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Abstract. We tackle multiple people tracking across multiple non-overlapping
surveillance cameras installed in a wide area. Existing methods attempt
to track people across cameras by utilizing appearance features and
spatio-temporal cues to re-identify people across adjacent cameras. 　
However, in relatively wide public areas like a shopping mall, since many
people may walk and stay arbitrarily, the spatio-temporal constraint is
too strict, which results in matching errors. Additionally, appearance
features can be severely influenced by illumination conditions and cam-
era viewpoints against people, making it difficult to match tracklets by
appearance features. These two issues cause fragmentation of tracking
trajectories across cameras. We deal with the former issue by selectively
relaxing the spatio-temporal constraint and the latter one by introducing
a route cue. We show results on data captured by cameras in a shopping
mall, and demonstrate that the accuracy of across-camera tracking can
be significantly increased under considered settings.

1 Introduction

We address the problem of tracking pedestrians across multiple non-overlapping
surveillance camera views in a wide area. It has a lot of commercial applications
in practice and great importance for business growth. For example, in shop-
ping malls, global tracking results can be valuable for finding similar spots and
planning shop reallocation for sales growth. Since acquiring such global tracking
results demands enormous time, labor and cost, a method for doing it automat-
ically is required.

To this end, existing methods attempt to track pedestrians across camera
views by utilizing appearance features and certain spatio-temporal cue to re-
identify and associate pedestrians across adjacent camera views [1–5]. Appear-
ance features are usually based on color histograms and texture descriptors, and
the spatio-temporal cue is commonly based on the travel time between adjacent
camera views, respectively.

In a shopping mall, since many pedestrians walk and stay arbitrarily no mat-
ter whether they are under the view of some camera(s) or outside of the views
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of all the cameras, their travel time between adjacent camera views varies from
time to time. Additionally, appearance features can be influenced by camera
viewpoint changes and illumination condition variations. These issues result in
fragmented trajectories making difficult the global tracking across camera views,
so that the existing methods fail to work when pedestrians walk and stay arbi-
trarily in wide public areas like a shopping mall. We deal with the former issue
by relaxing the spatio-temporal cue selectively, and the latter one by introducing
a route cue. Our goal is to make possible the global tracking in such important
real scenarios.

2 Reated work

In this paper, we assume that we have already acquired cropped pedestrian image
sequences by intra-camera pedestrian tracking for each camera. Each sequence
of pedestrian images is called a tracklet. Tracklets are gained by conducting
tracking within a camera view[6–8]

Tracking pedestrians across multiple camera views can be achieved if for
each pair of tracklets acquired in adjacent camera views, we are able to correctly
judge whether they correspond to the same pedestrian or not , in another word,
to successfully perform person re-identification. To this end, Farenzena et al. [2]
proposed an effective feature which accumulates various kinds of information
including clothings’ color and texture.

Javed et al. [3] presented a method for tracking pedestrians across two adja-
cent camera views by utilizing a spatio-temporal cue. The spatio-temporal cue
consists of a spatio-temporal likelihood and a spatio-temporal constraint. The
former is the likelihood of travel time between two adjacent camera views, and
is described as a probability distribution. The spatio-temporal likelihood is used
to compare similarity between tracklets. The latter is the constraint that the
travel time in which a pedestrian moves from a camera view to an adjacent cam-
era view must be within a time span, namely, between a given minimum travel
time and a given maximum travel time for the camera pair. The spatio-temporal
constraint is used to reduce matching candidates for computational efficiency.

Liana et al. [4] increased the accuracy of tracking across two adjacent camera
views by optimizing matching of pedestrians. They track multiple pedestrians
simultaneously and acquire the optimal matching. If we can match tracklets
across each pair of adjacent camera views, tracking across multiple camera views
will be possible, however, once a matching error occurs, a tracking trajectory may
get fragmented or wrongly connected, which leads to the failure in tracking over
a wide area.

Song et al. [5] proposed a method for tracking pedestrians across multiple
camera views. This method achieved higher matching accuracy between each
camera pair by utilizing additional information; pedestrian appearance and ob-
serving time of tracklets acquired by other cameras than the camera pair, how-
ever, it requires vast computational cost. Chen et al. [1] presented a method for
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tracking pedestrians across multiple camera views with less computational com-
plexity by restricting matching candidates with a spatio-temporal constraint.

Alahi et al. [9] introduced a concept of data association [10] for the across-
camera tracking, and proposed a method to optimize all trajectories. In the
method, optimal trajectories are acquired by calculating the posterior probability
of each considerable trajectory.

3 Tracking pedestrians using a spatio-temporal cue

For each tracklet ri(i ∈ N), those methods[1, 5] focus on only a set of tracklets
which were acquired before ri was acquired. They choose tracklets for the set
using a spatio-temporal constraint. By using the spatial constraint, they exclude
tracklets acquired by a camera view not adjacent to the camera view where
tracklet ri was acquired. They also exclude tracklets whose travel time is not in
a given time span. The time span is characteristic to each camera pair.

The left tracklets after the exclusion process are the candidate set for the
tracklet ri denoted by Hi . They compute similarities between tracklet ri and
every tracklet in Hi. For the computation of the similarity, they use two kinds of
information; one is the spatio-temporal likelihood, more precisely, the likelihood
of transition time; and the other is the appearance likelihood, i.e., the similarity
of appearance features. If the similarity between tracklet ri and its most simi-
lar tracklet in the candidate set Hi is greater than a given threshold, the two
tracklets are considered to be matched. Otherwise, no matching is found and
the tracklet ri is considered to be the first tracklet of a trajectory, that is, the
starting tracklet of a pedestrian in the camera network.

Such kind of methods have the following two drawbacks.
Firstly, when an observed pedestrian is significantly delayed between a pair

of adjacent camera views, the travel time may go out of the given time span. A
delay often happens when there are places visitable between the adjacent camera
views, such as stores, restrooms, signboards, smoking areas, and exhibitions.

Secondly, except in a very simple environment such as a straight road, it is
often difficult to install cameras to observe pedestrians from similar viewpoints.
Thus, each pedestrian’s appearance varies across camera views. In general, addi-
tionally, lighting condition varies with observation time because of weather, light
intensity and existence of the sunlight. Since these factors may cause significant
appearance change, they may lead to the wrong judgment that the corresponding
tracklet does not exist in the candidate set, even though it actually does.

We give examples of these two problems. To make it easy for understanding,
we focus on only three cameras from a possible complex camera network as
shown in Fig. 1. The views of Cameras 1 and 2, and those of Cameras 2 and 3
are adjacent, and there is no direct path linking the views of Cameras 1 and 3
without passing other views.

The two problems we’ve concerned are summarized below:

– Problem(i): Because of the delay, the tracklet which should be matched is
excluded from the candidate set.
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Fig. 1. adjacency of camera views in a camera network

Fig. 2. Problem(i) : delay

– Problem(ii): Because of appearance variation, the tracklet which should be
matched is considered not to exist in the candidate set, even though it does.

An example of the problem(i) is shown in Fig. 2. In the figure, each tracklet
is shown as a set of stacked images of a pedestrian. The figure indicates that
the tracklets r1 and r2 are acquired when the pedestrian PA passed through the
views of Camera 2 and Camera 1 respectively. The pedestrian corresponding
to the other two tracklets are different from the pedestrian PA. For tracklet
r2, the candidate set H2 consists of tracklets existing in the rectangle in the
figure. H2 is the set to an extent satisfying the spatio-temporal constraint of the
tracklets. The pedestrian got delayed, and therefore tracklet r1 is not included
in the rectangle. This results in a matching error.

An example of the problem(ii) is illustrated in Fig 3. The figure indicates that
the tracklets r3, r4 and r5 are acquired when the pedestrian PB passed through
the views of Cameras 1, 2 and 3 respectively. The pedestrian corresponding to
the rest one tracklet is different from the pedestrian PB . In this case, the candi-
date set H5 consists of tracklets existing in the rectangle as marked in the figure.
Although the tracklet which should match to r5 is actually included in the can-
didate set, the pedestrian looks different because she is observed from different
viewpoints by Camera 2 and Camera 3. Thus, appearances of the tracklets r4
and r5 are not similar enough, making the matching of them very difficult.
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Fig. 3. Problem(ii) : appearance variation

4 Tracking pedestrians via partial relaxation of
spatio-temporal cue and utilization of route cue

4.1 How to solve the problems

The proposed method copes with the two problems via the following two ideas
respectively;

– Idea(i): By partially relaxing the spatio-temporal constraint only against
pairs of tracklets whose appearance similarities are significantly high, we
include the corresponding tracklets in the candidate set. The tracklet pairs
are chosen from every camera in the camera network, not only from adjacent
cameras.

– Idea(ii): By utilizing a route cue, we predict that the corresponding tracklet
actually exists in the candidate set.

Details of the ideas are given below. Let ri be a tracklet denoted by ri =
(fi, si, ei, ci), where fi is the sequence of the pedestrian’s appearance features
extracted from the cropped pedestrian image sequence within the view of camera
ci, si is the time when the first frame of this sequence is captured, ei is the
time when the last frame of the sequence is captured. Using this notation, the
candidate set Hi of a tracklet ri mentioned in the previous section can be defined
as

Hi = {rm | (ci, cm) ∈ E,

tmin(ci, cm) < si − em < tmax(ci, cm)}, (1)

where tmin(ci, cm) denotes the minimum travel time between the views of camera
ci and camera cm, and tmax(ci, cm) denotes the maximum travel time between
the two cameras, and E denotes a set of camera pairs which have a direct path
between them.
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Fig. 4. Idea(i) : partial relaxation of spatio-temporal cue

Here, we assume that when a pedestrian moved from one camera view to
another camera view, a tracklet rj is acquired from the former camera view and
another tracklet ri(i ̸= j) is from the latter. We focus on the situations when
the problem(i) or problem(ii) occurs between the two tracklets.

Firstly, by selectively relaxing the spatio-temporal constraint in matching
tracklets, we tackle the problem(i), where the corresponding tracklet deviates
from the candidate set. When a tracklet pair that does not fulfill the spatio-
temporal constraint because of delay, the tracklet rj is excluded from the can-
didate set Hi. If the similarity of the two tracklets ri and rj is significantly
high, we relax the spatio-temporal constraint for the tracklet rj , namely setting
tmax as ∞, to include the tracklet into the candidate set Hi. In this case, the
spatio-temporal likelihood is not used to calculate similarity between tracklets
ri and rj , and only appearance likelihood is used. This enables us to match two
tracklets regardless of the duration of the delay.

The example of this process is shown in Fig. 4. The situation of this figure is
the same as the situation of Fig. 2. In this figure, by relaxing the spatio-temporal
constraint, the tracklet r1 will be found in the relaxed candidate set H2. Since
appearance similarity of tracklets r1 and r2 is significantly high, they can be
matched correctly.

Secondly, we tackle the appearance variation by introducing a route cue. The
route cue is a novel constraint that when a pedestrian is observed by two cameras
whose views are not adjacent, the pedestrian should be observed by the other
cameras whose views exist on a must-pass route between the two camera views.
This constraint is an enhanced version of the spatio-temporal constraint, and
ensures that the tracklet rj actually exists in the candidate set. Here, let rk, rj
and ri be the tracklets acquired when a pedestrian PC passed through the views
of three cameras respectively, and sk < sj < si. This process narrows the number
of elements of Hi, and reduces the existence probability of a tracklet rl ∈ Hi

where similarity(ri, rl) and similarity(rj , rl) are higher than similarity(ri, rk) and
similarity(rj , rk). Here, similarity() means the similarity between two tracklets.
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Purging such a tracklet rl from the candidate set makes it possible to match rj
correctly. Additionally, when the existence of the tracklet rj is ensured, it can
be matched even if rj ’s similarity against ri and rk is lower than the matching
threshold. Even if appearance change happens, rj belongs to the same person as
rk and rj , thus rj ’s similarity against ri and rk is still high to some extent.

Here, we will describe the process in detail. We consider the situation where
there is a tracklet rk acquired in the view of a camera ck (̸= ci) before a tracklet
ri is acquired, and the views of cameras ci and ck are not adjacent. Let rm be
a candidate tracklet of the matching partner of ri, the tracklet rm must fulfill
following two constraints;

– sm and em of the tracklet rm must fulfill following inequities:{
sm − ek > tmin(ck, cm)

si − em > tmin(cm, ci).
(2)

These inequities mean that the tracklet rm is acquired at a time between
the time when the tracklets rk and ri are acquired with consideration of the
minimum travel time between pairs of the cameras..

– The view of camera cm must exist on a route from the view of camera ck to
the view of camera ci.

We consider only the tracklets fulfilling these two constraints as the candidate
set. The tracklet which has the highest similarity to ri in the candidate set Hi

is matched with ri.
The tracklet rk very similar to ri can be found by executing the matching with

partial relaxation of the spatio-temporal constraint, if the similarity between ri
and rk is higher than a given threshold. If the camera views which the tracklets
ck and ci are acquired are not adjacent, we conduct the matching mentioned
above.

By following the two constraints, we can reduce the number of elements in
the candidate set Hi. Additionally, we can ensure that the candidate set Hi

includes the tracklet rj , thus even if similarity(ri, rj) and similarity(rk, rj) are
lower than the given threshold, we can match the tracklets.

An example of this process is shown in Fig. 5. The situation of this figure is
as same as the situation of Fig. 3. Because the appearances of tracklet r3 and
r5 are similar enough, they are matched by relaxed spatio-temporal constraint.
Since the views of camera c3(= 1) and c5(= 3) are not adjacent, by using the
route cue, the corresponding tracklet to the tracklet r5 must exist in the area
enclosed by the rectangle in the figure. By optimally selecting the tracklet which
has the highest similarity to r3 and r5 from the candidate set H5, the tracklet r4
can be correctly matched even if the similarity of the tracklet r5 and r4 is lower
than the given threshold.

4.2 Proposed tracking procedure

Including these two ideas, we propose a novel tracking method. One of the novel-
ties of the method is its deliberate procedure. We describe the procedure below.
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Fig. 5. Idea(ii) : utilization of route cue

We apply matching procedures using idea (i)(ii) to a tracklet set before ap-
plying the existing method[1]. Here, in order to apply matching with utilization
of the route cue, the tracklet rk must be found beforehand. Therefore, we should
first perform matching with partial relaxation of the spatio-temporal cue. Before
the two above-mentioned procedures, pairs of tracklets which have neither prob-
lem(i) nor problem(ii) should be matched with each other. This is easily achieved
by searching for tracklet pairs whose spatio-temporal likelihood and appearance
similarity are high. Here, the spatio-temporal likelihood between two tracklets
means how similar the two tracklets are when considering a transition time dis-
tribution between two cameras which acquired the two tracklets.

Accordingly, the steps of matching should be the followings;

– Step 1: For each pair of tracklets acquired by adjacent cameras, if the wighted
average of their spatio-temporal likelihood and appearance likelihood are
higher than a given threshold, match them.

– Step 2: By relaxing the spatio-temporal constraint for all tracklets, if there
are pairs of tracklets whose similarity of appearance is significantly high,
match them.

– Step 3: Execute matchings utilizing the route cue.

– Step 4: By applying the existing method[1], try to match tracklets while
fixing the matched pairs in above steps.

We empirically tuned the thresholds used in the step 1 and step 2 so strictly
that false matchings don’t happen. Matching tracklets with low similarity invokes
false matchings, thus strict thresholding can prevent them.

Each process conducts locally optimal matching, and after all 4 steps finish,
an optimal solution is obtained.
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5 Benchmark Datasets

To evaluate the robustness of the proposed method against the delay and the
appearance change, we should evaluate on many datasets collected from various
environments which have different rates of the delay and appearance change.

However, these datasets are difficult to prepare, especially when controlling
the rates of the delay and the appearance change are considered. Instead of trying
hard to build such “real” datasets, we generate multiple “virtual” datasets and
use them for evaluation. If we prepare some “real” datasets, very similar datasets
must be included in the virtual datasets.

Here, we describe how to generate the virtual datasets from the Shinpuhkan
2014 dataset collected from surveillance cameras mounted in a real shopping
mall[11]. We denote the original Shinpuhkan 2014 dataset by D̃. This dataset
D̃ consists of tracklets R̃ of 24 pedestrians, which are captured by 16 non-
overlapping camera views. These cameras cover both shade areas and sunny
areas within the mall.

We consider the rate of the delay and the appearance change happen as
parameters of a virtual dataset and generate various virtual datasets which con-
tain tracklets generated virtually while changing the parameters. Here, we first
describe the parameters for the virtual dataset, and then we describe how to
generate a virtual dataset with these parameters.

5.1 Parameters for the virtual dataset

We want to generate virtual datasets with different rates of the delay and ap-
pearance change. We define a virtual dataset by D(β,Ncam, Nsun; D̃), where
β denotes the parameter of the delay happening, Ncam denotes the number of
camera views we use in the dataset and Nsun denotes the parameter controlling
the appearance change.

To simulate the delay of pedestrians, we parametrize the probability of the
delay happening at β ∈ [0, 1]. In the virtual dataset, the pedestrians delay at
a probability of β. Once a pedestrian delays, the pedestrian spent more tdelay
seconds between two camera views. tdelay is sampled randomly from a given
uniform distribution.

To simulate the appearance change, we parameterize the probability of the
appearance change happening by the number of camera views Nsun which are
under the sunlight. The greater the value of Nsun/Ncam is, the more often ap-
pearance changes happen. It is because the appearance of a pedestrian is heavily
affected by the illumination condition, especially whether it is under the sunlight
or not. Though also the direction variation of people against cameras causes ap-
pearance variations, we didn’t control it. It is because the dataset D̃ originally
contains the direction variation, which makes the direction variation automati-
cally contained in generated datasets, and it is difficult to control how much is
contained.

If a pedestrian is observed in two camera views which observe shaded areas,
appearances of the pedestrian in the two images captured by the two cameras are
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similar. However, if the pedestrian is observed under the sunlight in one camera
view, appearance of the pedestrian will be different from the one observed under
the other camera. We show those examples in Fig. 6. Three images in Fig. 6
represent the same person. Fig. 6 (a) is captured in the shaded area and Fig. 6
(b)(c) are captured under the sunlight. We can see the big difference between
Fig. 6 (a) and the others. Appearance variation also exists between Fig.6 (b)
and Fig.6 (c) caused by the direction of the sunlight against the person.

Fig. 6. Illumination change and appearance variation

How to generate a virtual dataset We generate a virtual dataset by sim-
ulating pedestrians’ walk over a virtual camera network. Therefore, the dataset
generation consists of two parts: the virtual camera network generation and the
simulation of pedestrians’ walk, namely, the virtual tracklets generation.

Virtual camera network generation First, we divide the vertices Ṽ in the
camera network G̃ of the original dataset D̃ into two groups Ṽsun and Ṽshade

by lighting condition of the camera. We select Nsun vertices from Ṽsun and
Ncam −Nsun vertices from Ṽshade and we denote the set of the selected vertices
by V .

Then, we generate Npath pedestrian path candidates over V . For each subset
V1, . . . , VNpath

of V , we generate a Hamiltonian paths Π1, . . . , ΠNpath
. Letting

all the edges contained in the generated Hamiltonian paths be an edge set E,
we get a camera network G = (V,E).

Virtual tracklets generation The original dataset D̃ consists of the tracklets
R̃ of 24 pedestrians. We generate a set of virtual tracklets R by generating virtual
tracklets for each pedestrian in D̃.

We randomly ordered the pedestrians and denote them as {p1, . . . , p24}.
For each pedestrian pk ∈ {p1, . . . , p24}, we randomly selected a path πk ∈
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{Π1, . . . ,ΠNpath
}. For each camera view corresponding to a vertex in the path

πk, we select a tracklet of the person pk, and we select a sequence of real tracklets
of the pedestrian pk along the path πk from R̃.

To generate virtual tracklets, we need to change the observation time for each
tracklets. The observation time of tracklets of a pedestrian pk is determined by
the time point tpk

0 when the pedestrian is observed in the camera network at
the first time, the time span ∆tpk

i in which the pedestrian passes through the
camera view corresponding to the vertex vpk

i , and the time span ∆tpk

i,i+1 in which
the pedestrian travels from the camera view corresponding to the vertex vpk

i to
the next camera view corresponding to the vertex vpk

i+1 of the camera network
along the path πk = (vpk

1 , . . . , vpk

Nπk
).

We set a given time point to tp0

0 . Then we determine the time points tpk

0

iteratively by sampling the time span (tpk

0 − t
pk+1

0 ) from a given gamma distribu-
tion. Gamma distribution is often used to model a time span in which something
occurs.

For the time span ∆tpk

i , we simply used the original time span which the
pedestrian pk actually spent to pass through the camera view.

To determine the time span ∆tpk

i,i+1, we need to model the travel time of
pedestrians between two camera views. Here, we model it by sum of the time
span tordinary(v

pk

i , vpk

i+1), which pedestrians ordinary spent to travel from the
camera view denoted by the vertex vpk

i to the next camera view denoted by the
vertex vpk

i+1 and the time span tdelay which denotes the delay time as;

∆tpk

i,i+1 = tordinary(v
pk

i , vpk

i+1) + δtdelay, (3)

where tordinary(v
pk

i , vpk

i+1) is sampled from a given gamma distribution for each
pair (vpk

i , vpk

i+1) and tdelay is sampled from a given uniform distribution between
5 minutes to 60 minutes. δ is a controlling parameter sampled from a Bernoulli
distribution with the parameter β.

Then we can calculate the observation time for each virtual tracklet from tpk

0 ,
∆tpk

i , and ∆tpk

i,i+1, that is, we can calculate the entrance time si and the exit
time ei of a virtual tracklet ri. Finally, we get a set of virtual tracklets R.

6 Evaluation

6.1 Experiment configurations

We generated various virtual datasets by the procedure introduced in the previ-
ous section to show the effectiveness of our proposed method.

Virtual dataset parameters We changed the delay parameter β from 0%
to 100% by 10%. Camera networks were randomly generated for each virtual
dataset with the parameters Ncam = 5 and Npath = 4. We had two paths
randomly generated and the rest two set to be inverse of them. We set the start
vertices of the former two paths to be the same vertex, and also set the end
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vertices of the paths to be the same vertex. We also changed the appearance
parameter Ncam from 0 to 5. Parameters of every distribution were determined
empirically. We generated 50 different datasets for each parameter set of β and
Nsun.

Calculation of similarity between tracklets We calculated the similarity
between tracklets as a weighted average of the appearance likelihood and the
temporal likelihood.

We calculated appearance likelihood lapp(ri, rj) between tracklets ri and rj
as follows;

lapp(ri, rj) = min
a,b

d(fai , f
b
j ), (4)

where fai is the appearance feature extracted the ath frame of tracklet ri, and
d is the Bhattacharyya coefficient, which is used to calculate distance between
histograms or probability distributions. We described the appearance feature of
pedestrian images by using Weighted Color Histogram [2] .

Methods for comparison We compared our method with the traditional
method [1] which was proposed by Chen et al.. The method is equivalent to the
step 4 of our method. The the spatio-temporal constraint works well under low
rate of delay happening, but it makes the result worse under high rate of delay
happening. To evaluate the effect of the spatio-temporal constraint, we compared
the two methods with 2 different settings; with/without the spatio-temporal con-
straint in the step 4. For the “without the spatio-temporal constraint” setting,
we set the maximum travel time tmax to ∞.

– traditional ： The traditional method [1] without the spatio-temporal con-
straint.

– proposed ： The proposed method without the spatio-temporal constraint.
– traditionalST ： The traditional method [1] with the spatio-temporal con-

straint.
– proposedST ： The proposed method with the spatio-temporal constraint.

6.2 Evaluation Criterion

We evaluated the tracking results by measuring the correctness for each sequence
of tracklets. As the evaluation criterion, we utilized F-measure, which is usually
used for the accuracy evaluation in the field of information retrieval. To define F-
measure in this evaluation, we introduce the label series l over a tracking result,
where matched tracklets should have the same label and not matched tracklets
should have different labels.

F-measure is defined as the harmonic average of the precision and the re-
call. Let the series of these labels l = (l1, . . . , lN ), where li represents the label
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assigned to a tracklet ri. We defined F-measure as follows;

F -measure(l) =
2 · precision(l) · recall(l)
precision(l) + recall(l)

. (5)

We defined the precision as the percentage of correct matchings, and defined
the recall as the percentage of conducted matchings in ground truth as follows;

precision(l) =
|TP (l)|
|L(l)|

, (6)

recall(l) =
|TP (l)|
|L(l̂)|

. (7)

where TP (l) and FP (l) denote the set of true positives and the set of false
positives respectively, and L(l) is the linkage set. l̂ is the ground truth of the
label series.

TP (l) and FP (l) are defined using the linkage set L(l) as follows respectively;

TP (l) = {x|x ∈ L(l) ∧ x ∈ L(l̂)}, (8)

FP (l) = {x|x ∈ L(l) ∧ x ̸∈ L(l̂)}. (9)

We defined the linkage set L(l) as follows;

L(l) = {x = (gjq , g
j+1
q )| q < max

i
li ∧ (gjq , g

j+1
q ) ∈ Gq}, (10)

where
Gq = {i|li = q}. (11)

Based on the definition, we calculated F-measure against all of the 4 methods
listed in the previous subsection.

6.3 Result

We show the result of the case Nsun = 0 and Nsun = 2 in Fig. 7 and Fig. 8
respectively. Both figures are plotted with F-measure as the vertical axis and
the delay probability β as the horizontal axis. Each line represents the average
of the results of 50 trials.

Whatever value the delay probability β is, F-measure of the proposed method
exceeds that of the existing method. The difference of F-measure between the
proposed method and the existing method grows greater as the delay probability
β gets larger. This suggests that our method can deal with the problem (i) : the
problem of delay happening.

Furthermore, whether there are cameras observing the sunshine in the datasets
or not, F-measure of the proposed method is greater than that of the existing
method. From this, we confirmed that our method can deal with the problem
(ii) : the problem of appearance variation.

Based on the above results, we can conclude that our tracking method can
deal with both problems of delay happening and appearance changes.
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Fig. 7. The result where Nsun = 0 Fig. 8. The result where Nsun = 2

7 Conclusion

This paper presents a method for tracking pedestrians across multiple non-
overlapping camera views by selectively relaxing the spatio-temporal cue and
introducing the route cue. We showed that the proposed method can consis-
tently improve the tracking accuracy under different parameter settings of delay
and appearance change.

The possible future work includes modeling the travel time statistically in the
situation where a person has a heavy delay and setting the criteria of relaxation
ratio for the spatio-temporal cue.
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