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Abstract. We propose a three-dimensional global image registration
method for a sparse dictionary. To achieve robust and accurate registra-
tion, which based on template matching, a large number of transformed
images are prepared and stored in the dictionary. To reduce the spatial
complexity of this image dictionary, we introduce a method of generating
a new template image from a collection of images stored in the image
dictionary. This generated template image allows us to achieve accu-
rate image registration even if the population of the image dictionary
is relatively small and the template has a small pattern perturbation.
To further reduce the complexity, we compute a matching process in a
low-dimensional Euclidean space projected by a random projection.

1 Introduction

We propose a three-dimensional global image registration method for a com-
pressed sparse dictionary. Our method allows us to achieve accurate volumetric
image registration even if the population of pregenerated images is relatively
small. Furthermore, our method also achieves robust registration for template
images with a small pattern perturbation.

Three-dimensional image registration mainly focuses on registration of point
clouds and volumetric data. The former problem is applied to a point cloud
representing depth map. Since this depth map expresses a terrain surface, reg-
istration is achieved as surface registration in three-dimensional space [1, 2]. For
this surface registration, iterative closest algorithm is a well established method
[3, 4]. The later problem mainly deals with volumetric medical data obtained
by computed tomography, magnetic resonance imaging and positron emission
tomography [5, 6].

Medical image registration categorised into linear and nonlinear methods.
For nonlinear image registration, global image registration is used as preprocess
because nonlinear image registration is mainly valid for local deformation be-
tween images. Nonlinear registration is used to detect optimally local transform
between a template and the reference images, if the difference between these
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Fig. 1. (a) Nearest neighbours of g searched for by the k-nearest-neighbour search on
a manifold. Our method of projecting the manifold to a low-dimensional subspace. (b)
Generation of a new entry in a dictionary. The input image g is projected onto the
subspace spanned by three nearest neighbours. (c) Interpolation of parameter. For the
new entry g∗, we interpolate the parameter θ∗ of the image g∗. Here, Π represents the
parameter space of the transform.

two images are small and local [6]. Linear registration, however, detects global
geometric relations between a template and the references [7].

In global image registration, the best geometrical transform between refer-
ence and template images is accomplished by computing the best geometrical
matching between these two images. Therefore, for accurate registration, we are
required to prepare as many template images as possible in the dictionary [8].
This implies that the spatial complexity of global image registration depends on
the population of templates in the dictionary. The generation of new template
images from existing templates reduces the spatial complexity of global image
registration. However, in image registration with a sparse dictionary, we are re-
quired to generate a new entry and to compute the transform from this new
entry simultaneously [9, 10].

Since the image pattern space is a curved manifold in higher-dimensional
space, on the tangent space of this curved manifold, an image pattern is expanded
to a finite Fourier series using local bases. This expansion means that local bases
span a local part of the manifold. Figure 1(a) illustrates a manifold on a low-
dimensional subspace [11, 12]. In the neighbourhood of an image pattern, image
patterns can be expressed as a linear combination of this image and derivatives of
this image. We call this property of an image manifold the local linear property.
Figure 1(b) shows the generation of a template image. Combining these two local
expressions for an image pattern implies two advantages for pattern generation.
One is that we can compute the parameters of the transform. The other is that
we can compute a new pattern that is sufficiently close to a reference image.
Figure 1(c) shows the relation between a generated image g∗ and the nearest
neighbour in a local subspace. In Fig. 1(c), the perturbation δθ is small because
the generated image g∗ is close to the nearest neighbour. If the rotation angle,
scaling factor and shear ratio are all small, these transforms can be expressed
as a linear sum of the identity transform and linear transforms with parameters
that define the type of transform. Therefore, we can decompose the affine matrix
into a rotation, scaling and shear to estimate each transform.
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To use the local linear property for image registration, a curved manifold
of image patterns is generated from reference images. For the template image,
we generate this curved manifold using the k-nearest-neighbour search (k-NNS)
[13]. To reduce the temporal and spatial complexities of the search of the k-
neighbourhood, a dimension-reduction method is used to generate the curved
manifold. We adopt random projection as the dimension-reduction method [8–
10].

Random projection is a metric-embedding method that approximately pre-
serves distances between points in the original space [14]. Therefore, the random
projection is used in the nearest-neighbour search (NNS) to speed up numeri-
cal computation [15]. Furthermore, the random projection preserves manifolds
[16]. The validity of random projection for manifold learning of noiseless images,
noisy images and text data is shown in [17]. We use the random projection to
generate a manifold in a low-dimensional subspace.

In section 2, we summarise the linear subspace method for pattern recogni-
tion, the random projection for dimension reduction and the local linear property
of an image pattern space. Then, in section 3, we derive relations between the
global transform of an image and the local linear properties of an image pattern
space. The relations in section 3 are used to derive a method of performing the
global image registration using a dictionary with a small population of entries.

2 Mathematical Preliminaries

2.1 Global Image Registration

Setting Π to be an appropriate parameter space for image generation, we assume
that images are expressed as f(x,θi) for ∃θi ∈ Π, x ∈ R

3. The parameter θi
generates a transform for f(x). We call the set of generated images f(x,θi) and
parameters {θi}

N
i=1 a dictionary.

For the global alignment of images with respect to the region of interest Ω,
we find the linear transformation x′ = Ax+ t that minimises the criterion

R(f, g) =

√

∫

Ω

|f(x′)− g(x)|2dx (1)

for functions f(x) and g(x) defined on R
3 such that

∫

R3

|f(x)|2dx < ∞,

∫

R3

|g(x)|2dx < ∞. (2)

In image registration, we assume that the parameter θi in Π generates the
affine coefficients A and t. Solving the NNS problem using the dictionary, we
can estimate the transform A and t as θi. The computational cost of a naive
approach for the NNS is O(Nd), where N and d are the cardinality of the set of
points in the metric space and the dimension of the metric space, respectively.
The factor d in the nearest-neighbour search [14] is reduced by using the random
projection. Furthermore, using the local linear property in section 2.2, we can
also reduce N in the nearest NNS.
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2.2 Local Eigenspace

Setting the Hilbert space H to be the space of patterns, we assume that the inner
product (f, g) is defined in H. Let f ∈ H and P be a pattern and an operator for
a class, respectively. We then define the class C = {f |Pf = f, P ∗P = I}. For
recognition, we construct P for f ∈ C while minimising E[‖f−Pf‖2] with respect
to P ∗P = I, where f ∈ C is the pattern for a class, I is the identity operator
and E is the expectation in H. This methodology is known as the subspace
method [11, 12]. For the practical calculation of P , we adopt the Karhunen-
Loeve expansion for the construction of the eigenspace.

We deal with images f(x) defined in the three-dimensional Euclidean space
x = (x, y, z)⊤ ∈ R

3. We assume that a small perturbation of the parameter
causes a small geometrical transform of the image pattern, that is, we assume
the relation f(x+δ,θ) = f(x,θ+ψ). Therefore, a small perturbation of an image
caused by parameter perturbation is replaced with a geometrical perturbation
of the image, that is,

f(x,θ +ψ) = f(x+ δ) = f(x) + δ⊤∇f(x, y), (3)

where δ ∈ R
3 is a perturbation vector. Setting fx, fy and fz to ∂xf(x), ∂yf(x)

and ∂zf(x), respectively, since

∫

R3

ffxdx = 0,

∫

R3

ffydx = 0,

∫

R3

ffzdx = 0, (4)

∫

R3

fxfydx = 0,

∫

R3

fyfzdx = 0,

∫

R3

fzfxdx = 0, (5)

for images g(x) = f(Ax+ t) with a small perturbation affine transform A and
a small translation vector t, we can assume the relation

g(x) = a0f + a1fx + a2fy + a3fz, x ∈ R
3. (6)

Equation (6) implies that the number of independent images among the collec-
tions of images,

L(f) = {fij |fij(x) = λf(Aix+ tj)}
p,q
i,j=1 (7)

is four, if the domain of the image is R
3. We can use the first four principal

vectors of L(f) as the local basis for image expression for a three-dimensional
image. We call this property the local linear property and the space spanned by
{f, fx, fy, fz} the local eigenspace. Figure 1(b) shows the projection of the input
image g to the three-dimensional local subspace.

2.3 Three-Dimensional Affine Transform

To avoid the estimation of a translation, we set the origin of the coordinates to
be the centre of an image. We assume small rotations around the x, y and z axes
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of angles φ1, φ2 and φ3, given by the transform matrices such that

Rx = I +





0 0 0
0 0 −φ1

0 φ1 0



 = I +R′
x, (8)

Ry = I +





0 0 φ2

0 0 0
−φ2 0 0



 = I +R′
y, (9)

Rz = I +





0 −φ3 0
φ3 0 0
0 0 0



 = I +R′
z. (10)

Multiplying Rx,Ry and Rz, and ignoring terms of order larger than one, we
have an arbitrary rotation expressed as

R(φ) =





1 −φ3 φ2

φ3 1 −φ1

−φ2 φ1 1



 = I +R′
x +R′

y +R
′
z = I + [R]×, (11)

where [R]× is the outer-product operator of vector φ = (φ1, φ2, φ3)
⊤
.

For small scaling factors φ4, φ5 and φ6, and small shearing ratios φ7, φ8, φ9,
φ10, φ11 and φ12, we have the scaling matrix and shearing matrix





1 + φ4 0 0
0 1 + φ5 0
0 0 1 + φ6



 = I +Λ, (12)





1 φ7 φ8

φ9 1 φ10

φ11 φ12 1



 = I + S, (13)

respectively.
Combining these rotation, scaling and shearing matrices in eqs. (11)-(13),

we can define all affine transforms except translation. Multiplying these three
matrices and ignoring terms of order larger than one, we have the affine transform
matrix

A = I + [R]× +Λ+ S = I +Aδ, (14)

where the rotation, scaling and shear transforms are commutative since their
transform matrices consist of only small-value elements. Here, Aδ represents a
small affine transform.

2.4 Neighbours of Template Image

For the reference image f and template image g in Hilbert space H, applying
affine transforms {Ai}

N
i=1 except for translation to f , we have the finite collection

{fi|Aix}
N
i=1. For 0 < k ≪ N , let π(i) be one-to-one injection from 1 ≤ i ≤ N
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to 1 ≤ π(i) ≤ k such that π(i) 6= π(j) for i 6= j. Using π(i), we define the
k-neighbourhood KN(g) ∈ L(f) of g. For a finite collection of images {fi}

N
i=1,

KN(g) is a collection {fπ(i)}
N
i=1 that satisfies the inequalities

‖g − fπ(1)‖2 ≤ ‖g − fπ(2)‖2 ≤ · · · ≤ ‖g − fπ(N)‖2 (15)

where ‖ · ‖2 is the L2 metric on H.

2.5 Manifold Generation by Random Projection

We construct the image manifold of entries in the dictionary using the nearest-
neighbour method. To reduce the time complexity of the nearest neighbourhood
mesh on the image manifold, we adopt the random projection.

The random projection reduces the dimension of the discrete vector space
while preserving both local and global topologies and geometries. The random
projection satisfies the following theorem. For a set X = {xi}

N
i=1 of N points in

d-dimensional Euclidean space, consider a mapping onto the set X̂ = {x̂i}
N
i=1 in

k-dimensional Euclidean space. For the vector x = (x1, . . . , xd)
⊤, we define the

Euclidean norm as ‖x‖2 =
(

∑d
i=1 xi

)1/2

. The Johnson-Lindenstrauss lemma

indicates that there is a mapping approximately preserving the Euclid distance
between two arbitrary points [18]. Setting |x− y|2 to be the Euclidean distance
between two points x and y in appropriate dimensional Euclidean space, the
next therem is satisfied [19].

Theorem 1 (Johnson-Lindenstrauss lemma). For a subspace with dimension

d̂ ≥ d̂0 = 9 logN
ǫ2− 2

3
ǫ3

+ 1 = O(ǫ−2 logN), where ǫ is a real number such that 0 <

ǫ < 1
2 , a set X of N d-dimensional points {xi}

N
i=1 and an integer d̂ with d̂ ≪ d,

there exists a mapping f from R
d to R

d̂ such that

(1− ǫ)|xj − xi|2 ≤ |x̂j − x̂i|2 ≤ (1 + ǫ)|xj − xi|2, (16)

for all i, j = 1, 2, . . . , N .

Therefore, setting R to be the random projection from R
d to R

d̂, Theorem
1 implies the relation

P (| |x− y|2 − |Rx−Ry|2 | < ε) > 1− δ (17)

for small positive constants ε and δ, where P is a probability distribution. To use
these topological and geometrical properties for fast computation in the nearest
neighbour method, we use sampled images to construct the image manifold of
data in the dictionary.

Let Zd be the integer grid in R
d, Setting D and ∆ to be a finite subset of Zd

and a positive number that defines the resolution of sampling, respectively, the
distance

D(f, g) =

√

∫

Rd

|f(x)− g(x)|2dx (18)
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is approximately computed as

D(f, g) =

√

∑

z∈D⊂Zd

|f(∆x)− g(∆z))|2∆, (19)

for functions f(x) and g(x) defined on R
d.

By expressing {f(∆z)}z∈D and {g(∆z)}z∈D as finite vectors f and g, re-
spectively, eq. (19) is expressed as

D(f, g) = |f − g|2 (20)

if we set ∆ = 1. Using the random projection, the distance between f and g is
computed as

D(f, g) ≈ |Rf −Rg|, (21)

for functions f(x) and g(x) defined on R
n such that

∫

Rn

|f(x)|2dx < ∞,

∫

Rn

|g(x)|2dx < ∞. (22)

Therefore, by searching KN(g) in d̂-dimensional Euclidean space with the
random projection, we obtain the discrete version of KN(g). For practical com-
putation, we adopt an efficient random projection [20].

3 Local Linear Method

Using the local linear property of images in the image space, we first generate an
image in a sparse dictionary. To register a template g, using the generated image
g∗, we next estimate the small affine transform between the generated image g∗

and the nearest neighbour f1 of g in the dictionary. From the generated image
and the estimated transform, the local linear method can generate new entries
in the dictionary. Figure 1 shows a flow of this local linear method.

For image generation, we use the k nearest neighbours of g in the dictionary.
Let {f i}ki=1 ∈ L(g), be the ith neighbour of g. The random projection preserves
the pairwise distances between vectorised images. Therefore, f i is searched for in
a random projected space. For a template g(x), we assume g(x) = f1(Ax, θ)+ǫ,
where A gives the best matching between g and f1, and ǫ is a small difference
between the reference pattern and the registered template pattern. For three-
dimensional images, using the local linear property, we can approximate the
space spanned by {ui}

4
i=1 using the space spanned by {g} ∪ {f i}4i=1 if the data

space L(g) is not extremely sparse. Using Gram-Schmidt orthonormalisation
for {f i}4i=1, we obtain the basis {ui}

4
i=1. Projecting the template to the space

spanned by {ui}
4
i=1, we obtain a new image,

g∗ =

4
∑

i=1

biui, (23)
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from a triplet of preprepared entries in the dictionary. Here, {bi}
4
i=1 represents

the coefficients of the linear combination.
For the projected template image and its nearest neighbour f1(x,θ), using

the Taylor expansion, we have the relation

g∗ = f1(x+ δ,θ) = f1(Ax,θ) = f1((I +Aδ)x,θ)

= f1(x,θ) + (Aδx)
⊤∇f1(x,θ) (24)

if the higher order terms with respect delta is sufficiently small. For the trans-
form matrix Aδ, we have the relation

(Aδx)
⊤∇f1(x,θ) = g∗ − f1(x,θ). (25)

Representing the left side of eq. (25) in terms of the variables that generate
each transform, we can decompose the small affine transform between the refer-
ence and template. Using matrices [R]×,Λ and S, and coefficients γi ∈ {0, 1},
i = 1, 2, . . . , 9, we can represent the left side of eq. (25) as

x⊤









0 γ3 γ2
γ3 0 γ1
γ2 γ1 0



 ◦ [R]⊤× + diag(γ4, γ5, γ6)Λ+ diag(γ7, γ8, γ9)S
⊤



∇f1, (26)

whereA◦B is the Hadamard product of matricesA andB. Furthermore, setting

α1 = yf1
z − zf1

y , α2 = zf1
x − xf1

z , α3 = yf1
x − xf1

y , (27)

α4 = xf1
x , α5 = yf1

y , α6 = zf1
z , (28)

α7 = yf1
y , α8 = zf1

z , α9 = xf1
x , α10 = zf1

y , α11 = xf1
z , α12 = yf1

z , (29)

we rewrite eq. (25) as

6
∑

i=1

γiαiφi+

3
∑

j

(α2(j−1)+7φ2(j−1)+7+α2(j−1)+8φ2(j−1)+8) = g∗−f1(x,θ). (30)

Equation (30) contains 12 unknowns in a single equation. The sum of coef-

ficients
∑6

i=1 γi +
∑9

i=7 2γi is greater or equal to one even though we have only
one template. We adopt the surface integration for eq. (30) for this template
image. Selecting different surfaces of a surface integration, we obtain more than
one independent equation. For the centre µ = (µ, µ, µ)⊤ of a template image
and radius {ri}

n
i=1, ri 6= rj , we define surface of a sphere as

S3(r) = {x | ‖x− µ‖2 = r}. (31)

For the centre µ = (µ, µ, µ)⊤ of a template image, radius r, rotation angles
φi = (φi1, φi2, φi3)

⊤ and vectors p1 = (x−µ, y−µ,−µ)⊤, p2 = (−µ, y−µ, z−µ)⊤

and p3 = (x− µ,−µ, z − µ)⊤, we define the surface comprising three planes as

P3(r,φ) = {µ+R(φ)p1,µ+R(φ)p2,µ+R(φ)p3 | µ−r ≤ x, y, z,≤ µ+r}. (32)
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(a) (b)

Fig. 2. Surfaces used for surface integration to obtain independent equations. (a) and
(b) show surface S3(r) of the sphere and surface P3(r, 0) comprising three planes. In-
tegration of the volume gives a equation for an image. The integration of different
surfaces, such as a different spheres and orthogonal square planes, gives several inde-
pendent equations for an image.

For a set of radius {ri}
n
i=1, we obtain sets of {S3(ri)}

n
i=1 and {P3(ri)}

n
i=1. We

adopt {S3(ri)}
n
i=1 and {P3(ri)}

n
i=1 as surfaces {Ωi}

n
i=1 for the surface integra-

tion. Figure 2 shows the surfaces used for surface integration. For {Ωi}
n
i=1 and

βij =
∫

Ωi

αj(x)dx, j = 1, 2, . . . , 12, we set the coefficient vector

χi = (βi 1, βi 2, . . . , βi 12). (33)

Here, we have the relations χi 6= χj and hi 6= hj for i 6= j. Setting n ≥
∑6

i=1 γi+
∑9

i=7 2γi,










β1 1 β1 2 . . . β1 12

β2 1 β2 2 . . . β2 12

...
βn 1 βn 2 . . . βn 12











ζ =











h1

h2

...
hn











. (34)

where

ζ = (γ1φ1, γ2φ2, . . . , γ6φ6, γ7φ7, γ7φ8, γ8φ9, γ8φ10, γ9φ11, γ9φ12)
⊤, (35)

and

hi =

∫

Si

(g∗ − f1)dx, (36)

then, we can estimate the transforms as a solution to the linear system of equa-
tions.

4 Numerical Examples

Three experiments evaluate the performance of our local linear method. The first
and second experiments show the accuracy of estimation for a single transform
and multiple transforms, respectively. The third experiment shows the robust
estimation of templates with small pattern perturbations.

The first and second experiments use volumetric data obtained by MRI sim-
ulation of human brain [21]. Figure 3 shows slice images of the volumetric data.
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(a) Coronal (b) Sagittal (c) Transverse

Fig. 3. Slice images extracted from volumetric data. (a)-(c) Slice images extracted
from a voxel image obtained by MRI simulation of a human brain [21]. The size of the
voxel image is 181×217×181 voxels. The slice images (a), (b) and (c) are extracted
from the z = 45, x = 90 and y = 100 planes, respectively. In experiments, we embed
the voxel image in a background image of 308×308×308 voxels. The intensities of the
background images are 0.

(a) Image frame (b) Sagittal:
y = 9

(c) Sagittal: y =
29

(d) Sagittal:
y = 41

Fig. 4. Volumetric spatiotemporal MRI lung data [22]. (a) Voxel image of a frame of
a sequence. (b)-(d) Sagittal slices of the frame. The spatial and time resolutions of the
data are 50×224×224 and 200, respectively. The time between frames is 331 ms. In
the experiments, we embed a volumetric image of a frame on a background image of
316×316×316 voxels. Each voxel value in the background image is 0.

Furthermore, for the first and second experiments, we generate smooth images
from these slice images by linear filtering of the convolution with Gaussian kernel
of standard deviation τ . For third experiment, we use volumetric spatiotemporal
MRI lung data. [22]. Figure 4 shows a few frame of the volumetric spatiotempo-
ral MRI lung data. In a sequence, the volumetric data gradually changes with
the breathing of the patient. Table 1 summarises the parameters for the first
and second experiments. Table 2 summarises the data for the third experiment.

Figure 5 shows the results of the first experiment for the estimation of rota-
tion angle. In Figs. 5(a), (b) and (c), for displacements of less than 4 voxels, the
estimation errors are smaller than 2.5 degrees if we use the surfaces {S3(ri)}

10
i=1

for surface integration. Figures 5(d), (e) and (f) show that for displacements of
less than 4 voxels, the estimation errors are smaller than 3.5 degrees if we use
the surfaces {P(ri,0)}

10
i=1 for surface integration. In Figs. 5(g), (h), (i), (j), (k)
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Table 1. Parameters for the first and second experiments using voxel image of human
brain data.

Aδ Pregeneration Template Filtering Dimension Lines

R1

−60 < φ1 < 60 1 < φ1 < 6 0 < τ < 5
d̂ = 1024

S3(r)
step of 12 step of 1 step of 0.1 10 < r < 110 step of 10

R2

−60 < φ2 < 60 1 < φ2 < 6 0 < τ < 5
d̂ = 1024

S3(r)
step of 12 step of 1 step of 0.1 10 < r < 110 step of 10

R3

−60 < φ3 < 60 1 < φ3 < 6 0 < τ < 5
d̂ = 1024

S3(r)
step of 12 step of 1 step of 0.1 10 < r < 110 step of 10

R
−7 < φ1, φ2, φ3 < 7 1 < φ1, φ2, φ3 < 3 0 < τ < 5

d̂ = 1024
S3(r)

step of 7 step of 1 step of 0.1 10 < r < 50 step of 10

Table 2. Data for the the third experiment using the volumetric spatiotemporal data.

Aδ Pregeneration Template Filtering Dimension Lines
with 22nd frame with 22nd, 23rd, 24th and 34th frame

R3

−60 < φ3 < 60 1 < φ1 < 6
not used d̂ = 1024

S3(r)
step by 12 step by 1 10 < r < 20 step by 5

and (l), for displacements of greater than 4 voxels in smooth images, our method
estimates rotation angles with errors smaller than 1 degree.

The second experiment evaluates estimation errors for multiple transforms.
Figure 6 shows the results of the second evaluation. In Fig. 6, the results show
that the estimation of multiple transforms is unstable. Furthermore, the estima-
tion errors are larger than 1 degree even for small displacements of one voxel.
However, for smoothed images, the mean estimation error of the multiple trans-
forms is about 1.5 degrees for the three rotation axes.

The third experiment evaluates the accuracy and robustness of estimation
of rotation for a template with a small pattern perturbation. Figures 7(a) and
(b) show the differences between the 22nd frame and the 23rd-200th frames of
the four-dimensional data. Figure 7(c) shows the results of the estimation. In
Fig. 7(c), curves represent absolute values of the estimation error plotted against
the displacement caused by the rotation. For differences from −∞ to −6.94 dB,
the estimation errors are smaller than 1.5 degrees. Table 3 shows the difference
between a template and generated g∗. In Table 3, the distance between the
generated g∗ and template is smaller than one between template and its nearest
neighbour.

Table 4 summarises the accuracy, the number of pregenerated images and
the dimension of the search space in Figs. 5 and 6. The results in Fig. 5 imply
that integration with the surfaces {S3(ri)}

10
i=1 leads to more accurate and stable

estimation than integration with the surfaces {P(ri,0)}
10
i=1 for the case of a rota-

tion. For the estimation of a single transform, our method requires 16.7% of the
number of pregenerated images of naive NNS. Furthermore, for the estimation
of multiple transforms, our method requires 2.1% of the number of pregenerated
images of the naive NNS. Moreover, our method reduces size of search space
to 4.0 × 10−3% . For both the estimations, the dimension of the search space
is 3.5 × 10−3% of the original dimension of the images. Moreover, the results
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5. Accuracy of estimation for a spatial rotation. We estimate the rotation angles
φ1, φ2 and φ3 independently. The first, second and third columns represent the accuracy
of estimation for rotation around the x, y and z axes, respectively. (a) and (d), (b) and
(e), and (c) and (f) show the accuracy of estimation without Gaussian filtering. (g) and
(j), (h) and (k), and (i) and (l) show the accuracy of estimation for smooth images, for
the rotation around x, y and z axes, respectively. In the first and third rows and the
second and fourth rows, we adopt S3(r) and P3(r,φ) as the surfaces for the surface
integration, respectively. Displacements are given by rφ1, rφ2 and rφ3.
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(a) Rotation
around x

(b) Rotation
around y

(c) Rotation
around z

Fig. 6. Accuracy of estimation for multiple transforms. For the estimation, we adopt
combinations of three rotations around the x, y and z axes. The left, middle and right
graphs show the results of estimation for rotation around the x, y and z axes with
Gaussian filtering with standard deviation τ , respectively. For the surface integration,
we adopt surfaces {P1

i }
n

i=1. For the rotations around the x, y and z axes, the displace-
ments are given by r

√

φ2

3
+ φ2

2
, r

√

φ2

3
+ φ2

1
and r

√

φ2

1
+ φ2

2
with radius r in the surface

integral, respectively.

of third experiment show that our method estimate transform for the template
image with small pattern perturbation.

Table 3. Evaluation of approximation for generated new entries. We generate new
entries for rotated images with small pattern perturbation. For a generation of a new
entry, we use 4-neighbours of a template. As templates, we use rotated images of the
22nd, 23rd, 24th and 25th frame of data with angle φ3. For a template g, we first
compute the difference between g and its nearest neighbour in pregenerated images
as 10 log

10

(

‖f1 − g‖2/‖g‖2
)

. Second, we compute the difference between g and a gen-
erated new entry g∗ as 10 log

10
(‖g∗ − g‖2/‖g‖2). In this Table, the columns for the

nearest neighbour (NN) and the local linear method (LLM) show the difference be-
tween f1 and g and between g∗ and g, respectively.

angle [degree] Difference between f1 and g[dB]

22nd 23rd 24th 25th 34th

φ3 NN LLM NN LLM NN LLM NN LLM NN LLM

2 -4.77 -5.15 -4.85 -5.15 -4.78 -5.06 -4.39 -4.70 -4.60 -4.90
4 -3.19 -3.95 -3.31 -3.96 -3.26 -3.91 -3.21 -3.81 -3.25 -3.87
6 -2.57 -3.71 -2.70 -3.72 -2.66 -3.68 -2.69 -3.62 -2.68 -3.65

5 Conclusions

For volumetric images, we first defined the local linear property of the image
manifold for a small geometrical perturbation. We then introduced an algorithm
based on the local linear property for three-dimensional affine image registra-
tion to reduce the time and spatial complexity of computation. The algorithm
first generates a new image for a template using a small number of images pre-
produced from the reference image. Second, using the new image, the proposed
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(a) (b) (c)

Fig. 7. Estimation for a template with small pattern perturbation. (a) Difference
between 22nd frame and 23rd-200th frames of four-dimensional MRI lung data. (b)
Scaled-up graph of (a) showing difference between 22nd frame and 23rd-38th frames.
(c) Accuracy of estimation for rotation angle φ3 around the z axis. The differ-
ences between the 22nd frame and the 22nd, 23rd, 24th, 25th and 34th frames are
−∞,−10.11,−9.19,−6.94 and −5.65 [dB], respectively. For surface integration, we
adopt the surface S3(r). The displacement is given by rφ3.

Table 4. Accuracy and compression ratio for volumetric data obtain by MRI simulation
of human brain. First column shows given accuracy in the estimation. Second column
shows necessary step sizes in pregeneration, which give the accuracy in first column, for
the nearest neighbour search (NNS) and the local linear method. Third column shows
dimensions of search space for NNS and LLM. Fourth column illustrates compression
ration of the LLM compared with the NNS.

Aδ Accuracy Necessary step size Dimension Compression ratio

NNS LLM Original Search space in pregeneration

R1 1 [degree] 2 [degree] 12 [degree] 29218112 1024 16.7 [%]

R2 1 [degree] 2 [degree] 12 [degree] 29218112 1024 16.7 [%]

R3 1 [degree] 2 [degree] 12 [degree] 29218112 1024 16.7 [%]

R 1.5 [degree] 3 [degree] 12 [degree]
29218112 1024 2.1 [%]2.0 [degree] 4 [degree] 12 [degree]

1.5 [degree] 3 [degree] 12 [degree]

method finds a small affine transform between the new image and the best match-
ing image in the dictionary. Finally, our method estimates transforms using the
new image and its neighbours. This algorithm reduces the computational cost of
preprocessing and the size of the images used in the nearest-neighbour search.
In the numerical examples, using volumetric data of the human brain obtained
by simulated MRI, we show that our method can accurately estimate single and
multiple transforms using a small number of pregenerated images. Furthermore,
using four-dimensional MRI lung data, we show that our method can robustly
estimate single transform for a template with small pattern perturbation.
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Aided Diagnosis and Therapy: Frontiers of Medical Image Sciences” and “Mul-
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entific Research funded by the Japan Society for the Promotion of Science.



Global Volumetric Image Registration 15

References

1. Nishino, K., Ikeuchi, K.: Robust simultaneous registration of multiple range images.
In: Digitally Archiving Cultural Objects. Springer (2008) 71–88

2. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image
registration methods with accuracy evaluation. Image and Vision Computing 25

(2007) 578–596

3. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence 14 (1992) 239–256

4. Daniel, F.H., Hebert, M.: Fully automatic registration of multiple 3D data sets.
Image and Vision Computing 21 (2003) 637–650
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