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Abstract. In this paper we present a novel street scene semantic recog-
nition framework, which takes advantage of 3D point clouds captured by
a high-definition LiDAR laser scanner. An important problem in object
recognition is the need for sufficient labeled training data to learn robust
classifiers. In this paper we show how to significantly reduce the need for
manually labeled training data by reduction of scene complexity using
non-supervised ground and building segmentation. Our system first auto-
matically segments grounds point cloud, this is because the ground con-
nects almost all other objects and we will use a connect component based
algorithm to oversegment the point clouds. Then, using binary range im-
age processing building facades will be detected. Remained point cloud
will grouped into voxels which are then transformed to super voxels.
Local 3D features extracted from super voxels are classified by trained
boosted decision trees and labeled with semantic classes e.g. tree, pedes-
trian, car, etc. The proposed method is evaluated both quantitatively
and qualitatively on a challenging fixed-position Terrestrial Laser Scan-
ning (TLS) Velodyne data set and two Mobile Laser Scanning (MLS),
Paris-rue-Madam and NAVTEQ True databases. Robust scene parsing
results are reported.

1 Introduction

Automatic urban scene objects recognition refers to the process of segmenta-
tion and classifying of objects of interest into predefined semantic labels such as
building, tree or car etc. This task is often done with a fixed number of object
categories, each of which requires a training model for classifying scene com-
ponents. While many techniques for 2D object recognition have been proposed,
the accuracy of these systems is to some extent unsatisfactory because 2D image
cues are sensitive to varying imaging conditions such as lighting, shadow etc.
In this work, we propose a novel automatic scene parsing approach which takes
advantage of 3D geometrical features extracted from Light Detection And Rang-
ing (LiDAR) point clouds. Since such 3D information is invariant to lighting and
shadow, as a result, significantly more accurate parsing results are achieved.
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While a laser scanning or LiDAR system provides a readily available solution
for capturing spatial data in a fast, efficient and highly accurate way, the enor-
mous volume of captured data often come with no semantic meanings. We, there-
fore, develop techniques that significantly reduce the need for manual labelling
of training data and apply the technique to the all data sets. Laser scanning
can be divided into three categories, namely, Airborne Laser Scanning (ALS),
Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS). The pro-
posed method is evaluated both quantitatively and qualitatively on a challeng-
ing TLS Velodyne data set and two MLS, Paris-rue-Madam and NAVTEQ True
databases.

1.1 literature review

Automatic scene parsing is a traditional computer vision problem. Many success-
ful techniques have used single 2D image appearance information such as color,
texture and shape [1, 2]. By using just spatial cues such as surface orientation and
vanishing points extracted from single images considerably more robust results
are achieved [3]. In order to alleviate sensitiveness to different image capturing
conditions, , many efforts have been made to employ 3D scene features derived
from single 2D images and thus achieving more accurate object recognition [4].
For instance, when the input data is a video sequence, 3D cues can be extracted
using Structure From Motion (SFM) techniques [5]. With the advancement of
LiDAR sensors and Global Positioning Systems (GPS), large-scale, accurate and
dense point cloud are created and used for 3D scene parsing purpose. In the past,
research related to 3D urban scene analysis had been often performed using 3D
point cloud collected by airborne LiDAR for extracting vegetation and building
structures [6]. Hernndez and Marcotegui use range images from 3D point clouds
in order to extract k-flat zones on the ground and use them as markers for a
constrained watershed [7].Recently, classification of urban street objects using
data obtained from mobile terrestrial systems has gained much interest because
of the increasing demand of realistic 3D models for different objects common
in urban era. A crucial processing step is the conversion of the laser scanner
point cloud to a voxel data structure, which dramatically reduces the amount of
data to process. Yu Zhou and Yao Yu (2012) present a voxel-based approach for
object classification from TLS data [8]. Classification using local features and
descriptors such as Spin Image [9], Spherical Harmonic Descriptors [10], Heat
Kernel Signatures [11], Shape Distributions [12], and 3D SURF feature [13] have
also demonstrated successful results to various extent.

1.2 Overview of the Proposed Framework

In this work, the ground is first segmented and building facades are subsequently
detected based on range image morphological operations. We use voxel segmenta-
tion that relies on local features and descriptors, to successfully classify different
segmented objects in the urban scene.
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Fig. 1. Overview of the proposed framework

Figure 1 shows the overview of the proposed street scene object recognition
pipeline, in which LiDAR Point Cloud (PC) is the input of the processing pipeline
and result is PC segments assigned with different class labels. At the outset, the
proposed parsing pipeline finds ground points by fitting a ground plane to the
given 3D point cloud of urban street scene. Then, non-ground point cloud are
projected to range images because they are convenient structure for visualization.
Remaining data are processed subsequently to segment building facades. When
this process is completed, range images are projected to the 3D point cloud in
order to make segmentation on other remained vertical objects. We use a connect
component based algorithm to voxilisation of data. The voxel based classification
method consists of three steps, namely, a) voxilisation of point cloud, b) merging
of voxels into super-voxels and c¢) the supervised scene classification based on
discriminative features extracted from super-voxels.

Using a trained boosted decision tree classifier, each 3D feature vector is then
designated with a semantic label such as tree, car, pedestrian etc. The offline
training of the classifier is based on a set of 3D features, which are associated
with manually labeled super-voxels in training point cloud. Main contributions
of this work are the following:

e Develop a novel street object recognition method which is robust to different
types of LiDAR point clouds acquisition methods.

e Proposed two-stage (supervised and non-supervised) classification pipeline
which requires only small amount of time for training.

e Propose to use novel geometric features leads to more robust classification
results (see section 3).
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2 Methodology

It is a challenging task to directly extract objects from mobile LiDAR point
cloud because of the noise in the data, huge data volume and movement of
objects. We therefore take a hybrid two-stage approach to address the above
mentioned challenges. Firstly, we adopt an unsupervised segmentation method
to detect and remove dominant ground and buildings from other LiDAR data
points, where these two dominant classes often correspond to the majority of
point clouds. Secondly, after removing these two classes, we use a pre-trained
boosted decision tree classifier to label local feature descriptors extracted from
remaining vertical objects in the scene. This work shows that the combination of
unsupervised segmentation and supervised classifiers provides a good trade-off
between efficiency and accuracy. In this section we elaborate our point cloud
classification approach.

2.1 Ground Segmentation

The aim of the first step is to remove points belonging to the scene ground in-
cluding road and sidewalks, and as a result, the original point cloud are divided
into ground and vertical object point clouds(Figure 2). The scene point cloud is
first divided into sets of 10mx10m regular, non-overlapping tiles along the hor-
izontal x—y plane. Then the following ground plane fitting method is repeatedly
applied to each tile. We assume that ground points are of relatively small z val-
ues as compared to points belonging to other objects such as buildings or trees
(see Fig. 2). The ground is not necessarily horizontal, yet we assume that there
is a constant slope of the ground within each tile. Therefore, we first find the
minimal-z-value (MZV) points within a multitude of 25cmx25cm grid cells at
different locations. For each cell, neighboring points that are within a z-distance
threshold from the MZV point are retained as candidate ground points. Sub-
sequently, a RANSAC method is adopted to fit a plane to candidate ground
points that are collected from all cells. Finally, 3D points that are within certain
distance (d2 in Fig. 2) from the fitted plane are considered as ground points of
each tile. The constant slope assumption made in this approach is valid for our
data sets as demonstrated by experimental results in Section 3. The approach
is fully automatic and the change of two thresholds parameters do not lead to
dramatic change in the results. On the other hand, the setting of grid cell size
as 2bcm x25cm maintains a good balance between accuracy and computational
complexity.

2.2 Building Segmentation

After segmenting out the ground points from the scene, we present an approach
for automatic building surface detection. High volume of 3D data impose seri-
ous challenge to the extraction of building facades. Our method automatically
extract building point cloud (e.g. doors, walls, faades, noisy scanned inner en-
vironment of building ) based on two assumptions: a) building facades are the
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Fig. 2. Ground Segmentation. Left image: Segmented ground and remained vertical
objects point cloud are illustrated by red and black color respectively. Right figure:
sketch map of fitting plane to one tile.

highest vertical structures in the street; and b) other non-building objects are
located on the ground between two sides of street. As can be seen in figure 3, our
method projects 3D point clouds to range images because they are convenient
structures to process data. Range images are generated by projecting 3D points
to horizontal x—y plane. In this way, several points are projected on the same
range image pixel. We count the number of points that falls into each pixel and
assign this number as a pixel intensity value. In addition, we select and store the
maximal height among all projected points on the same pixel as height value.
We define range images by making threshold and binarization of I, where I pixel
value is defined as Equation (1)

I — Pintensity Pheight (1)
i =
Mal‘—Pintensity Max—Pheight

Where I; is grayscale range image pixel value, Pintensity and Phreight are
intensity and height pixel value and Max_Pintensity and Max_Ppeight represent
the maximum intensity and height value over the grayscale image.

In the next step we use morphological operation (e.g. close and erode) to
merge neighboring point and filling holes in the binary range images (see middle
image in Fig. 3). Then we extract contours to find boundaries of objects. In
order to trace contours, Pavlidis contour-tracing algorithm [14] is proposed to
identify each contour as a sequence of edge points. The resulting segments are
checked on aspects such as size and diameters (height and width) to distinguish
building from other objects. More specifically, equation (2) defines the geodesic
elongation E(X), introduced by Lantuejoul and Maisonneuve (1984), of an object
X, where S(X) is the area and L(X) is the geodesic diameter.

7L?(X)
The compactness of the polygon shape based on equation (2) can be applied
to distinguish buildings from other objects such as trees. Considering the sizes
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Fig. 3. Building Segmentation

and shape of buildings, the extracted boundary will be eliminated if its size is
less than a threshold. The proposed method takes advantage of priori knowledge
about urban scene environment and assumes that there are not any impor-
tant objects laid on the building facades. While this assumption appears to be
oversimplified, the method actually performs quite well with urban scenes as
demonstrated in the experimental results (see section 3).

The resolution of range image is the only projection parameter during this
point cloud alignment that should be chosen carefully. If each pixel in the range
image cover large area in 3D space too many points would be projected as
one pixel and fine details would not be preserved. On the other hand, selecting
large pixel size compared to real world resolution leads to connectivity problems
which would no longer justify the use of range images. In our experiment, a pixel
corresponds to a square of size .05 m?2.

2.3 Voxel based segmentation

After quick segmenting out the ground and building points from the scene, we
use an inner street view based algorithm to cluster point clouds. Although top
view range image analysis generates a very fast segmentation result, there are a
number of limitation to utilize it for the small vertical object such as pedestrian
and cars. These limitations are overcome by using inner view (lateral) or ground
based system in which, unlike top view the 3D data processing is done more
precisely and the point view processing is closer to objects which provides a
more detailed sampling of the objects.

However, this leads to both advantages and disadvantages when process-
ing the data. The disadvantage of this method s includes the demand for more
processing power required to handle the increased volume of 3D data. The 3D
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point clouds by themselves contain a limited amount of positional information
and they do not illustrate color and texture properties of object. According to
voxel based segmentation, points which are merely a consequence of a discrete
sampling of 3D objects are merged into clusters voxels to represent enough dis-
criminative features to label objects. 3D features such as intensity, area and
normal angle are extracted based on these clustersvoxels. The voxel based clas-
sification method consists of three steps, voxilisation of point cloud, merging of
voxels into super-voxels and the supervised classification based on discriminative
features extracted from super-voxels.

2.3.1 Voxelisation of Point Cloude

In the voxelisation step, an unorganized point cloud p is partitioned into small
parts, called voxel v. The middle image in figure 4 illustrates an example of
voxelisation results, in which small vertical objects point cloud such as cars are
broken into smaller partition. Different voxels are labelled with different colors.
The aim of using voxelisation is to reduce computation complexity by and to
form a higher level representation of point cloud scene. Following [8], a number of
points is grouped together to form a variable size voxels. The criteria of including
a new point p;, into an existing voxel i is essentially determined by the crucial
minimal distance threshold d;, which is defined as Equation (3):

min(||pim — pinll2) < din,0 <m,n < N,m #n 3)

where p;,,, is an existing 3D point in voxel, p;, is a candidate point to merge
to the voxel, i is the cluster index, d;; is the maximum distance between two
point, and N is the maximum point number of a cluster. If the condition is met,
the new point is added and the process repeats until no more point that satisfies
the condition is found (see Algorithm 1). Equation (3) ensures that the distance
between one point and its nearest neighbors belonging to the same cluster is
less than dyj,. Although the maximum voxel size is predefined, the actual voxel
sizes depend on the maximum number of points in the voxel (N) and minimum
distance between the neighboring points.

repeat
Select a 3D point for Voxelisation;
Find all neighboring points to be included in the voxel, with this
condition that:
a point p;, directly merge to voxel if its distance to any point p;, the
voxel will not be farther away than a given distance (dsp,);
until all 3D points are used in a vozel or the size of cluster is less than
(N);

Algorithm 1: Voxelisation

2.3.2 Super Voxelisation
For transformation of a voxel to super voxel we propose an algorithm to merge
voxels via region growing with respect to the following properties of clusters:
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Fig. 4. Voxelisation of Point Cloud. from left to right: top view row point cloud, voxeli-
sation result of objects point cloud after removing ground and building, s-voxelisation
approach of point cloud

e If the minimal geometrical distance, D;j, between two voxels is
smaller than a given threshold, where D;; is defined as Equation (4):

D;; = min(llpik _pleQ)’k € (Lm)’l € (1,71) (4>

Where voxels v; and v; have m and n points respectively, and p;, and pj;
are the 3D point belong to voxel v; and v;.

e If the angle between Normal vectors of two voxels is smaller than
a threshold: In this work, normal vector is calculated using PCA (Principal
Component Analysis)[15]. The angle between two s-voxels is defined as angle
between their normal vectors (equation 5):

©;; = arccos(< n;,n; >) (5)
Where n; and n; are normal vectors at v; and v; respectively.

The proposed grouping algorithm merges the voxels by considering the geo-
metrical distance (M < dy,) and normal features of clusters (0;; < Oyp1). All
these Voxelisation steps then would be used in grouping these super-voxels (from
now onwards referred to as s-voxels) into labeled objects. The advantage of this
approach is that we can now use the reduced number of super voxels instead of
using thousands of points in the data set, to obtain similar results for classifica-
tion. The right image in figure 4 illustrates an example of s-voxelisation results,
in which different s-voxels are labelled with different colors.

2.3.3 Feature Extraction

For each s-voxel, seven main features are extracted to train the classifier. The
seven features are geometrical shape, height above ground, horizontal distance to
center line of street, density, intensity, normal angle and planarity. In order to
classify these s-voxels, we assume that the ground points have been segmented
well. The object types are so distinctly different however these features as men-
tioned are sufficient to make a classification. Along with the above mentioned
features, geometrical shape descriptors plays an important role in classifying ob-
jects. These shape-related features are computed based on the projected bound-
ing box to x - y plane (ground).
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Geometrical shape: Projected bounding box has effective features due to the
invariant dimension of objects. We extract four feature based on the projected
bonding box to represent the geometry shape of objects.

— Area : the area of the bounding box is used for distinguishing large-scale
objects and small ones.

— Edge ratio : the ratio of the long edge and short edge.

Maximum edge : the maximum edge of bounding box.

Covariance : is used to find relationships between point spreading along

two largest edges.

e Height above ground : Given a collection of 3D points with known geo-
graphic coordinates, the median height of all points is considered as the height
feature of the s-voxel. The height information is independent of camera pose and
is calculated by measuring the distance between points and the road ground.

e Horizontal distance to center line of street : Following [16], we compute
the horizontal distance of the each s-voxel to the center line of street as second
geographical feature. The street line is estimated by fitting a quadratic curve to
the segmented ground.

e Density : Some objects with porous structure such as fence and car with win-
dows, have lower density of point cloud as compared to others such as trees and
vegetation. Therefore, the number of 3D points in a s-voxel is used as a strong
cue to distinguish different classes.

e Intensity : following [17], LiDAR systems provide not only positioning infor-
mation but also reflectance property, referred to as intensity, of laser scanned
objects. This intensity feature is used in our system, in combination with other
features, to classify 3D points. More specifically, the median intensity of points
in each s-voxel is used to train the classifier.

e Normal angle : Following [18], we adopt a more accurate method to compute
the surface normal by fitting a plane to the 3D points in each s-voxel.

e Planarity : Patch planarity is defined as the average square distance of all 3D
points from the best fitted plane computed by RANSAC algorithm. This feature
is useful for distinguishing planar objects with smooth surface like cars form non
planar ones such as trees.

2.3.4 Classifier

The Boosted decision tree [19] has demonstrated superior classification accu-
racy and robustness in many multi-class classification tasks. Acting as weaker
learners, decision trees automatically select features that are relevant to the given
classification problem. Given different weights of training samples, multiple trees
are trained to minimize average classification errors. Subsequently, boosting is
done by logistic regression version of Adaboost to achieve higher accuracy with
multiple trees combined together. In our experiments, we boost 20 decision trees
each of which has 6 leaf nodes. This parameter setting is similar to those in
[3], but with slightly more leaf nodes since we have more classes to label. The
number of training samples depends on different experimental settings, which
are elaborated in Section 3.
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3 Experimental Result

The LiDAR technology has been used in the remote sensing urban scene un-
derstanding by two main technology: Terrestrial Laser Scanning (TLS), useful
for large scale buildings survey, roads and vegetation, more detailed but slow
in urban surveys in outdoor environments; Mobile Laser Scanning (MLS), less
precise than TLS but much more productive since the sensors are mounted on
a vehicle; In order to test our algorithm both type of data sets were used:

1. 3D Velodyne LiDAR as TLS data set [20]
2. Paris-rue-Madame [21] and NAVTAQ True as MLS datasets [17]

We train boosted decision tree classifiers with sample 3D features extracted from
training s-voxels. Subsequently we test the performance of the trained classifier
using separated test samples. The accuracy of each test is evaluated by compar-
ing the ground truth with the scene parsing results. We report global accuracy
as the percentage of s-voxel correctly classified, per-class accuracy as the nor-
malized diagonal of the confusion matrix and class average which represents the
average value of per class accuracies.

3.1 Evaluation Using the Velodyne LiDAR Database

The database includes ten high accurate 3D point cloud scenes collected by a
Velodyne LiDAR mounted on a vehicle navigating through the Boston area.
Each scene is a single rotation of the LIDAR, yielding a point cloud of nearly
70,000 points. Scenes may contain objects including cars, bicycles, buildings,
pedestrians and street signs. Finding ground and building points is discussed in
Section 2.1 and 2.2, and the recognition accuracy is approximately 98, 4% and
95, 7% respectively. We train our classifier using seven scene datasets, selected
randomly, and test on the remaining three scenes. Table 1 presents the confusion
matrices between the six classes over all 10 scenes. Our algorithm performs well
on most per class accuracies with the heights accuracy 98% for Ground and
the lowest 72% for sign-symbol. The global accuracy and per-class accuracy are
about 94% and 87% respectively.

Tree[ C’ar[ Sign[Person[Fence[ Ground[Buildingl
Tree [0.89 0.00 0.07 0.00 0.04 0.00 0.00
Car 10.03/0.95 0.00 0.00 0.02 0.00 0.00
Stgn|0.17 0.00 0.72 0.11 0.00 0.00 0.00

Person |0.03 0.00 0.27 0.78 0.00 0.00 0.00
Fence |0.03 0.00 0.00 0.00 0.85 0.00 0.12

Ground [0.00 0.00 0.00 0.00 0.00 = 0.98 0.02

Building|0.00 0.00 0.00 0.00 0.04 0.00 0.96

Table 1. Confusion matrix Velodyne LiDAR Database
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Test Result PC Misclassified Map

Fig. 5. Left image shows scene object recognition qualitative results, right image rep-
resent misclassified points.

Results| Tree| Car|Sign| Person|Fence| Ground | Building
Lais |0.83]0.91/0.80| 0.41 | 0.61 | 0.94 0.86
Our |0.89(0.95/0.72| 0.88 | 0.85 | 0.98 0.95

Table 2. Comparison of the class accuracy of our approach and Lais approach

We also compare our approach to the method described by Lai in [20]. Table
1 shows its quantitative testing result. In terms of per class accuracy, we achieve
87% in comparison to 76%. Figure 7 shows some of the qualitative results of the
test scene, achieved by our approach.

3.2 Evaluation Using Paris-rue-Madame and NAVTAQ True
datasets

Paris-rue-Madame and NAVTAQ True datasets contains 3D MLS data. The
Paris-rue-Madame point cloud is collected from rue Madame Street with 160 m
long. The dataset contains 20 million points, 642 objects categorized in 26 classes.
Its noteworthy that several objects such as wall sign and wall light are considered
as building facades. The second MLS dataset is collected by NAVTAQ True
system consisting of point cloud form New York streets. This LiDAR data was
collected using terrestrial scanners and contains approximately 710 million points
covering 1.2 km. These point clouds hold additional information such as RGB
color, time step and etc. which is ignored here as our focus remained on using
the pure geometry and intensity for the classification of objects. Same as TLS
evaluating test we use 11 dominant categories: Building, Tree, Bike, Car, Sign-
Symbol, Ground, Building. The Paris-rue-Madame and NAVTAQ True data sets
are divided into two portions: the training set, and the testing set. The 70% long
of each data set are randomly selected and mixed for training of classifier and
30% remained long of point cloud is used for testing. Table 3 shows the quantities
results achieved by our approach.

Comparing to Terrestrial Laser Scanning, our results are not as good as in
shown in Table 1. Since mixing two data sets captured from different cities poses
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Building  Ground Car Sign person Bike Tree

Fig. 6. Scene object recognition qualitative results in different view

serious challenges to the parsing pipeline. Furthermore, 3D street object detec-
tion is a much harder task than reconstructing walls or road surface. Because
street objects can have virtually any shape and due to small resolution and the
fact that the LiDAR only scans one side of the object, the detection is some-
times impossible. Moving objects are even harder to reconstruct based solely on
LiDAR data. As these objects (typically vehicles, people) are moving through
the scene, which make them appear like a long-drawn shadow in the registered
point cloud. The long shadow artifact is not appear in TLS system because in
which we face to one point as exposure point to scan the street objects. Figure
8 shows some of the qualitative results of the test scene.

Tree[ Car[Sign [ Person[Bike[ Ground[Buildingl
Tree |0.75 0.07 0.10 0.00 0.00 0.00 0.08
Car ]0.11 10.73 0.00 0.00 0.05 0.00 0.11
Sign.|0.09 0.00/0.78 0.13 0.00 0.00 0.00
Person |0.07 0.00 0.21 | 0.58 0.14 0.00 0.00
Bike [0.03 0.00 0.00 0.04 '0.81 0.00 0.12
Ground {0.00 0.00 0.00 0.00 0.00 0.97 0.03
Building|0.05 0.00 0.00 0.00 0.04 0.00 0.95
Table 3. Confusion matrix of Paris-rue-Madame and NAVTAQ True Database
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4 Conclusion

We have proposed a novel and comprehensive framework for semantic parsing
of street view 3D MLS and TLS point cloud based on geometrical features.
First, ground are segmented using a heuristic approach based on the assumption
of constant slope group plane. Second, building points are then extracted by
tracing contours of projections of 3D points onto the x - y plane. Using this
segmentation huge amount of data (more than 75% of points) are labeled, and
only small amount of point cloud which have complex shape remained to be
segmented. During the offline training phase 3D features are extracted at s-voxel
level and are used to train boosted decision trees classifier. For new scene, the
same unsupervised ground and building detection are applied and geometrical
features are extracted and semantic labels are assigned to corresponding point
cloud area. The proposed two-stage method requires only small amount of time
for training while the classification accuracy is robust to different types of LIDAR
point clouds acquisition methods. To our best knowledge, no existing methods
have demonstrated the robustness with respect to variety in LiDAR point data.
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