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Abstract. The angular error-based triangulation method and the par-
allax path method are both high-performance methods for large-scale
multi-view sequential reconstruction that can be parallelized on the GPU.
We map parallax paths to the GPU and test its performance and accuracy
as a triangulation method for the first time. To this end, we compare it
with the angular method on the GPU for both performance and accuracy.
Furthermore, we improve the recovery of path scales and perform more
extensive analysis and testing compared with the original parallax paths
method. Although parallax paths requires sequential and piecewise-planar
camera positions, in such scenarios, we can achieve a speedup of up to
14x over angular triangulation, while maintaining comparable accuracy.

1 Introduction

Recently, there has been a great deal of work dealing with multi-view recon-
struction of scenes, for example in applications such as robotics, surveillance and
virtual reality. One specific scenario for reconstruction is aerial video. Accurate
models derived from aerial video can form a base for large-scale multi-sensor
networks that support activities in detection, surveillance, tracking, registration,
terrain modelling and ultimately semantic scene analysis. Time-effective, accu-
rate and in some cases dense scene models are needed for such purposes. In
addition, unmanned aerial vehicles may become common tools for government
and commercial use in the future, and allowing them to detect the underlying
environment will enable increased autonomy and the ability to perform the type
of useful analysis mentioned previously.

For aerial reconstruction, and reconstruction in general, performance scalabil-
ity is a growing concern. Improved technology has allowed for the collection of
numerous images at very high resolutions. To address this problem, researchers
have developed new algorithms that can perform faster while yielding accurate
reconstructions. Another approach is to leverage modern hardware, specifically
parallel architectures, that include Graphics Processing Units (GPUs), which
are now widely used to speed up a variety of computational problems. GPU
hardware is designed to compute large amounts of work simultaneously, which
makes GPUs ideal for high-performance image processing.
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To this end, the parallax paths method is a promising framework developed
by Hess-Flores et al. [1] for aerial and turntable reconstruction. It uses the path
of a moving camera as a strong constraint that can be applied to various stages
in reconstruction including camera calibration, feature track correction, and final
scene reconstruction. For each feature track of the reconstruction, a scale value is
computed within the framework, which is a direct function of perceived parallax
for the corresponding scene point. The method, however, requires that the camera
path used in the reconstruction to be piecewise planar, and that it does not
intersect the set of viewed scene points.

The main advantage of this method is that it allows for the correction of
inaccurate feature tracks given constraints arising from the path of the moving
camera and the projected path of a feature track as a replica of the camera
path up to a scale. However, it is not clear from the original method if there is
a direct way to compute accurate scale values in general, nor what the effect
of scale actually is on the final computed 3D position. Also, the performance
of triangulation based on the corrected tracks is not directly analyzed, and no
attempts at parallelization are made. Given the way feature tracks are corrected
in this method, it provides the advantages that the final triangulation can be
performed efficiently, but this was not exploited by Hess-Flores et al. [1].

The main contribution of this paper is to evaluate and compare the perfor-
mance of triangulation based on the parallax paths framework with another
algorithm used for reconstruction, Recker’s angular error-based triangulation
algorithm [2], which we refer to from now on as fast triangulation. Recker’s trian-
gulation method is both accurate and one of the fastest known in the literature,
and has been successfully parallellized on the GPU. This is the first comparison
analysis between these two promising tools for solving the structure-from-motion
problem. To perform the study on the most state-of-the-art high-performance
hardware, we develop the first GPU implementation of the parallax paths method
to compare it with the GPU implementation of the fast triangulation method.
Parallax paths is more parallelizable and performs faster than fast triangulation,
and with good starting feature tracks and the camera path as a reliable constraint,
we can obtain comparable accuracy. Furthermore, the effect of different path
scales is further defined and evaluated with respect to the original method. In the
first section, we discuss related work, then in the following sections, we provide
an overview of the fast triangulation method and the parallax paths method, in-
cluding new insights for the latter. Next, we discuss GPU implementations, show
the results of our comparison experiments, and finally end with our conclusions.

2 Related Work

The input to scene reconstruction is typically a set of images and in some cases
camera calibration information, while the output is typically a 3D point cloud
along with color and/or normal information, representing scene structure. For
general reconstruction algorithms in the literature, there are comprehensive
overviews and comparisons given in Seitz et al. [3] and Strecha et al. [4]. As for
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sequential reconstruction algorithms, Pollefeys et al. [5] provides a method for
reconstruction from hand-held cameras, Nistér [6] deals with reconstruction from
trifocal tensor hierarchies, while Fitzgibbon et al. [7] provides an approach for
turntable sequences. State-of-the-art software packages such as VisualSfM [8]
and Bundler [9] provide very accurate feature tracking, camera poses and scene
structure, based mainly on sparse feature detection and matching, such as with
the SIFT algorithm [10] and others inspired by its concept.

This paper focuses on one of the final stages of reconstruction, known as
triangulation [11], where 3D positions for scene points are computed. The accuracy
of triangulation is a function of previously-computed feature tracking, camera
intrinsic calibration, and pose estimation [11]. Typically, 3×4 projection matrices
are used to encapsulate all camera intrinsic and pose information. The most
widely-used method in the literature is linear triangulation [11], where a system
of the form AX = 0 is solved by eigen-analysis or Singular Value Decomposition
(SVD). The data matrix A is a function of feature track and camera projection
matrix values. The obtained solution is a direct, best-fit, and non-optimal solve,
where numerical stability issues arise with near-parallel cameras. Another simple
method is the midpoint method [11], but it is very inaccurate in general. A second
class of algorithms is based on optimizing a cost function based on an initial
direct solution. In general, these methods lack solid experimental results as far
as error and processing time against different noise and camera configurations.
Agarwal et al. [12] use fractional programming and a branch and bound algorithm
to determine the global optimum. Hartley and Kahl [13] as well as Min [14]
perform convex optimization on an L∞ cost function making use of second-order
cone programming (SOCP). Dai et al. [15] use a L∞ optimization method based
on gradually contracting a region of convexity towards computing the optimum.

Additional triangulators have been developed with not only accuracy but also
performance scalability in mind. Recker et al.’s fast triangulation method [2]
obtains an initial position through the midpoint method and applies adaptive
gradient descent [16] on an angular error-based L1 cost function. This function is
shown to have a large basin in the vicinity of the global optimum, which avoids
converging to unwanted local minima. Also, the L1 cost function is more robust
to outliers than the L2 norm of reprojection error. Furthermore, it introduces a
statistical sampling component to increase efficiency without sacrificing accuracy.
This results in a significant speed increase and better reprojection errors than
with other triangulators, such as linear triangulation. Hess-Flores [1] developed
the parallax paths method for reconstruction in scenarios where the camera
path can be modeled by piecewise-planar segments. The procedure results in an
updated set of feature tracks, such that the speed and accuracy of reconstruction
and bundle adjustment is improved. However, it was not tested as a standalone
triangulator nor compared against any other known triangulation algorithms
for speed or accuracy. Furthermore, no attempts at parallelization were made.
Sánchez et al. [17, 18] developed a triangulator on the GPU using an algorithm
based on Monte Carlo simulations. They achieve good speedup over Levenberg-
Marquardt [19] and have comparable accuracy. However, their implementation was
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not tested on large-scale data. Mak et al. [20] developed a GPU implementation
of Recker’s fast triangulation method and achieve up to 40x speedup over a CPU
implementation on large-scale data. To the best of our knowledge, this is one of
the fastest GPU triangulators in existence that still maintains good accuracy.
In this work, we implement parallax paths on the GPU for the first time, and
compare it with the GPU fast triangulation method for speed and accuracy.

3 A Summary of Fast Triangulation

Recker et al. [2] propose a L1 triangulation cost function based on an angular
error measure for a candidate 3D position, p, with respect to its feature track t.
Its inputs are feature tracks across N images and their respective 3× 4 camera
projection matrices Pi. For each camera in a track, the cost function measures
the dot product between the ray from the camera center Ci to p, known as unit
vector vi, and the ray from Ci through its 2D feature t, known as wti. This
concept is displayed in Fig. 1(a). The total cost function value is the sum of these
dot products across all cameras, subtracted from the total number of cameras to
ensure that the absolute global minimum is zero, and then averaged. Dot products
can vary from [−1, 1], but only points that lie in front of the cameras need to
be taken into account, corresponding to the range [0, 1]. Given Ci cameras, the
set of all feature tracks T , and a 3D evaluation position p = (X,Y, Z), the cost
function for p with respect to a track t ∈ T is given by Eq. 1 [2].

ft∈T (p) =

∑
i∈I(1− v̂i · ŵti)

||I||
. (1)

In their nomenclature, I = {Ci|t “appears in” Ci}, vi = (p−Ci), and wti = P+
i ti.

The right pseudo-inverse of Pi is given by P+
i , while ti is the homogeneous

coordinate of track t in camera i. The normalized vectors are defined as v̂i = vi

||vi||
and ŵti = wti

||wti|| . Gradient values are defined in Eqs. 5–7 of Recker et al. [2].

To visualize the smooth variation of this L1 cost function, as analyzed and
discussed in Recker et al. [2], Fig. 1(b) shows a scalar field, where each dense
grid position encodes the cost function value at that specific 3D location. Values
are color-coded such that redder values represent higher cost function values,
while blue represents values closer to zero. Notice that in this particular case,
the global minimum, not explicitly displayed, lies in the center of the displayed
bounding box. The variation within this box, however, is very smooth, indicating
that the function is a sink with convergence likely even from distant locations.
This allows for simple methods such as adaptive gradient descent [16] to be used
for optimization, starting from an initial midpoint estimate [2]. For more details
on the overall method, the reader is referred to Recker et al. [2].

3.1 Degeneracies in Fast Triangulation

There are specific degeneracies that can affect fast triangulation. The first is an
initial midpoint estimate which is very inaccurate. Despite the sink behavior of
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Fig. 1. (a) In fast triangulation, rays are shot through a candidate point and through
feature locations. (b) A volume view of a scalar field representing an L1 cost function [2]
evaluated at a dense grid inside a bounding box encasing a position in the reconstruction,
with blue closer to zero cost.

the cost function, a very inaccurate starting position can lead adaptive gradient
descent in the wrong direction. Though Recker et al. [2] proved that this seldom
occurs, very erroneous feature tracks may need to be evaluated via RANSAC [21]
or other robust methods before triangulating. The second degeneracy occurs with
small baselines. For near-parallel cameras and/or small baselines, the obtained
midpoint estimate can also be very inaccurate, and similar convergence issues
can result. Generally, triangulating with very short baselines should be avoided,
and algorithms such as frame decimation [22] can be used for this purpose.

4 Parallax Paths—A Further Analysis

The parallax paths method was developed by Hess-Flores et al. [1] to help yield
more accurate 3D reconstructions in aerial and turntable sequences. However,
the concept of scale was not generalized or further analyzed, and this paper helps
enhance and improve on this concept. First, the method for reconstructing a
single point will be summarized. It is assumed that a set of coplanar cameras
and a set of feature tracks beginning at the first camera are the input. For a
given feature track, a ray is shot from each camera center position through the
point’s pixel feature location in that camera’s image plane. The intersection
of this ray with a pre-selected reconstruction plane ‘beneath’ the scene, which
is parallel to the camera plane, yields a parallax path position. The set of all
ray-plane intersections for a given feature track results in its parallax path. There
are two insights to this method: first, if a feature track is accurate, all rays should
intersect at a common scene point; and second, the ray-plane intersections should
be an exact yet scaled projection of the camera’s path projected onto the plane,
as shown in Fig. 2(a). The concept of scale is easily visualized when translating
all parallax paths to a 2D position-invariant reference, as shown in Fig. 2(b).



6 J. Mak et al.

X1

X2

C1

C2 C3

camera 
path

parallax 
paths

reconstruction 
plane

(a) Parallax paths method

C1

C2

C3

C4
C5

C6

(b) 2D position-invariant reference

Fig. 2. (a) Rays from cameras Ci. . .Cn through a scene point Xi intersect a plane,
creating a parallax path, which is a scaled version of the camera path. Points closer to
the cameras create bigger paths. (b) The camera path and parallax paths are translated
to a position-invariant reference, with a track’s path origin coinciding with the anchor
camera for the track.

Once the camera path and parallax paths are translated to this position-
invariant reference, with all paths beginning at a common origin as shown in
Fig. 2(b), locus lines (shown in light green) can be traced from the origin through
all the parallax path points. In this case, it is assumed that the first camera
is the anchor camera and is used as reference to provide this origin. However,
any camera can be chosen as the anchor. For perfect feature tracks, a locus line
should perfectly intersect every path point corresponding to a feature seen by that
camera, as shown in Fig. 3(a). In this perfect setting, the scale of a parallax path
is defined as the intersection between a locus line and the parallax path. Notice
that scale values grow when moving from the reconstruction plane towards the
camera plane. The original work by Hess-Flores et al. [1] did not mathematically
define a direct way to obtain this scale, and we provide an efficient way to
compute its value. For the first locus line in Fig. 3(a), the scale of the parallax

path is the ratio of the lengths of two line segments: the segment
−−−→
P1P2 from the

parallax path origin point P1 and a second path point P2; and the segment
−−−→
C1C2

between the anchor camera C1 and the next camera C2 corresponding to the
second path point. This is applicable to all the locus lines, as shown in Eq. 2.

scale =
|
−−−→
P1P2|
|
−−−→
C1C2|

=
|
−−−→
P1P3|
|
−−−→
C1C3|

=
|
−−−→
P1P4|
|
−−−→
C1C4|

=
|
−−−→
P1P5|
|
−−−→
C1C5|

= · · · = |
−−−→
P1PN |
|
−−−→
C1CN |

. (2)

The value of the ratio equals the scale of the path and is consistent for all locus
line and parallax path intersections. Note that the camera path does not need
to be circular or any determinable shape for this to be true, as long as all the
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cameras can be fitted by a common plane (are coplanar) by segments. For long
camera trajectories that are non-planar, parallax paths must be computed and
concatenated across segments to obtain the final reconstruction.
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Fig. 3. (a) With perfectly correct tracks, a locus line passes through every projected
feature (a path point). (b) In general, features might not lie exactly on a locus line.

4.1 Obtaining the Correct Scale

The scale value is significant because it tells us how each feature track—and
therefore each point in the reconstructed scene—relates to the camera path. In
practice, there are errors in the feature tracks, and so the projected camera path
or ray-plane intersections are incorrect, as shown in Fig. 3(b). If the correct scale
value for a parallax path is known, this fixes the locations of its parallax path
positions along respective locus lines. For example, if we know a parallax path
has a 0.5 scale of the camera path, each parallax path position on the position-
invariant plot should lie halfway along the locus line segment traced between the
origin and the respective camera projection. Once the correct scale value and
position along locus lines have been determined, we can easily triangulate the
correct 3D scene point as follows. First, the parallax path is translated back to
its original position on the reconstruction plane. We then pick any two points on
the path, shoot a ray from each point back to its associated camera, and compute
the intersection point. This intersection is guaranteed to be unique, since all
point-to-camera segments must intersect at a common 3D point given correct
parallax paths, as shown in Fig. 2(a).

In practice, there is no easy way of obtaining the absolute correct scale.
However, we now propose two simple methods to approximately obtain the
correct scale. The first involves averaging all the scales derived from a potentially
incorrect track. In this case, the ratios in Eq. 2 would likely not be equal across
the track, but the average of all ratios approximates the scale value. We then
use this consensus scale value to correct this track. If the cameras used in the
reconstruction are too numerous, this approach could hinder performance, but
we can employ statistical sampling the way fast triangulation does and use only a
random subset of the features in each track to obtain an average scale. Note that



8 J. Mak et al.

there are robust methods such as RANSAC [21] that can be applied to detect
highly inaccurate feature tracks. However, this adds undesired overhead to the
method, and our main focus is on runtime performance.

In the second method, rather than averaging the scales derived from all
cameras, or a randomly sampled subset, we only average scales for the first M
cameras of the track. The reasoning behind this approach is that long feature
tracks are known to sometimes experience degradation [1]. Therefore, if we assume
that the first M feature track positions are more likely to be accurate, using a
sequence of early cameras would yield a more accurate scale. In addition, parallax
paths does not suffer from degeneracy problems when the baseline between
cameras is small because an intersection is enforced given the constraints no
matter what the camera baseline is, so using adjacent cameras is less of a problem.

The parallax paths method is very powerful because it provides additional
constraints to yield an accurate reconstruction, which are not present in bundle
adjustment [19] or traditional multi-view reconstruction. However, its application
space is more limited than that of fast triangulation, since parallax paths is
constrained to certain types of scenes. First, the cameras used in the reconstruction
must all lie on a common plane, a case that can often be found in aerial image
and turntable datasets, but that is only a subset of all possible reconstruction
scenarios. Second, a proper reconstruction plane parallel to the camera trajectory
must be chosen, and the scene cannot intersect either plane. The method also
needs accurate camera calibration, both extrinsics and intrinsics, since the method
relies exclusively on camera information to create parallax paths and correct
them. It is potentially sensitive to very inaccurate feature tracks as well. However,
state-of-the-art packages such as VisualSfM [8] and Bundler [9] can provide
accurate feature tracking and camera projection matrices, so this has become less
of a concern. Also, accurate camera positions can be obtained from external tools
like GPS and for aircraft, IMU. In addition to triangulation, parallax paths can
potentially be used for other purposes such as pose estimation and compression
of scene information, but these are outside the scope of this work.

5 Methods on the GPU

In this section, we discuss an existing GPU fast triangulation implementation,
followed by the introduction of a novel GPU implementation of the parallax
paths framework, where we discuss high-level implementation details. We use
the CUDA programming model to implement code and analyze performance on
the GPU. As an overview of the model, CUDA threads are divided into blocks
that run in parallel, each of which contains up to 1024 threads. Each thread
runs the same CUDA program called a kernel. Blocks of threads are assigned
to streaming multiprocessors (SMs). An SM runs a group of 32 threads called
warps in a SIMD manner. Like a CPU, a GPU has a large, slow main memory,
as well as caches. A faster, more local memory called shared memory is also
available that allows threads in the same block to share data. Certain types of
applications are more suitable for the GPU. They must be parallel enough to
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require an enormous number of threads, and since threads within a warp run in
SIMD, the program control flow must not cause threads to frequently diverge
(perform different operations due to conditional statements). A more detailed
description of the CUDA programming model is given by Nickolls et al. [23].

5.1 Fast Triangulation GPU Implementation

Mak et al. [20] provide a GPU implementation of Recker’s fast triangulation
algorithm using two different approaches. The first approach, one-thread-per-
track, parallelizes across tracks and assigns one thread to each track to perform
gradient descent for that track. This approach can potentially lead to high thread
divergence. In one scenario, different tracks can vary widely in length, so the
gradient term may be more expensive to recompute for some tracks than for
others. The authors propose that this problem can be mitigated to an extent by
a prior sorting of the tracks, which increases the likelihood that threads within
the same warp will be assigned tracks of similar length. Another case is when
some tracks converge in fewer iterations of gradient descent than others. Both
of these load-balancing problems cause threads in a warp that have finished
processing their work to have to wait for other unfinished threads in the same
warp. The authors also propose another approach to parallelizing the triangulator:
one-block-per-track. This approach assigns a block of threads to process each
track, which makes it more appropriate for datasets with long feature tracks. Each
thread in a block computes one per-feature term in the gradient computation,
and a parallel reduction sums these terms to GPU shared memory to obtain the
final gradient value. In terms of the amount of parallelism during execution, this
approach is an improvement over the previous.

Although the fast triangulation method obtains large speedups when run on
the GPU, it still has issues fully utilizing the highly-parallel GPU programming
model. The method relies on gradient descent, an iterative algorithm, making it
hard to predict the amount of work needed per feature track until convergence.
The step size for gradient descent must also be carefully considered due to its
impact on the convergence rate and the stability of the algorithm. Furthermore,
the one-block-per-track implementation can leave threads idling uselessly in a
block if the track lengths are not long enough to fill a block [20], which must be
a size that is a multiple of the warp size (32).

5.2 Parallax Paths GPU Implementation

The parallax paths method is a highly parallelizable method because the bulk of
the computation involves two main stages: (1) computing ray-plane intersections
for determining an initial set of parallax paths; and (2) computing all the scale
values to be used in the per-track average scale. If N is the number of tracks and
C is the number of cameras, there would be max N × C ray-plane intersections
and N × C scale values. For computing ray-plane intersections and individual
scale values, we can compute each work-item completely independently and have
a maximum N × C-way parallelism running on a highly-parallel GPU. In the
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third stage, to compute the average scales, we need to sum all the scales within
each track. Although it is possible to parallelize a sum reduction, we opt to
have each thread compute the sum in serial, since we only need to perform the
reduction once, and it is an insignificant portion of the runtime. Next, we correct
the parallax path for each track. In practice, we only need to correct two points
on the path because in the next and last stage, we recover the 3D position by
intersecting two corrected rays from two corrected path points. Fig. 4 shows
a high-level overview of the parallax paths streaming workflow on the GPU.
Although the last three stages are shown as separate, they can be combined
into one GPU kernel to preserve data locality, since they all operate per track
and therefore all exhibit N -way parallelism. Unlike gradient descent in fast
triangulation, parallax paths on the GPU does not require multiple iterations
and multiple sum reductions, instead providing a faster, more direct solution.

Ray-plane
intersections

P = N x C

Compute scales
P = N x C

Sum scales 
P = N

parallax
paths

scales
average
scales

Correct parallax
paths
P = N

corrected
paths

Intersect rays
P = N

3D scene
points

Fig. 4. Parallax paths stages on the GPU, including parallelism P per stage.

6 Results

We compare the processing times and general behavior of fast triangulation and
parallax paths on both synthetic and real data. Our test computer has 2 Intel
Xeon E5-2637 v2 CPUs, each with 4 cores clocked at 3.5 GHz, for a total of 8
cores that we use for multicore tests. Our GPU is an NVIDIA Tesla K40c, which
features 15 SMs, for a total of 2880 ALUs. For running the serial tests on real
data, we use a different CPU, the Intel Core i7-3630QM at 2.4GHz, since we
found it had the best single-core performance. We use the OpenMP programming
model to implement a multi-core parallelization of parallax paths by partitioning
the set of feature tracks among the CPU threads. The following abbreviations are
used throughout the section: PP stands for parallax paths with scale determined
from an average across an entire track; PP2 indicates parallax paths with scaling
determined from only the first two features of a track; and FT refers to fast
triangulation. MC denotes multi-core, while NU indicates that the tracks are of
non-uniform length. We do not perform statistical sampling for any tests, except
for some FT error tests, where sampling can help avoid degeneracies of close
adjacent cameras.

6.1 Synthetic Tests

The goal of synthetic testing is to compare fast triangulation versus parallax paths
runtime performance on large-scale data and their accuracy in a ground-truth
sense, with ground-truth not typically being available in real datasets.
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Fig. 5(a) shows runtime performance scaling with an increasing number of
tracks. In this test, we use the one-thread-per-track GPU implementation of
FT. With increasing tracks, Fig. 5(a) shows that PP on the GPU scales better
than its multi-core version and also scales better than FT on the GPU. We do
not display FT on multi-core because its runtime is much higher than other
tests. PP2 unsurprisingly has an insignificant runtime since it only triangulates
with the first 2 cameras. For the FT NU test, we sort the tracks to aid in load
balancing. Even so, compared to FT on the GPU, PP on the GPU has a much
higher improvement in runtime (a max 55% vs 22% drop) when processing non-
uniform (NU ) tracks instead of uniform tracks. The reason is that PP has more
parallelism, with more independent work across tracks. Unlike FT, it does not
have load-balancing issues that nullify some of the runtime reduction expected
due to an overall decrease in the number of features to process.

Fig. 5(b) shows runtime performance scaling with an increasing number of
cameras. In this test, we use the one-block-per-track GPU implementation of FT,
since it is more suitable for longer track lengths. PP2 is left out here because
it only uses 2 cameras regardless of track length. Fig. 5(b) shows that PP also
scales better than FT with increasing cameras.

(a) (b)

Fig. 5. (a) Runtime performance with an increasing number of tracks. The number is
increased up to 1,000,000, in increments of 50,000. Track length is fixed at 100 cameras,
except for the NU cases, where it is varied from 2–100. (b) Runtime performance with
an increasing number of cameras. Cameras are varied up to 400, in increments of 50,
and track length is fixed at 100,000.

In the error tests shown in Fig. 6, we use three types of camera configurations:
circle, where cameras were placed on a circular configuration above the scene,
line for a linear camera configuration, and random, where cameras are randomly
placed in 2 dimensions above the scene, while all still lying on a common flat
plane. Track length is fixed at 100, and the number of tracks is fixed at 10,000.

Fig. 6(a) shows ground-truth error versus feature track error, where all features
in a track are subject to error. Error is introduced to the perfect synthetic tracks
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by adding noise of 0.5–5% of a unit on the uncalibrated image plane diagonal
in random directions. For all camera configurations, PP is less accurate than
FT. Fig. 6(b) shows the results for the same analysis, but in this case the first
feature in each track (feature first seen in the anchor camera) is kept noiseless,
which is a more realistic scenario. Now, we observe an improved accuracy in PP
comparable to that of FT. This test demonstrates that having accurate features
in anchor frames is critical for good parallax path reconstructions.

(a) (b)

Fig. 6. Ground truth error vs. feature track error for synthetic data. (a) All features in
each track subject to error. (b) No error in first feature of each track.

6.2 Tests On Real Datasets

For real datasets, we measure performance and reprojection error, including
speedup across implementations. It is important to note that the concept of
reprojection error may not be applicable for parallax paths. The reason is that
the camera path constraint in parallax paths enables it to be used as a means
to correct feature tracks [1]. Once the scales are obtained, the tracks can be
corrected and reprojected back into images, changing the features themselves and
leading to a zero reprojection error. Although in the table we show reprojection
error versus original feature tracks, it is not a good indicator of parallax path
accuracy given that it can be forced to 0, but it’s the best that can be done in the
absence of ground-truth information. For the tests, the real datasets were rotated
to align with a vertical axis to make it easier to select a reconstruction plane for
parallax paths. Table 1(a) displays results for fast triangulation (FT), Table 1(b)
for parallax paths (PP), and Table 1(c) for PP2. For all three triangulators, larger
datasets lead to larger speedups of the GPU over a serial implementation. PP and
PP2 are both faster than FT, with up to 14x and 39x speedup respectively for
a meaningfully sized dataset (Canyon). However, they have higher reprojection
error, though this may not be a meaningful comparison.



A Comparative Study of GPU-Accelerated Triangulation Methods 13

Table 1. Times in milliseconds for serial, multi-core, and GPU with number of tracks
N and total number of cameras C. Speedup is the speedup of the GPU over the serial
implementation and ε is the average reprojection error in pixels. Some runtimes for
Horse are left out because they were too small to measure.

(a) Fast triangulation

Data set N C serial multicore GPU Speedup ε

Dinosaur 4983 36 8 2 3 3x 0.467
Canyon 103,153 90 272 70 14 19x 0.226
Canyon Dense 997,115 2 1258 273 23 55x 1.838
Horse 9509 73 27 7 7 3.8x 0.770

(b) Parallax paths

Data set N C serial multicore GPU Speedup ε Speedup vs. FT

Dinosaur 4983 36 2 0.7 0.13 15x 0.668 23x
Canyon 103,153 90 75 16 1 75x 0.354 14x
Canyon Dense 997,115 2 351 64 3 117x 1.847 7x
Horse 9509 73 7 1.8 – – 8.6 –

(c) Parallax paths first 2 cameras

Data set N C serial multicore GPU Speedup ε Speedup vs. FT

Dinosaur [24] 4983 36 2 0.5 0.07 28x 1.246 42x
Canyon [2] 103,153 90 37 7 0.36 102x 0.863 39x
Canyon Dense [2] 997,115 2 351 64 3 117x 1.847 7x
Horse [25] 9509 73 3.4 0.8 – – 1.232 –

Finally, Fig. 7(a)-(c) shows the reconstruction of the Dinosaur dataset [24]
using respectively FT, PP, and PP2 from left to right. Fig. 7(d)-(f) displays the
same but for the Canyon dataset [2]. For the smaller Dinosaur dataset, there are
no obvious major differences for different methods. One limitation of parallax
paths versus fast triangulation is that the scene is not allowed to intersect the
plane of the cameras. To display the problems that occur, Fig. 7(g) shows a good
reconstruction obtained from FT for the Horse [25] dataset, whereas Fig. 7(h)–(i)
show the bad result obtained from parallax paths. For this scene of a horse, the
camera plane intersects the top of the scene, causing some rays to be nearly
parallel to the reconstruction plane, which leads to ill-conditioned problems and
inaccurate reconstructed points. To obtain good parallax path reconstructions,
the camera plane should be separate from the scene.

7 Conclusion

In this paper, we present a comparison of a novel GPU implementation of a
triangulator based on the parallax paths method versus the state-of-the-art multi-
view triangulation method, angular error-based (‘fast’) triangulation. The main



14 J. Mak et al.

(a) FT (b) PP (c) PP2

(d) FT (e) PP (f) PP2

(g) FT (h) PP (i) PP2

Fig. 7. Reconstructions of three scenes: (a)-(c) Dinosaur [24]. (d)-(f) Canyon [2]. (g)-(i)
Horse [25]. Parallax paths performs poorly on Horse due to the camera plane intersecting
part of the scene. To obtain good parallax path reconstructions, the camera plane
should be separate from the scene, as is the case in Dinosaur and Canyon.

contributions of the paper are the following. We map the parallax paths method
to the GPU and analyze its performance as an efficient triangulation method for
the first time. To this end, we compare it with the existing fast triangulation GPU
implementation for both performance and accuracy. We develop the parallax
paths further than in the original method, with more analysis on the effect of
scaling. We also demonstrate the importance of having an accurate first feature
in a feature track to yield an accurate parallax path reconstruction. Overall, the
parallax paths method is highly parallelizable and efficient, but requires that
the cameras used in reconstruction be piecewise-planar and not intersect the
scene itself. Though limited to applications with sequential camera motion, such
as aerial video or turntable sequences, it yields a substantial speedup over fast
triangulation, as demonstrated on real and synthetic testing, while maintaining
comparable accuracy. If accuracy is absolutely critical, fast triangulation may
still be a more preferable method. Future work involves mainly attempting to
obtain more accurate scales in parallax paths, by taking into account further
constraints such as intensity consensus at candidate scales.
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