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Abstract. Multi-target tracking of pedestrians is a challenging task due
to uncertainty about targets, caused mainly by similarity between pedes-
trians, occlusion over a relatively long time and a cluttered background.
A usual scheme for tackling multi-target tracking is to divide it into two
sub-problems: data association and trajectory estimation. A reasonable
approach is based on joint optimization of a discrete model for data as-
sociation and a continuous model for trajectory estimation in a Markov
Random Field framework. Nonetheless, usual solutions of the data asso-
ciation problem are based only on location information, while the visual
information in the images is ignored. Visual features can be useful for
associating detections with true targets more reliably, because the tar-
gets usually have discriminative features. In this work, we propose a
combination of position and visual feature information in a discrete data
association model. Moreover, we propose the use of group Lasso regular-
ization in order to improve the identification of particular pedestrians,
given that the discriminative regions are associated with particular vi-
sual blocks in the image. We find promising results for our approach in
terms of precision and robustness when compared with a state-of-the-art
method in standard datasets for multi-target pedestrian tracking.

1 Introduction

Automatic multi-target tracking is the computational task of detecting the tra-
jectories of objects in a sequence of images. It has many and diverse applications
in the real world, e.g. surveillance [1,2], sports [3] and sensor networks [4]. In
this work, we focus on multi-target tracking of pedestrians, where recent research
has shown significant progress. Nonetheless, current techniques only offer good
performance with easy conditions i.e. a static background and separated pedes-
trians. As the area of inspection becomes more crowded, the performance of these
algorithms tends to decrease and they are clearly outperformed by humans.
Successful tracking methods are based on the premise of the presence of previ-
ous detections i.e. target people are detected by a generic pedestrian detector. In
fact, this scheme can be combined with an online model to deal with appearance
variation or scene lighting [6]. Some advantages of using pedestrian detections
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(b) Results with our model based on sparse grouped features

Fig. 1. A comparison of our method with a state-of-the-art model [5]. In 1, the model
based on location information tends to confuse as it only considers position, as shown
by the yellow and light-blue tracklets. In contrast, our model 1(b) uses visual feature
information with sparse selection of groups of features to select the more important
visual components of the tracklets. In our case, all the tracklets are correctly identified.

as input as compared to a generic tracker are that this does not require initial-
ization of the trackers and avoids model drifting. In single target tracking the
task is usually accomplished by fitting a trajectory prediction function according
to evidence given by detections; in multi-target tracking by contrast, we have
multiple possible identities that complicate trajectory prediction by trackers.
We have two specific problems: (i) the assignation of a unique identity to each
detection, which is also called the data association problem, and (ii) trajectory
estimation of each target.

Great emphasis is currently placed on the data association problem, since
many discrete optimization techniques has been developed over several decades,
even though this problem is NP-hard [7]. In the case of trajectory estimation, it is
usually computed assuming known correct labelings. In order to solve the multi-
target tracking problem, a key observation of Andriyenko et al. [5] is given by
the complementarity between data association, which is a discrete optimization
problem as the assignation of identities is nominal; and trajectory estimation,
which is a continuous optimization problem as the position variable is numeric.
In this case, the two problems are solved jointly using a discrete-continuous
alternating optimization under a Markov Random Field (MRF) framework. Al-
though this method is natural for this problem, it does not consider visual feature
information and may potentially lose valuable information about the targets.
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Fig. 2. The difference between our model (FDCM) and a state-of-the-art model (DCM)
[5]. We have two objects that are detected in four moments (¢t = 1 to 4) originating 8
nodes in MRF (node A to node H). We assume two known trackers T} and 7> and that
the geometric and feature distances (d and f) are defined. With DCM, the node E has
label T> because it is geometrically near to trajectory of tracker T: d(E,T1) > d(E,T»).
With FDCM, the node E has label T as it considers feature distance between nodes
and trackers: d(E,T1) + f(E,T1) < d(E,T2) + f(E,T2). The feature distance between
node E and T is small because Ti is formed by circles and node FE is a circle; on
contrast, T3 is composed by triangles. In similar way, node F' belongs to trackers T5.

In multi-target tracking of pedestrians, we observe that if the targets are well
separated, position information is usually enough to assign a correct label to each
detection. In a more challenging setting, as in the case of crowded scenes, visual
feature information can be very valuable for distinguishing between multiple in-
dividuals by using particular features such as the type or color of their clothes. In
the present work, we embed a feature-dependent function inside the association
potential component of a Markov Random Field. We use a multi-class logistic
regression model to represent the relation between features of detections and the
identity of trackers. Furthermore, we expect that in a frame sequence, a person
will usually have a particular discriminative region of image; therefore, we also
propose the use of group Lasso regularization. Figure 2 shows the intuition of
our idea, if we use geometric distance node F has label T3, but if we consider
feature and geometric distance, node E has label Tj. Finally, the estimation
of parameters of this function assumes a fixed labeling and adopts a Markov
Random Field solution based on a pseudo-likelihood approximation.

2 Background

2.1 Related work

Multi-target tracking research has made significant progress in recent years. Kuo
et al. [8] presented a discriminative appearance model for multiple targets using
an online learning scheme based on the AdaBoost algorithm. Training samples
are selected considering a sliding time window and spatial-temporal constraints.
Although this model appears effective, it does not consider position information
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which can be useful in case of occlusion or poor lighting conditions. Berclaz et
al. [9] proposed a mathematical model based on constrained linear programming
to address data association. This model is based on discretization given by an
occupancy map where each cell can be filled with a target. A disadvantage of
this method is that it can involve a very large number of variables i.e. if we
assume a square occupancy map, the number of nodes is related quadratically
to the length of the side of the square. Benfold and Reid [1] described a multi-
target tracking system considering accurate estimations of head locations. They
solve data association using a MCMC scheme combined with KLT tracking and
HOG pedestrian detections in a multithreaded application. This system appears
efficient because of its real-time performance. Nonetheless, a potential problem
with this model is its complexity due to the combination of multiple algorithms.

Yang and Nevatia [10] proposed an online model based on Conditional Ran-
dom Fields (CRF) to find and discriminate multiple targets. Although this model
is efficient, the non-submodularity of energy function hinders the CRF inference
provoking the use of heuristic solutions, and therefore, there is no guarantee that
they will find an optimal solution. Butt and Collins [11] address the problem of
multiple tracking by using detections in triplets, where a triplet is defined as
three consecutive detections of a pedestrian. The use of triplets gives natural ac-
cess to motion information i.e. with this information they estimate the speed of a
particular candidate target in the triplet. Nevertheless, this model is supported
by the reliability of the triplets, which can be uncertain as they may overlap
other triplets. They use an heuristic process in order to avoid conflicts between
nearby triplets, using the nearest detections. Hoffman et al. [12] proposed a hi-
erarchical model for multiple tracking. They present a probabilistic model that
finds the paths for each level of hierarchy. This path-finding problem is usually
solved by the Hungarian algorithm. Nevertheless, due to the complexity of the
hierarchical model, they require some heuristics for post-processing the results,
where the parameters can be difficult to obtain.

An interesting work is presented by Andriyenko et al. [5], in which data
association and trajectory estimation problems are addressed respectively by a
joint discrete and continuous optimization, on a Markov Random Field where
the nodes set is given by the pedestrian detections and the edge set is given
by the pairs of nearby detections. The discrete optimization assumes that the
trajectory and label costs are known; then they estimates the unary and pair-
wise terms of MRF'; they subsequently apply a graph cut algorithm based on
a-expansion as the energy function remains sub-modular. In this MRF, the unary
term is proportional to the distance between detections and the spline associated
with a specific label. In the case of the pair-wise term of two nearby nodes, it
is greater than zero if the labels of the two nodes are different; otherwise it is
zero. The continuous optimization of trajectories is hard given the presence of
label cost. They assumes the labels as known, disregard the label cost, and fit
a cubic spline model over the targets positions considering one label at a time
in order to estimate the trajectories, where a change is accepted only if the
global energy function is decreased. After the trajectory fitting, they calculate
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the label cost. This discrete-continuous optimization process is done alternately
until convergence of the MRF energy is reached.

The work of Andriyenko et al. [5] has the disadvantage that does not consider
the visual feature information available, which may be helpful in differentiating
between different trackings in complex environments. It is unlikely that two peo-
ple will have the same appearance and clothing, and in this case an algorithm
could use their local characteristics to facilitate the tracking process. Our pro-
posal is based on a non-trivial augmentation of the association potential function
by incorporating a term that indicates the consistency between the features of
candidate detections and the average features of a candidate target. We will now
describe the model of [5].

2.2 Discrete-Continuous model

Following the notation of [5], we assume an input set of M detections D =
(d1,...,dar) and a set of labels represented by variable f with nominal values f =
(1,...,N); this labeling variable assigns each detection to one of N trajectories
T = (T1,...,Tn) and identifies a false alarm using the outlier label @. Each
index detection d is associated solely with one ordered pair (i,d), where i is
the detection index in a frame in relative time index ¢. Using this convention,
each detection d is associated with a position p! in the image. Using a MRF
framework, the model graph is identified by Q where the nodes D are given
by the set of detections inside a MRF framework and the pair of nearby nodes
represents the edge set V. Specifically the edge set is defined by a temporal

. _ 2
restriction between pairs of detections: V(d7, d},,) = 1, if only Hpg —ph H <T.

The energy of this MRF model is defined by the following equation:

N
EJ(f) =Y Ua(f;T)+ > Saa(f)+ Y EX(T)+rhp(T)+InZ (1)

deD d,d’ eV

In this case, the first term Uy represents the association potential function,
the second term Sg 4 represents the interaction potential function; and together
they make up the discrete data association. The third term EA'qie(Tz) represents
the continuous trajectory model. And finally, the fourth term hs(T') represents
the label cost term, where this term penalizes complex configurations of MRF
solutions. The term Z represents the partition function of the energy; in [5], the
partition function is not stated as they do not need to estimate any parameter,
however, in our model we need operate with it as we require to learn the weight
of the features.

The association potential function component U is defined as:

Ugt (1,T) = ¢ |[pt = Ti(e)||” (2)
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If the detection is labeled as an outlier, it is penalized with a constant outlier
cost @, which is modulated by CE" The interaction potential function component
S is given by the following Potts model:

Saiar,, (1) =S, (Fagr Fap, ) =n6(fyg = far, ) (3)

t4+1 t41 t+1 t+1

The continuous trajectory model evaluates the smoothing degree of trajec-
tories. In this case, this model uses a cubic B-spline to fit the trajectories of
targets. In our model, we do not alter this component as it is unrelated with
visual feature information.

The label cost function penalizes excessive complexity of trajectories. This
function is the sum of five terms: The dynamic cost h;jyn, which penalizes com-
plex splines by adding the cubic coefficients of splines, C;(r,3), i.e. it prefers
simpler curves. The persistence cost A", which penalizes unreliable trajectories
by adding the distance to border of image (b) and the inverse size of the same
trajectory. The high-order data fidelity cost h{ id, which punishes trajectories
that are far away from detections over a long period by adding the square of the
cardinal of the subsequences of such trajectories G; we use a quadratic penalty
instead of cubic as in [5] as we obtained better experimental results. The mutual
exclusion cost h¢°!, which penalizes collisions between trajectories by considering
physical constraints i.e. two objects cannot be in the same position. Finally, the
regularization cost, which penalizes the cardinality of the set of trajectories. For
more details, please see [5].

3 Ouwur Approach

In our work, we augment the association potential term by including visual
feature information with an embedded feature selection based on image regions.
We consider an input set of M detections D = (dy, ..., dps) with a corresponding
set of features X = (x1,...,237) where each component z; € R¥ is given by
z; = (x},...,2K). As in the case of the detection variable, each feature vector z4
is associated with a unique ordered pair (t, j). By considering IV possible trackers,
we add an auxiliary class variable depending on a particular label variable [ €
(1,....,N), Y = (3, ...,9%,) where each component y. € {—1,+1} depends on the
assumed detection label f; and is given by the indicatrix formula y! = 2+ I(I =
fi) — 1. Moreover, we use a logistic regression model for connecting class and
feature variables, Y and X, given by Y = o(WT X), with W € RE*N and o as
sigmoid function. Our task is to find the best set of weights W that explains the
relation between the set of features X and set of class variables Y in order to
maximize the likelihood of the MRF.

3.1 MRF model

The association potential function is enhanced with the addition of a term related
to the classification of detections according to tracker label information. As the



Multi-Target Tracking with Sparse Group Features and Position using DCO 7

association potential function U depends on label [, the parameter of the logistic
regressor is a vector W; € R¥. We regularize this vector considering sparsity
and natural groups with group Lasso penalization [13,14]. The number of non-
overlapping groups of visual features is G. By using the bijective correspondence
between an index of detections d and an ordered pair (t,j), the association
potential function is reformulated by considering the regularization terms in
R(w;) as

Uy (.7 ]) = (|o = Ti0)| + atog(1 + exp(—vi' () + Rlawr) ()

G
R(wr) = As lwr]]' +Ae Y Jwf? (5)

g=1

MRF training is hard to solve as it needs to calculate the value of the partition
function, which demands an exponential number of configurations. As we require
to find an optimal set of weights W, we cannot avoid this problem as in [5]. To do
this, we use the pseudolikelihood approximation[15], where the energy function
is approximated using a local partition function instead of the global partition
function:

Ebpa(f) =Y UafeT)+ Y Saa(f +ZE“ ) 4 Khi(T) + InZj0e(6)
deD d,d’'eVv

The majority of terms are defined in Equation 1 (Subsection 2.2). The local
partition function (Zj,.) is given for each node and represents the sum of the
energies under all the possible labels [15] which has the advantage of being much
more maneuverable than the global partition function. We also apply the same
strategy as [5] and solve the model by alternating between optimization of the
trajectory set, T', and the labelings set, f. By fixing T', we can ignore this term
and have the pseudolikelihood energy expressed as a function of w given by:

2
~ T(t)||” + alog(l + eap(~yi (w] o)) + As [lwn]]

Ebp.q(w) = Z { [cﬁ( P!

deD

G
e Yl M)+ Sd,d/(fmfd')l _ln(Zﬁoc)} (7)

d'eVy

2

where the local function partition Zldoc(wl) , considering Qg = ,

~ Tint)|

is given by:

Zit o (wr) Zewp{ Q] + alog(1 + exp(—yt, (w/'=]) + > Saa(f, fdf)}(S)

m d'eVy
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By fixing the terms independent of w; with an auxiliary variable K4 and
the regularization terms as R(w;), the optimization equation is re-expressed as
a function of w; by:

wi = argmin 3" {Ka-+ clalog(1-+ exp(—yf (wl o) - 1n(Z8,)} + R(w) 9
Wi 4eD

3.2 Estimation of MRF parameters

Equation 9 is hard to solve due to the presence of the local partition function and
the regularization term. To solve Equation 9, we heuristically follow a strategy
similar to Lee et al. [16], who first solve an unregularized version of the cost
function and then add the sparsity constraints. In our case, we use the additivity
property of gradient and follow a three-step strategy: i). First, we solve an
unregularized version of the energy function given by Equation 9 where the
component referring to local partition function can be separated. ii). As we have
a logistic regression term that approximates to the unregularized version of the
energy function, we add the Lasso and Group-Lasso regularization terms in order
to have a standard logistic regression model with Group-Lasso regularization [13,
14]. In this step, we estimate the gradient of this model by using the direction
of the solution given by the code based on the SLEP package [17]. iii). Finally,
we approximate the total gradient of Equation 9 by summing the results of the
gradients given in steps i) and ii), and substracting the gradient of the version
of Equation 9 without the local partition function and the regularization term,
which is simple to solve.

In the first step, we solve an unregularized versions of energy (Eg(L“Zl) using
an optimization based on Newton method. The gradient is given by:

leEpLd wl = -« Z i |:pd yl/d wl)yl xt <pd(gm/d§ wl)yfnxi> }10)

deD pm(ynl/d;wl)

In the previous equation, we use the notation pg (g, /d; wi) = 1—pa(ym/d; wy).
We accelerate the calculations by using the Hessian of unregularized energy
function that is given by:

Ho(Epi(w) = —a Y {halal’ paly/diwn)(1 = pa(y/d; w)
deD

— (1= palye/ds w))palym /&5 00, (s | (1)

The equation requires a known labeling. We use an iterative scheme based on
hard partitioning according to labels [15]: first we fix the labeling and calculate
the weight. Once the weights are fixed, we calculate the labeling using the same
scheme as Andriyenko using the max-flow solution. In this case, after labeling we
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also optimize the continuous trajectory model and the label cost. We continue
this process until we reach a convergence criterion. We also use the random
change heuristic in the configuration of splines and accept them if only they
decrease the energy function [5].

4 Experiments

4.1 Datasets

Our method is evaluated on four public datasets of pedestrian video sequences
and two own datasets. The first three datasets come from TUD dataset, they are:
Campus(TUD-CAMP), Crossing (TUD-CROS) and Stadtmitte (TUD-STAD)
subsets [18]. These videos have 91, 201 and 179 frames respectively, and show
pedestrians in street scenes. The low viewpoint means that the targets often oc-
clude one another. The fourth dataset is PEDS-2009-S2L1 which has 795 frames
and considers a high viewpoint. The detections are performed using a SVM
classifier based on Histogram of Gradients [19]. The fifth and sixth datasets
(U-HALL-1 and U-HALL-2) were obtained from an indoor environment in a
university campus; the first is a easy case of multi-tracking where the people
are usually separated. In order to have a variety of experimental settings, we
simulate a perfect pedestrian classifier using human labeling. The feature-based
methods of bibliographic revision have not available their code, for such reason,
we only compare with [5]. In this work, our main goal is to improve the pure
MRF framework for multi-tracking tasks considering feature information. Table
1 shows the details of each dataset.

4.2 Implementation details

We compare our feature-based discrete-continuous method (FDCM) with the
discrete-continuous model (DCM) of [5], which is a state-of-art method of multi-
target tracking. For FCDM, we use two combined features based on texture and
color information: (i) dense HOG over a 6x3 grid with 576 resulting features
and (ii) 3-level pyramidal RGB features producing 315 features. As our model
uses a group sparse regularization [13], we consider the same arbitrary groups
of features for all datasets. They correspond to a 2x2 non-overlapping spatial
grid considering texture and color features as separated, with a total of eight
groups. In relation to free cost parameters of a particular dataset, we use the best
results in another similar own dataset and apply over such particular dataset.
The sparsity regularizacion free parameters (Ag, Ag) are obtained by the best
result in an independent dataset where these parameters result to be A\g = 0.1
and A\g = 0.2 and are applied to all datasets. In relation to performance metrics,
we need to reduce the effects of random initial solutions. Therefore, we run the
optimization procedure with 20 randoms seeds, and pick the three results with
lowest energy and average the metrics. On the other hand, we do not initialize
the algorithms with online individual trackers because this input can mask the
real performance of each algorithm.
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Table 1. Datasets details.

Dataset name|# frames|# persons| Scene
TUD-CAMP 91 10| Street
TUD-CROS 201 13| Street
TUD-STAD 179 8| Street
PETS 795 19|Outdoor
U-HALL-1 200 3 Hall
U-HALL-2 200 9 Hall

4.3 Metrics

For quantitative analysis, we use CLEAR, MOT metrics [20]. We use Multi-
Object Tracking Accuracy (MOTA), which combines all errors (number of miss-
ing targets, false positives and identity switches) into a normalized score between
zero and one; and Multi-Object Tracking Precision (MOTP), which measures
the bounding box overlap between tracked targets and ground truth detections
with a normalized score between zero and one. Additionally, we use a variant
of MOTA that penalizes the logarithm of the number of identity switches (MO-
TAL). In order to consider the performance on rough detections, we also measure
the classical precision and recall. Considering [5], we also show the metric iden-
tity switches (ID-SW), which accumulates the identity changes of people; and
the rate of false detections per frame (FAR).

100 s

W — U-HALL-2
kY A s TUD-CROS
- 4\ TUD-STAD
[ m— TUD-CAMP
o U-HALL-1
80| who\ — PETS

70r

60

50

MOTA (%)

40t

8
Iterations

Fig. 3. Convergence of the optimization. The energy keeps decreasing for all itera-
tions (dashed lines, rescaled for visualization). The decreasing of energies is generally
reflected in the improving of tracking accuracies (solid lines).



Multi-Target Tracking with Sparse Group Features and Position using DCO 11

4.4 Results

First, we analyze the convergence behaviour of FDCM by examining the rela-
tion between energy and multi-tracking accuracy, MOTA. Figure 3 shows that
the most significant performance increase generally appears within the first few
iterations, however, the optimization procedure is still able to find better con-
figurations in posterior steps. The energy behaviour is variable and depends on
each dataset, for example, while U-HALL and TUD-CAMP tend to converge in
terms of accuracy, the energy function appears first stabilized in TUD-CAMP
dataset. Now, we are going to analyze and compare multi-tracking performance
for the tested algorithms.

Table 2. The results of normalized scores with a larger margin over 1% are shown in
bold font; those with a smaller margin are shown in italic font in order to differentiate
the level of the margins. The best results of unnormalized scores (FAR and ID-SW)
are shown in bold font. In MOTAL, MOTA, Precision, FAR and ID-SW, FDCM shows
better results than DCM. In MOTP and Recall, FDCM is slightly better than DCM.

Metric

Dataset MOTAL MOTA\MOTP|PREC|REC|FAR|ID-SW
TUD-CAMP (DCM) 47.9 43.7 68.9 774 |66.7 | 1.01 16
TUD-CAMP (FDCM)| 49.6 45.9 69.2 80.1 [68.2]| 0.85| 15
TUD-CROS (DCM) 47.2 42.8 74.1 73.5 | 73.6 | 1.47 63
TUD-CROS (FDCM) 53.0 47.4 T4.4 78.3 | 74.1 |1.12 50
TUD-STAD (DCM) 48.2 46.3 75.3 78.1 | 71.7 | 1.51 43
TUD-STAD (FDCM) 54.4 51.1 75.4 81.2 | 71.9 | 1.05 41

PETS (DCM) 84.4 83.7 73.5 98.5 | 85.7|0.07 34
PETS (FDCM) 87.2 86.9 75.8 98.8 | 85.6 | 0.05 29
U-HALL-1 (DCM) 94.6 94.5 7.2 95.2 ]99.8 |0.11 1
U-HALL-1 (FDCM) 99.1 99.1 7.2 99.3 | 99.8 |0.01

U-HALL-2 (DCM) 80.4 75.3 76.2 87.5 194.0 | 1.12 87
U-HALL-2 (FDCM) 82.1 76.1 77.2 88.4 | 94.711.03 81

Table 2 shows the results for each dataset, comparing the metrics. As mea-
sured by MOTAL and MOTA, our technique is able to clearly outperform the
discrete-continuous method by an average of 4 and 3%, respectively. As measured
by MOTP, the two techniques show similar results with a slight advantage of
0.4 %. FDCM outperforms DCM in terms of Precision and Recall by an average
of 3% and 0.7 %, respectively. By analyzing more qualitative metrics, FDCM
slightly beats DCM in the rate of false detections by an average of 0.26. In
terms of change of identities, FDCM is superior by 6 less switches of identity on
average. We observe that the two techniques achieve a similar results in terms
of MOTP and Recall, it is natural as both metrics are related; this contrasts
strongly with the MOTA and Precision results where the advantage of FDCM
is notorious. These results are explained because FDCM is dependent on visual
feature information, which ensures greater precision in tracking due to the use
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(b) Tracking results according to FDCM

Fig. 4. Multi-target tracking results for U-HALL dataset in frames 50, 100 and 150. In
frame 50, the persons A, B and C have one correct detection with FDCM; whereas they
have two detections with DCM. In frame 100, the person F has a correct detection with
FDCM; whereas it has two detections with DCM. In frame 150, person F' has a correct
detection with FDCM; whereas it is detected twice with DCM. Nonetheless, there are
some mistakes in FDCM, for example, person D is detected twice with FDCM; whereas
it is correctly detected with DCM.

of more information; however, this process is fed by a list of detections given
mainly by the MRF model, where spatial distance is decisive: two detections
with similar visual features have not opportunity to be labelled with the same
tracker if they are geometrically far. Moreover, the results in the number of
identity switches and the rate of false detections confirm the advantages of our
proposal in the multi-target tracking problem.

Finally, Figure 4 shows some examples of the results of our technique, FCDM,
in comparison to continuous-discrete model, DCM, for the U-HALL dataset. It
can be seen that our technique achieves greater precision in various detections.
Visual feature information helps FCDM to identify the target correctly. Nonethe-
less, our technique has some failures as in frame 100, where the person D has
two detections with FDCM and one correct detection with DCM. A possible
explanation is uncertainty associated with the visual feature information in each
detection. Nonetheless, by jointly considering quantitative and qualitative anal-
ysis, our method stresses the usefulness of visual feature information.
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5 Conclusions

In this work, we present a method of introducing visual feature information
inside a Markov Random Field model. Our model optimizes data association,
appearance discrimination and trajectory estimation through an alternating op-
timization procedure in the discrete and continuous components of MRF energy.
In particular, in the discrete component we obtain a sparse set of weights for
weighting the features; this considers the natural group of features in order
to optimize the global energy function, using an approximation based on the
pseudo-likelihood function. The data association is solved using a graph cut al-
gorithm based on an a-expansion. On the other hand, trajectory estimation is
solved using analytic fitting of splines to assigned detections. We show that the
proposed technique outperforms the base technique based on discrete-continuous
optimization. In future work, we plan to use max-margin optimization in order
to obtain better multi-target tracking results. Another possible avenue is the use
of more detailed features which can be related to semantic parts of pedestrians.
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