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bperalta@uct.cl asoto@ing.puc.cl

Abstract. Multi-target tracking of pedestrians is a challenging task due
to uncertainty about targets, caused mainly by similarity between pedes-
trians, occlusion over a relatively long time and a cluttered background.
A usual scheme for tackling multi-target tracking is to divide it into two
sub-problems: data association and trajectory estimation. A reasonable
approach is based on joint optimization of a discrete model for data as-
sociation and a continuous model for trajectory estimation in a Markov
Random Field framework. Nonetheless, usual solutions of the data asso-
ciation problem are based only on location information, while the visual
information in the images is ignored. Visual features can be useful for
associating detections with true targets more reliably, because the tar-
gets usually have discriminative features. In this work, we propose a
combination of position and visual feature information in a discrete data
association model. Moreover, we propose the use of group Lasso regular-
ization in order to improve the identification of particular pedestrians,
given that the discriminative regions are associated with particular vi-
sual blocks in the image. We find promising results for our approach in
terms of precision and robustness when compared with a state-of-the-art
method in standard datasets for multi-target pedestrian tracking.

1 Derivation of gradient and Hessian of unregularized
energy function

In our method, we must minimize the unregularized version of energy function
given by Equation 3, this problem is given by:
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We call the Hessian Hwl
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expression as following:
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With both terms, we can optimize the Equation 1 with Newton’s method in
order to estimate the optimal value of weight vector w.


