coloring/illumination similarity between a body part and
its background. For these two cases, motions from previous frames will provide
further hints on the affected joint’s position in the problematic frame.

In order to characterize the temporally local features around Jt,i, we first
compute Lucas-Kanade [21] optical flows between two frames. Denote the optical
flow field from frame It to frame It−n as Ut,t−n (n < t). We obtain the warped
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Image 1 Image 2 Optical flow

Warped image Frame difference image

Fig. 4. The process of motion patch computation. The first row shows two adjacent
video frames and their optical flow image obtained by the Lucas-Kanade optical flows
algorithm; the second row shows the warped image from image 1 using the optical flow
and the absolute frame difference image between image 2 and the warped image.

image Itt−n which is the frame It−n warped to the frame It by using bilinear
interpolation with the flow field Ut,t−n. Then we compute an array, Mt,i, of
motion patches as:

Mt,i =

[
|It,i − It,it−1,i|
|It,i − It,it−2,i|

]
(3)

where It,it−n,i (n = 1, 2) is the warped image patch from It−n,i to It,i by using the
optical flow field Ut,t−n from It to It−n. As an example, we illustrate in Fig. 4
the process of computing a motion patch from two adjacent video frames.

After the motion patch array, Mt,i, is obtained, we compute the HOG feature
vectors, H ′

t,i and H ′′
t,i, from Mt,i(1) and Mt,i(2), respectively. Thereafter, we

normalize Ht,i, H
′
t,i and H ′′

t,i. Still denoting the normalized HOG feature vectors
as Ht,i, H

′
t,i and H ′′

t,i, we finally set Xt,i = (Ht,i,H
′
t,i,H

′′
t,i). It is worth noting

that Ht,i is the spatial feature descriptor that has also been used by Hara and
Chellappa [1], while H ′

t,i and H ′′
t,i form the motion feature descriptor that we

propose in this work.

In general, a frame closer to the t-th in time has a higher impact on the pose
estimation accuracy for the t-th frame. Therefore, we make higher-resolution
HOG descriptions for frames closer to the t-th, which is achieved by controlling
cell and block sizes in the HOG computation. Specifically, we set the cell sizes to
8×8, 16×16 and 32×32 for the computation of Ht,i, H

′
t,i and H ′′

t,i, respectively,
while setting the block size to 2 × 2 for all the three HOGs. In each cell, the
number of orientation bins with signed gradients is set to 9. As a result, we get
a 1,764-dimensional Ht,i, a 324-dimensional H ′

t,i, a 36-dimensional H ′′
t,i, and a

2,124-dimensional Xt,i.
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3.4 Multi-Dimensional Boosting Regression

We use a training set of manually annotated video sequences to learn the regres-
sion function between any parent-child pair in the JRT. All the human joints’
2D positions are marked on each frame of each training video sequence. We as-
sume that all the training video sequences contain N frames in total, forming a
training frame set, T .

Let us focus on learning the regression between one parent-child pair, (m,
n), while the same process applies to all the other parent-child pairs as well.
From each image, Ii ∈ T (1 ≤ i ≤ N), we compute the local feature vector, Xi,
around the m-th joint using the method described in Section 3.3, and compute
the normalized offset between the two annotated joints positions, Ji,m and Ji,n,
as Yi = (Ji,n−Ji,m)/Si. Now that we have a set of training samples {Yi, Xi}Ni=1,
the learning is conducted via a standard multi-dimensional boosting regression
process, as described in the following.

In general, given a set of training samples {Yi, Xi}Ni=1, where Y ∈ Rv is the
output vector and X ∈ Ru is the input vector. The regression function can be
theoretically sought by:

F ∗(X) = arg min
F (X)

N∑
i=1

ωiΨ(Yi, F (Xi)) (4)

where ωi is the weight of the i-th training sample and Ψ(·) is the loss function.

In order to achieve the goal of Eq. 4, we may construct the strong regressor
F (X) as an ensemble of weak regressors h(X;Am, Rm):

F (X) =

M∑
m=0

h(X;Am, Rm) (5)

where h(X;Am, Rm) =
∑L

l=1(Aml · 1Rml
(X ∈ Rml)) is a regression tree with

indicator function 1Rml
(X ∈ Rml), vectors Am = {Am1, Am2, · · · , AmL} and

input space partitioning Rm = {Rm1, Rm2, · · · , RmL} , where each Aml is the
average of the output vectors of the training samples that fall into space partition
Rml. In the training stage, the space partitioning is conducted iteratively. At each
step, denoting the current space partitioning as Rm = {Rm1, Rm2, · · · , Rml′}
and the corresponding average output vectors as Am = {Am1, Am2, · · · , Aml′},
we select one from the l′ leaves with the largest sum of squared error Eml for
further partitioning, following the method in [1, 18]. Eml is defined as:

Eml =
∑

Xi∈Rml

ωi||Yi −Aml||22 (6)

Further, we apply the Gradient TreeBoost algorithm [18] as follows:

Fm(X) = Fm−1(X) + υh(X;Am, Rm) (m ≥ 1) (7)
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Algorithm 1 Multi-Dimensional Gradient Boosting Regression.

Input: A set of training samples {Yi,Xi}Ni=1

Output: The strong regressor FM (X)
1: F0(X) = mean{Yi}i=1,2,··· ,N
2: for m = 1 to M do

3: Ỹi = Yi − Fm−1(Xi), i = 1, . . . , N

4: (Am, Rm) = argminA,R

∑N
i=1 ωi||Ỹi − h(Xi;A,R)||22

5: Fm(X) = Fm−1(X) + υh(X;Am, Rm)
6: end for
7: return FM (X)

where υ (0 < υ < 1) is a shrinkage parameter and can control the learning
rate, and F0(X) = mean{Yi}i=1,2,··· ,N . The parameters, (Am, Rm), of a weak
regressor is determined by:

(Am, Rm) = argmin
A,R

N∑
i=1

ωiΨ(Yi, Fm−1(Xi)

+ υh(Xi;A,R)) (8)

To summarize, the eventual regressor we construct is

F (X) = F0(X) + υ
M∑

m=1

h(X;Am, Rm) (9)

and the overall multi-dimensional boosting regression process is put in Alg 1.

4 Experimental Results

4.1 Dataset and Metric

Due to the unavailability of annotated monocular video database for full-body
human pose estimation, we take video sequences with a DV camcorder to con-
struct our own dataset. Each video sequence is taken of one person. The dataset
contains 1,200 image frames in total, each sized at 960×540 pixels and annotat-
ed. In those videos the actors perform many different full-body actions such as
walk, parade step, run, jump, one-hand wave, two-hand wave and so on. Some
samples of the image frames in our dataset are shown in Fig. 5. To annotate a
video frame, we run human region detection algorithm in it and manually mark
the positions of the 14 joints (in accordance with the JRT structure) inside the
detected human region. As illustrated in Fig. 1, a human body pose is then rep-
resented as 10 sticks each connecting two joints in the image, which are head,
torso, upper and lower arms and upper and lower legs. Of all the 1,200 image
frames, we apply the 5-fold cross validation and use 800 for training and 400 for
testing.
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Fig. 5. Some samples of original image frames from videos in our dataset, corresponding
to the motions of walk, parade step, run, jump, one-hand wave, and two-hand wave.

As the performance metric, we adopt the percentage of correctly estimated
body parts(PCP) tool [1, 5, 22, 23]. With a PCPt metric, it is considered correct
if the estimated stick’s endpoints lie within 100t% the length of the ground-truth
stick from their ground-truth (annotated) locations.

4.2 Settings and Results

We need to train 14 regressors according to the JRT. In our experiments, for
each boosting regression model, we set the number of trees as M = 1000, the
number of leaves in each tree as L = 5 and the shrinkage parameter as ν = 0.1.

In our experiments, we test four types of local feature vectors for the re-
gression. In addition to the 2,124-dimensional HOG and optical-flow-temporal-
difference(HOG-OFTD) features as introduced in Section 3.3, we also test other
three feature vectors: one-scale-spatial (OSS), multi-scale-spatial (MSS) [1] and
HOG-temporal-difference(HOG-TD) feature vectors. OSS computes the HOG of
the local appearance patch with a cell size of 8 × 8 and a block size of 2 × 2,
resulting in a 1,764-dimensional feature vector. MSS computes the HOG of the
local appearance patch with a block size of 2× 2 and cell sizes of 8× 8, 16× 16,
32 × 32, and concatenate the feature vectors for all these cell sizes to form a
2,124-dimensional feature vector. In order to test it for full body pose estima-
tion, we run the original method in [1] on our proposed JRT structure but still
use the MSS HOG features as used in [1]. HOG-TD computes the HOG of the
local appearance patch with a cell size of 8× 8 and a block size of 2× 2, and the
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Table 1. PCP0.5 statistics for four types of features (OSS, MSS, HOG-TD and HOG-
OFTD) on our dataset. Results are given for 10 human body parts: head, right and
left upper arms and forearms, torso, right and left upper legs and lower legs. R and L
stands for right and left, respectively; u.a and l.a standards for upper and lower arm,
respectively; u.l and l.l standards for upper and lower leg, respectively.

Head R.u.a R.l.a L.u.a L.l.a Torso R.u.l R.l.l L.u.l L.l.l

OSS 98.18 78.73 46 79.64 34.54 100 96.18 76 92.36 76.36

MSS [1] 98.73 83.82 19.82 82.91 43.27 100 96.36 77.27 93.45 77.45

HOG-TD 99.78 88 21.78 83.78 36 100 97.56 77.11 98.22 88.22

HOG-OFTD 98.45 82.72 58.32 86.11 53.44 100 96.44 80.22 98.75 90.74

HOG of the motion patch, Mt,i = |It,i − It+1,i|, with a block size of 2 × 2 and
cell size of 16× 16, resulting in a 2,048-dimensional feature vector.

Using the four types of local feature vectors and PCP0.5 as the performance
metric, we obtain the statistics as given in Table 1 for head, upper arms and
forearms, torso and upper and lower legs. From Table 1, we observe that HOG-
OFTD yields the best performance on left upper arm, right and left forearms,
left upper leg, right and left lower legs. Statistics in Table 1 demonstrates that,
for most of the body parts, introducing the optical flow and frame difference as
motion features leads to improved results over pure spatial features.

Further, we give in Table 2 the statistics about the average PCP0.5 on our
dataset. From Table 2, we see that HOG-OFTD leads to the best average esti-
mation accuracy.

In the testing phase, the running time of regression on each tree of height h is
O(h), since we follow a simple path down the regression tree. So the running time
for each boosting regression model with M trees is O(Mh). We give in Table 3
the statistics about the average timing per frame excluding human detection
on our dataset. We implemented our scheme in matlab language. Running our
implementation on a desktop computer with an Intel Core(TM)i5 3.10GHz CPU
and 4 GB memory.

Table 2. Average PCP0.5 for four types of features (OSS, MSS, HOG-TD and HOG-
OFTD) on our dataset.

Features Average PCP0.5

OSS 77.80
MSS [1] 77.31
HOG-TD 79.04
HOG-OFTD 84.52
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Table 3. Time per image frame excluding human detection for two types of features
(MSS, HOG-OFTD) on our dataset.

Features Time/frame

MSS [1] 0.9sec.
HOG-OFTD 1.2sec.

Visual results of the full-body pose estimation using HOG-OFTD on a se-
lected set of video frames are shown in Fig. 6.

From this figure, we see that the overall human poses are estimated with a
good accuracy, though some failure cases exist locally. Those failure cases mainly
happen in regions with self-occlusion and/or fast motion, for which insufficien-
t information can be obtained and/or more randomness exists, adding to the
difficulty of accurate estimation.

5 Conclusion and Future Work

In this paper, we propose a scheme to estimate 2D full-body human poses from
monocular video sequences. At each frame, it detects the human region using an
SVM and HOG human detection algorithm and then estimates the human pose
in the detected region through multi-dimensional boosting regression. Specifi-
cally, we design a joint relationship tree reflecting the hierarchical structure of
joints in a human body. In the training stage, we learn a regressor for each
parent-child pair, which estimates the child joint’s offset vector based on spa-
tially and temporally local features around the parent; in the testing stage, we
first fix the location of the root node relative to the detected human region, and
then traverse the JRT in a depth-first order to estimate all the joints’ positions
utilizing the learned regressors. As experimentally demonstrated, the proposed
scheme achieves outstanding estimation performance.

In the future, while further improving the estimation accuracy, we will in-
crease the diversity of our datasets and seek to accelerate the computation for
potential use in real-time applications.
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Fig. 6. Visual estimation results of our scheme with HOG-OFTD on selected frames.

References

1. Hara, K., Chellappa, R.: Computationally Efficient Regression on a Dependency
Graph for Human Pose Estimation. Computer Vision and Pattern Recognition
(2013) 3390–3397
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