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Abstract. Face recognition (FR) via sparse representation has been
widely studied in the past several years. Recently many sparse represen-
tation based face recognition methods with simultaneous misalignment
were proposed and showed interesting results. In this paper, we present a
novel method called structure constraint coding (SCC) for face recogni-
tion with image misalignment. Unlike those sparse representation based
methods, our method does image alignment and image representation
via structure constraint based regression simultaneously. Here, we use
the nuclear norm as a structure constraint criterion to characterize the
error image. Compared with the sparse representation based methods,
SCC is more robust for dealing with illumination variations and struc-
tural noise (especially block occlusion). Experimental results on public
face databases verify the effectiveness of our method.

1 Introduction

Face recognition is a classical problem in computer vision. Given a face image, we
know that its appearance may be affected by many variances, such as illumina-
tion, pose, facial expression, noise (i.e. occlusion, corruption and disguise) and so
on. More recently, a new face recognition framework called sparse representation
based classification (SRC) was proposed [1], which casts the recognition problem
as seeking a sparse linear representation of the query image over the training
images. Generally speaking, SRC shows good robustness to many of the above
problems, and its success inspires many extensive works [2], [3], [4]. However,
SRC needs the images in both training set and testing set to be well-aligned.
It means that the performance of SRC will deteriorate a lot when dealing with
the images with misalignment. Additionally, many other FR methods also suf-
fer from misalignment. Therefore, face alignment plays an important role in a
practical face recognition system.

A lot of work has been done toward the face alignment problem, where face
images are aligned to a fixed canonical template. The work in [5] is proposed
to seek an optimal set of image domain transformations such that the matrix of
transformed image can be decomposed as the sum of a sparse matrix of errors and
a low-rank matrix of recovered aligned images. The work in [6] is derived from [5].
Since [5] needs to readjust all the transformations of previous images to minimize
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the rank when a new image is coming, which is very time-consuming when the
image set is large. In [6], an optimal alignment for the newly arriving image was
sought so that after alignment the new image could be linearly reconstructed
by previously well-aligned image basis. However, these two methods are just for
alignment. In [7], Wagner et al. proposed a novel method for face alignment and
recognition. They sought the transformation of test image via subject-by-subject
exhaustive search and got some impressive results, while it is proved to be time-
consuming. Yang et al. [8] presented a novel face recognition method, named
misalignment robust representation (MRR). MRR sought the optimal alignment
through an efficient two-step optimization with a coarse-to-fine search strategy.
It uses l1-norm constraint on the representation residual, which is regarded as a
reason for its effectiveness [9]. As a work derived from [7], MRR achieves similar
results but much faster. More recently, Zhuang et al. [10] sought additional
illumination examples of face images from other subjects to form an illumination
dictionary for single-sample face alignment and recognition.

However, the models mentioned above are all vector-based models, which
need to convert images into vectors before dealing with 2D images in the form
of matrices. In the process of converting, some structural information (e.g. the
rank of matrix) might be lost. As mentioned in [27], Yang et al. proposed a
model named nuclear norm based matrix regression (NMR) and employed nu-
clear norm constraint as a criterion to make full use of the low-rank structural
information caused by some occlusion and illumination changes. They presented
some interesting results in [27], which reveals nuclear norm constraint is a better
choice than l1-norm or l2-norm constraint when dealing with structural noise.
However, NMR also concentrates on the recognition problem of the aligned face
images. In this paper, we also perform the nuclear norm constraint on the error
image and propose a method called structure constraint coding (SCC) for face
recognition with image misalignment. Compared with NMR, the main novelties
of our method are: (1) we extend NMR to deal with the misaligned images;
(2) we further analyze the advantages of nuclear norm from the viewpoint of
distributions of the error images and its singular values. An observation that
the distribution of the singular values of some structural noise (e.g., the block
occlusion, sunglass or scarf) approximates Laplacian distribution is presented in
this paper. As we know, the distribution of sparse noise approximates Laplacian
distribution [11], which explains the good performance brought by l1-norm con-
straint on the error image, because from the viewpoint of maximum likelihood
estimation (MLE), the l1-norm constraint on the error image assumes it follows
Laplacian distribution. We know that the nuclear norm constraint on the error
image is equal to calculate the sum of its singular values. Since singular values
are non-negative, the nuclear norm constraint on the error image can be seen as
the l1-norm constraint on the singular values of the error image. This observation
explains the strength of our method when dealing with illumination variations
and structural noise.

Similar as in [7], [8], [10], we perform face alignment and representation si-
multaneously. The main difference between SCC and those sparse representation
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(a) (b) (c) (d)

Fig. 1. Some misalignment instances.
Right top: an artificial translation of 15
pixels in x direction is introduced to the
test image. Right middle: an artificial
translation of 15 pixels in y direction is
introduced to the test image. Right bot-
tom: an artificial rotation of 10 degrees is
introduced to the test image. (a) training
image, (b) test images with artificial de-
formation, (c) the reconstructed images,
(d) the representation residuals.

(a) (b) (c) (d)

Fig. 2. An intuitive comparison between
MRR and SCC with an occluded ex-
ample image from the CMU Multi-PIE
database. The green boxes are the initial
face locations and the red boxes show the
alignment results. Right top: results of
SCC, Right bottom: results of MRR, (a)
test image with block occlusion, (b) the
alignment process, (c) the reconstructed
images, (d) the representation residuals.

based methods is that SCC keeps structural information of images, while they
ignore it. We show that the nuclear norm constraint is a good choice for mis-
alignment problem (seen from Fig. 1), and a better choice for alleviating the
effect of illumination and removing the structural noise (seen from Fig. 2). Fig.
1 gives some misalignment instances from the extended Yale B face database
[12] and Fig. 2 presents an intuitive comparison between MRR and SCC with
an occluded example image from the CMU Multi-PIE database [13]. From Fig.
1, we can see that our method could handle 2D deformation well. From Fig. 2,
it is obvious that the reconstructed image generated by our method looks more
clearly than the image generated by MRR. Apparently the results caused by
MRR cannot lead to a correct identity, while our method can. Extensive experi-
ments on the benchmark face databases will further demonstrate the robustness
of SCC to those problems mentioned above.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related method MRR. Section 3 presents our model and algorithm. Section 4
conducts experiments and Section 5 offers our conclusions.

2 Review of misalignment-robust representation (MRR)

In this section, we briefly review the MRR [8]. Suppose that y is the query face
image which is warped due to misalignment and a training set A = [a1, ..., an],
MRR lets both the image y and set A be aligned to a template yt and assumes
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that the deformation-recovered image y0 = y ◦ τ has a sparse representation
over the well-aligned training set y0 = Âα + e, here Â = A ◦ T , T = [t1, ..., tn]
is a transformation set, which is estimated offline first through an alignment
method named RASL [5], τ represents some kind of spatial transformation, α
is the sparse coding coefficient and e is the representation residual vector. This
correspondence-based representation could make the face space spanned by the
training face images as close to the true face space as possible, which can help to
prevent the simultaneous alignment and representation from falling into a bad
local minimum. The model of MRR is

min
e,α,τ,T

‖e‖1, s.t. y ◦ τ = (A ◦ T )α+ e (1)

To accelerate the algorithm, MRR rewrites the dictionary via singular value
decomposition:A ◦ T = UΣV T , where U, V are orthogonal matrixes and Σ is
a diagonal matrix with descending-order diagonal values. Let β = ΣV Tα,since
only the first several elements of β will have big absolute values, the model of
MRR is approximated as

τ̂ = min
e,βη,τ

‖e‖1, s.t. y ◦ τ = Uηβη + e (2)

where Uη is formed by the first η column vectors of U . After optimizing Eq. (2),
the representation coefficient α could be solved by

α̂ = min
α
‖e‖lp + λ‖α‖22, s.t. y ◦ τ̂ = (A ◦ T )α+ e (3)

where p = 1 for face image with occlusion and p = 2 for face image without
occlusion.

Compared with [7], MRR has shown impressive results with lower compu-
tation cost. However, its speed is established only when the query images are
clean. If the query images are with occlusion, p in Eq. (3) is set as 1, which is
also proved to be time-consuming. In addition, the l1-norm minimization of rep-
resentation residual is not robust enough to deal with images with occlusion and
illumination variations. Experiments in Section 4 also demonstrate our view.

3 Structure Constraint Coding

3.1 Justification for nuclear norm based constraint

Given an image, the nuclear norm constraint performed on the error image
E ∈ Rp×q calculates the sum of its singular values, which can be shown as

‖E‖∗ = Σ
min{p,q}
i=1 σi(E). As we mentioned before, the motivation of performing

nuclear norm constraint on the error image lies in two aspects. The first is that
as a 2D image matrix based model, our model adopts image matrix directly to
keep the structural information, which can be described by nuclear norm. The
second is based on the observation that the distribution of the singular values of
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some structural noise (e.g., the block occlusion, sunglass or scarf) approximates
Laplacian distribution. Here, we further present explanation through some fig-
ures and give a discussion on the difference between nuclear norm constraint and
l1-norm constraint on the error image. As we can see from Fig. 3, an example
image from AR database is introduced. To exhibit the difference between nucle-
ar norm constraint and l1-norm or l2-norm constraint on the 2D image matrix
intuitively, we rearrange the example image by exchanging the locations of some
pixels. The structural information of the image is changed after this operation.
However, we can find that the l1-norm or l2-norm values of the two images in
Fig. 3 (a) and (b) keep the same, while the nuclear norm values make a change.
Actually, the rearrangement over the example image can be of any form and the
main motivation is to show that the nuclear norm is sensitive to the changes of
images’ structural information. Fig. 4 gives the distribution of the error term of
an occluded image from the AR database. Fig. 4 (c) is the error image of the
occluded image Fig. 4 (a) and the reconstruction image Fig. 4 (b). Fig. 4 (d)
illustrates the error image fitted by two different distributions, Gaussian and
Laplacian distribution, which are both far away from the empirical distribution.
However, Fig. 4 (e), which illustrates the distribution of the singular values of
the error image, shows that the empirical distribution approximates the Lapla-
cian distribution. It verifies our analysis that the nuclear norm based constraint
is a suitable way to characterize the structural noise and the poor performance
of adding l1-norm constraint on the error image in this situation could also be
explained since the distribution of the structural noise itself follows no rules. In
general, the l1-norm constraint is a better choice to handle sparse noise while
the nuclear norm constraint is a better choice for structural noise, which may
not be sparse.

3.2 Problem formulation

Given a set of n images A1, ..., An ∈ Rp×q including all subjects and a query
warped image Y ∈ Rp×q,here n is the number of all training images and every
image is stacked as a matrix. If the query image and the training set were well-
aligned to each other, then Y could be represented by A1, ..., An linearly

Y = α1A1 + α2A2+, ...,+αnAn + E (4)

where α1, ..., αn is the set of representation coefficients and E is the represen-
tation residual matrix. However, the query image Y is warped here. Just like
[8], we align both the query image and training images to a well cropped and
centered face template yt first. After that the structure of Y is corresponded well
to the training set. As a bridge, the template yt does not need to be obtained
explicitly [8]. The proposed correspondence-based model is

Y ◦ τ = α1(A1 ◦ t1) + α2(A2 ◦ t2)+, ...,+αn(An ◦ tn) + E (5)

where the operations Y ◦ τ and Ai ◦ ti, i = 1, 2, ..., n align the query image Y
and each training image Ai to yt via the transformation τ and ti, i = 1, 2, ..., n,
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respectively. It should be noted that the transformation τ or ti is the same as in
[5], [6], [7], [8].

Suppose A◦T is a well-aligned training set, where A = [vec(A1), ..., vec(An)],
vec(Ai) is an operator converting the matrixAi into a vector and T = [t1, t2, ..., tn]
is a set of transformation parameters. Let’s define a linear mapping from Rn to
Rp×q:

(A◦T )(α) = Σn
i=1αi(Ai ◦ ti) = α1(A1 ◦ t1) +α2(A2 ◦ t2)+, ...,+αn(An ◦ tn) (6)

then Eq. (5) can be rewritten as Y ◦ τ = (A ◦ T )(α) + E. The nuclear nor-
m constraint is performed on the representation residual so as to increase the
robustness of SCC to illumination variations and structural noise. And our pro-
posed model can be formulated as

min
E,α,τ,T

‖E‖∗ +
λ

2
‖α‖22, s.t. Y ◦ τ = (A ◦ T )(α) + E. (7)

Besides, just like Ridge regression, we add a l2-norm regularization term to avoid
overfitting.

Among the four parameters in our model, the transformation set T can be
estimated offline. There are several alignment methods [5], [6], [14], [15], [16]
having been proposed and here we choose RASL [5], which is fast and effective.
We should note that in [5] the training images come from the same subject while
in our method the training images come from all subjects. We estimate T offline
and then get the aligned training samples via Â = A ◦ T̂ . To better understand
our model, we rewrite Eq. (7) as

min
E,α,τ

‖E‖∗ +
λ

2
‖α‖22, s.t. Y ◦ τ = Â(α) + E. (8)

However, we still need to deal with three parameters. In general, the optimization
of those parameters is very time-consuming since the size of training set A is
too large. To reduce the computational costs of SCC, we adopt a simple and
traditional way as a filtering step before conducting our model, which is to
choose S nearest subjects relative to the test image and then build a new smaller
dictionary. We will introduce the filtering step in the next subsection.

3.3 The filtering step of SCC

The motivation of this filtering step is to reduce the large-scale dataset into a
small subset. Here, we require an efficient method and ensure that after this step
the correct subject is still in the reduced dictionary in most cases. Fortunately,
the work in [8] gives us some enlightenment. As mentioned in Section 2, Yang
et al. [8] adopts a coarse search model to find S candidates with the smallest
residuals relative to the test image. They rewrote the dictionary via singular
value decomposition(SVD): Â = UΣV T and the coarse search model is

min
e,β,τ
‖e‖1, s.t. y ◦ τ = Uβ + e (9)
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(a) (b)
Fig. 3. (a) An example image from the AR database, (b) the rearranged image.

(a) (b) (c)
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Fig. 4. (a) An occluded example image from the AR database, (b) the reconstruction
image, (c) the error image, (d) the empirical distribution and the fitted distributions
of the error image, (e) The empirical distribution and the fitted distributions of the
singular values of error image.

where β = ΣV Tα. Since only the first several elements of β have big absolute
values, we could use Uηβη to approximate Uβ, where Uη is formed by the first η
column vectors of U , and this operation will significantly speed up the method.
Motivated by this idea, in our method the filtering model is conducted as

min
E,β,τ

‖E‖∗, s.t. Y ◦ τ = U(β) + E (10)

here, we perform nuclear norm constraint on the representation residual. And
Eq. (10) could also be approximated as

τ̂1 = min
E1,βη,τ1

‖E1‖∗, s.t. Y ◦ τ1 = Uη(βη) + E1. (11)

After we get the estimated τ̂1, the representation coefficient α (regularized by
l2-norm as [17]) could be solved by

α̂1 = min
α1

‖E‖∗ +
λ

2
‖α1‖22, s.t. Y ◦ τ̂1 = Â(α1) + E (12)
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Eq. (12) can be optimized using the alternating direction method of multipliers
to solve. Then we define the corresponding class reconstruction error as

ri(Y ) = ‖Ŷ − Ŷi‖∗ = ‖Â(α̂1)− Â(δi(α̂1))‖∗ (13)

here, Ŷ = Â(α̂1) is the reconstructed image of Y and Ŷi = Â(δi(α̂1)) is the
reconstructed image of Y in Class i, where δi : Rn → Rn is the characteristic
function that selects the coefficients associated with the i-th class and δi(α̂1) is
a vector whose only nonzero entries are the entries in α̂1 that associated with
class i. we choose the top S candidates k1, ..., kS with the smallest residuals to
build a new training dictionary Df = [Âk1 , ..., Âkn ].

3.4 Classification

After the filtering step, we can get a smaller dictionary, and then we use Eq.
(8) to get the transformation τ̂2 and coefficient α̂2 together. The corresponding
model here is

< τ̂2, α̂2 >= min
τ2,α2,E2

‖E2‖∗ +
λ

2
‖α2‖22, s.t. Y ◦ τ2 = Df (α2) + E2. (14)

It should be noted that the initial value of τ2 is τ̂1, which is estimated from the
filtering step. What’s more, the final representation is performed on Df . Then
just like the setting in Section 3.3, the identity of the test image is classified as

identity(Y ) = argmin
i
‖Ŷ − Ŷi‖∗ = ‖Df (α̂2)−Df (δi(α̂2))‖∗. (15)

We will discuss how to solve Eq. (8) in the following subsection.

3.5 Algorithm

The alternating direction method of multipliers (ADMM) or the augmented La-
grange multipliers (ALM) method has been widely applied to solve the nuclear
norm optimization problems [18], [19]. While ADMM is suitable in the case with
alternating between two terms and its convergence has been well established for
various cases [20], [21]. Recently, Peng et al. [5] uses ALM to solve the certain
three-term alternation (see also [7], [8]) efficiently, without giving the conver-
gence analysis. Here, we provide the process of using ALM to solve Eq. (8).

There is still a problem in Eq. (8). The objective function is non-convex due
to the constraint Y ◦ τ = Â(α) +E. Inspired by the work in [5], [6], [7], we solve
the problem via an iterative convex optimization framework, which iteratively
linearizes the current estimate of τ and seek for representations like:

min
E,α,∆τ

‖E‖∗ +
λ

2
‖α‖22, s.t. Y ◦ τ + J∆τ = Â(α) + E (16)

where J = ∂
∂τ Y ◦ τ is the Jacobian of Y ◦ τ with respect to the transformation

parameters τ , and ∆τ is the step in τ .This linearized formulation is now a convex
programming and thus can be solved efficiently.
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The augmented Lagrangian function is defined by

Lµ(E,α,∆τ, Z) =‖E‖∗ +
λ

2
‖α‖22 + Tr(ZT (Y ◦ τ + J∆τ − Â(α)− E))

+
µ

2
‖Y ◦ τ + J∆τ − Â(α)− E‖2F

(17)

where µ > 0 is a penalty parameter, Z is the Lagrange multiplier matrix, Tr(·)
is the trace operator and ‖·‖F denotes the Frobenius norm. The ALM algorithm
iteratively estimates both the Lagrange multiplier and the optimal solution by
iteratively minimizing the augmented Lagrange function

(Ek+1, αk+1, ∆τk+1) = argmin Lµk(E,α,∆τ, Zk)

Zk+1 = Zk + µk(Y ◦ τ + J∆τk+1 − Â(αk+1)− Ek+1).
(18)

However, the first step in the above iteration (18) is difficult to solve directly.
So typically, people adopt an alternating strategy, which minimizes the function
against the three unknows E,α,∆τ one at a time, to minimize the Lagrangian
function approximately:

αk+1 = argmin
α
Lµk(Ek, α,∆τk, Zk) (19)

Ek+1 = argmin
E

Lµk(E,αk+1, ∆τk, Zk) (20)

∆τk+1 = argmin
∆τ

Lµk(Ek+1, αk+1, ∆τ, Zk) (21)

Zk+1 = Zk + µk(Y ◦ τ + J∆τk+1 − Â(αk+1)− Ek+1) (22)

each step of the above iteration involves solving a convex program, which has
a simple closed-form solution. Hence, each step can be solved efficiently. For
convenience, let’s rewrite the augmented Lagrangian function in a different form.
We will give a simple expression for the last two items in Eq. (17) as

Tr(ZT (Y ◦ τ + J∆τ − Â(α)− E)) +
µ

2
‖Y ◦ τ + J∆τ − Â(α)− E‖2F

=
µ

2
‖Y ◦ τ + J∆τ − Â(α)− E +

1

µ
Z‖2F −

1

2µ
‖Z‖2F

(23)

then we can have

Lµ(E,α,∆τ, Z) =‖E‖∗ +
λ

2
‖α‖22

+
µ

2
‖Y ◦ τ + J∆τ − Â(α)− E +

1

µ
Z‖2F −

1

2µ
‖Z‖2F

(24)

based on Eq. (24), it is easy to solve the problems in Eqs. (19, 20, 21, 22).
Specifically, Eq. (19) can be expressed as

αk+1 = argmin
α

(
µ

2
‖Y ◦ τ + J∆τk − Â(α)− Ek +

1

µk
Zk‖2F +

λ

2
‖α‖22) (25)
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Eq. (20) can be expressed as

Ek+1 = argmin
E

(
µ

2
‖Y ◦ τ + J∆τk − Â(αk+1)− E +

1

µk
Zk‖2F + ‖E‖∗) (26)

Eq. (21) can be expressed as

∆τk+1 = argmin
∆τ

(‖Y ◦ τ + J∆τ − Â(αk+1)− Ek+1 +
1

µk
Zk‖2F ). (27)

Next we will spell out how to solve these problems above. Now, we consider Eq.
(25). Letting H = [V ec(Â1), ..., V ec(Ân)], we can rewrite Â(α) = Σn

j=1αjÂj into

the matrix form Hα. Denote g = V ec(Y ◦ τ + J∆τk − Ek + 1
µk
Zk). Therefore,

Eq. (25) is equivalent to

αk+1 = argmin
α

(
µ

2
‖Hα− g‖2F +

λ

2
‖α‖22). (28)

It is obviously that Eq. (28) is a standard regression model, so we can get its
closed-form solution

αk+1 = (HTH +
λ

µ
I)−1HT g. (29)

Next, we consider Eq. (26), which is equivalent to

Ek+1 = argmin
E

(
1

2
‖E − (Y ◦ τ + J∆τk − Â(αk+1) +

1

µk
Zk)‖2F +

1

µ
‖E‖∗) (30)

the optimal solution can be computed via the singular value thresholding al-
gorithm [22]. To spell out the solution, let us define the soft-thresholding or
shrinkage operator for scalars as follows:

Sξ[x] = sign(x) ·max(|x| − ξ, 0) (31)

where ξ > 0. When applied to vectors and matrices, the shrinkage operator acts
element-wise. With the shrinkage operator, we can write the solution of Eq. (30)
as

(U,Σ, V ) = svd(Y ◦ τ + J∆τk − Â(αk+1) +
1

µk
Zk))

Ek+1 = US 1

µk
[Σ]V T .

(32)

Then we consider Eq. (27). Like Eq. (25), Eq. (27) is also a regression model.
Denote f = V ec(Â(αk+1)−Y ◦τ+Ek+1− 1

µk
Zk). Therefore, Eq. (27) is equivalent

to
∆τk+1 = argmin

∆τ
(‖f − J∆τ‖2F ) (33)

and its closed-form solution is

∆τk+1 = (JTJ)−1JT f. (34)

In summary, the core of ALM algorithm for our method involves three sub-
problems: the ridge regression, the singular value thresholding and the least
square estimation. The entire algorithm is summarized in Algorithm 1.
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Algorithm 1 SCC Algorithm via ALM

Input: A set of aligned training matrices Â1, ..., Ân and a query matrix Y ∈ Rp×q, the
model parameters λ, µ and initial transformation τ0 of Y .
1. Let H = [V ec(Â1), ..., V ec(Ân)] and define Sξ[x] = sign(x) ·max(|x| − ξ, 0);
2. While not converged (k = 0, 1, ...) do
3. Updating α: Let g = V ec(Y ◦ τ +J∆τk−Ek + 1

µk
Zk), αk+1 = (HTH + λ

µ
I)−1HT g;

4. Updating E: (U,Σ, V ) = svd(Y ◦τ+J∆τk−Â(αk+1)+ 1
µk
Zk)), Ek+1 = US 1

µk
[Σ]V T ;

5. Updating ∆τ : Let f = V ec(Â(αk+1)−Y ◦τ+Ek+1− 1
µk
Zk), ∆τk+1 = (JTJ)−1JT f ;

6. Updating Z: Zk+1 = Zk + µk(Y ◦ τ + J∆τk+1 − Â(αk+1)− Ek+1);
7. End while
Output: Solution α∗, E∗,∆τ∗ to Eq. (16)

4 Experiments

As a face recognition method, since the transformation τ used in our model is the
same as in [8], the alignment effect between our method and MRR differs little.
Therefore, we mainly focus on the recognition performance in our experiments.
Three databases are used here, including the CMU Multi-PIE database [13],
the Extended Yale B database [12] and the LFW (Labeled Faces in the Wild)
database [23]. The outer eye corners of all the face images are manually marked
as the ground truth for registration. We first compare our method with some
related work. Then we test the robustness of SCC on different databases. It
should be noted that in our experiments there are 4 parameters. Apart from γ
in estimating (we use the default value of γ in [5]), we still need to set λ, η and S
beforehand. Among them, η and S are relatively easy to set. Here we set η = 35
and S = 8 for all of the experiments. Last but not least, λ is a very important
parameter in our experiments, which affects the value of alignment error. Fig.
5 intuitively illustrates its effect. We can see that the bigger the λ is, the more
information the residual can get. However, when λ is too big, the reconstructed
image may lose lots of discriminative information. Generally speaking, for the
experiment of robustness to structural noise, λ is set as a big value (i.e., 0.5),
while for clean images, λ is fixed as 0.05. Besides, we should note that due to
the lack of the code, the results of RASR in some comparative experiments are
cited from [7], [8].

4.1 Comparison with related work

We first compare SCC with some related work using the CMU Multi-PIE database
[13] and the Extended Yale B database [12]. The Multi-PIE database contains
images of 337 subjects captured in four sessions with simultaneous variations in
pose, expression and illumination, while the Extended Yale B database contains
38 persons under 9 poses and 64 illumination conditions. Here, we compare SCC
with four state-of-the-art methods, SRC [1], Huang’s method (H’s) [24], RASR
[7] and MRR [8]. In Multi-PIE, As in [7], [8], all the subjects in Session 1, each of
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(a) (b) (c) (d) (e)

Fig. 5. The reconstructed image and representation residual are presented respectively
in different value of λ. (a) The query image, (b) λ = 5, (c) λ = 0.5, (d) λ = 0.05, (e)
λ = 0.005.

which has 7 frontal images with extreme illuminations {0, 1, 7, 13, 14, 16, 18} and
neutral expression, are used for training and the subjects from Session 2 with
illumination {10} are used for testing. The images are cropped to 80×64 and an
artificial translation of 5 pixels (in both x and y directions) is introduced to the
test image. For the settings in Extended Yale B, as in [7], [8], [24], 20 subjects
are selected and for each subject 32 frontal images (selected randomly) are used
for training, with the remaining 32 images for testing. An artificial translation
of 10 pixels (in both x and y directions) is introduced to the test image and
the images are cropped to 88 × 80. The results are shown in Table 1. We note
that SRC is very sensitive to misalignment. What’s more, compared with other
methods, SCC achieves the best results, which shows that our method does well
in dealing with 2D deformation.

Table 1. Recognition rates (%) with translations on the Multi-PIE and Extended Yale
B database

Methods SRC [1] RASR [7] H’s [24] MRR [8] SCC

Multi-PIE 24.1 92.2 67.5 92.8 94.0

Extended Yale B 51.1 93.7 89.1 93.6 95.4

4.2 Robustness to illumination variations

We evaluate the robustness of SCC to deal with illumination variations on the
CMU Multi-PIE database [13].The first 249 subjects in Session 1 and Sessions
2-4 are used as the training and testing sets, respectively. Here, we fix pose
and expression, only choose images from different illumination conditions. More
specifically, for each subject, 7 frontal images with the same illuminations as
those in section 4.1 are used for training. We conduct three tests here and 10
frontal images selected from Sessions 2-4 are used for testing, respectively. The
images are resized to 80 × 64. The classification results of MRR and SCC are
shown in Table 2. It can be seen that SCC is better than MRR in all cases (about
2.6%, 1.8% and 1.9% improvement in the cases of Session 2, 3, 4, respectively),
which shows the robustness of our method to deal with illumination variations.

4.3 Robustness to the number of training samples

From the previous section, we know that SCC is robust on illumination vari-
ations. Here we evaluate SCC’s robustness to the number of training samples
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Table 2. Recognition rates (%) of MRR and SCC vs. illumination variations on the
Multi-PIE database

Sessions Session 2 Session 3 Session 4

MRR 91.5 91.4 92.4

SCC 94.1 93.2 94.3

in comparison with MRR [8] and RASR [7] on the CMU Multi-PIE database
[13]. As in [7], [8], the first 100 subjects in Session 1 and Session 3 are used
as the training and testing sets, respectively. For each subject, 7 frontal images
with the same illuminations as those in section 4.1 are used for training, while 4
frontal images with illuminations {3, 6, 11, 19} are used for testing. The images
are resized to 80× 64 and three tests with the first 3, 5 and 7 training samples
per subject are performed. The recognition results versus the number of training
samples are shown in Table 3. SCC performs best in all cases. We can see that
the performances of MRR [8] and RASR [7] degrade fast when the number of
training samples is changed from 5 to 3, while SCC seems more stable.

Table 3. Recognition rates (%) vs. the number of training samples on the Multi-PIE
database

Sample number 3 5 7

RASR 78.2 95.8 96.8

MRR 82.0 97.5 97.5

SCC 90.8 97.9 98.2

4.4 Robustness to structural noise

In this section, we evaluate the robustness of SCC to deal with various levels
of structural noise, specifically block occlusion here, on the CMU Multi-PIE
database [13]. In this experiment, a randomly located block of the face image is
replaced by the image Baboon. The training set remains the same as in Section
4.1, while the frontal images with illuminations {3, 6, 11, 19} from Session 1 are
used for testing here. The images are cropped to 80 × 64. Table 4 presents the
recognition rates of MRR and SCC with the variations of different occlusion
rates. As we discussed in Section 1, SCC is much better than MRR in this
case, especially when the occlusion rate is high. The performance of MRR drops
rapidly when the occlusion level is up to 20%, while our method still performs
well until the occlusion level is up to 30%. Actually, it doesn’t matter what the
occlusion is. It can not only be the block occlusion addressed here, but also the
real-disguise, such as sunglass or scarf. And our method still performs better
than those vector-based methods.

4.5 Experiment on the LFW database

Both the CMU Multi-PIE database and the Extended Yale B database are col-
lected under controlled environment. In this section, we want to evaluate the
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Table 4. The recognition rates (%) of MRR and SCC vs. different occlusion rates on
the Multi-PIE database

Percent occluded 10% 20% 30% 40% 50%

MRR 95.5 83.0 67.0 43.8 21.8

SCC 98.8 93.0 84.8 74.8 61.8

effectiveness of our method under uncontrolled environment, such as the LFW
(Labeled Faces in the Wild) database [23]. Unlike the controlled images, these
images are collected from the Internet and exhibit significant variations in pose
and facial expression, in addition to changes in illumination and occlusion. In
LFW, since there are only 24 subjects contain more than 35 samples, to make
full use of the comparative methods, we choose 20 of them and construct an
adequate training dictionary in this experiment. For each subject, 20 samples
(selected randomly) are used for training, while the remaining for testing. Here,
except for MRR, we test some popular classifiers, such as LRC [25], SRC [1]
and CRC [17]. For MRR and SCC, the images are resized to 80× 64, while for
the other three methods, the face images are automatically detected by using
Viola and Jone’s face detector [26]. The recognition results are listed in Table
5. SCC achieves the best result among all the methods. In addition, because of
the variations in pose, facial expression, illumination and so on, the alignment
FR methods significantly outperform those misalignment methods with at least
17.7% improvement.

Table 5. Recognition rates (%) of LRC, SRC, CRC, MRR and SCC on the LFW
database

LRC SRC CRC MRR SCC

44.1 55.7 60.3 78.0 82.0

5 Conclusions

This paper proposes a novel method called structure constraint coding (SCC) for
face recognition with image misalignment. It does image alignment and image
representation via structure constraint based regression simultaneously. Unlike
the vector-based models, SCC keeps structural information of images through
performing the nuclear norm constraint on the error matrix. We conduct experi-
ments on three popular face databases. Experimental results clearly demonstrate
that SCC performs better than those vector-based methods when handling face
misalignment problem coupled with illumination variations and structural noise.
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