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Abstract. We propose a novel solution for reconstructing planar surface
patches. The theoretical foundation relies on variational calculus, which
yields a closed form solution for the normal and distance of a 3D planar
surface patch, when an affine transformation is known between the cor-
responding image region pairs. Although we apply the proposed method
to projective cameras, the theoretical derivation itself is not restricted to
perspective projection. The method is quantitatively evaluated on a large
set of synthetic data as well as on real images of urban scenes, where pla-
nar surface reconstruction is often needed. Experimental results confirm
that the method provides good reconstructions in real-time.

1 Introduction

Wide baseline multi view stereo has important role in image-based urban scene
reconstruction [1]. Classical approaches are either based on sparse point corre-
spondences or dense stereo matching [2]. Then a 3D point cloud is obtained,
which is the basis for scene objects’ mesh modeling. Recently Poisson surface
reconstruction [3] became widely used for this purpose. This method uses point
coordinates as well as normal vectors to construct a smooth and detailed poly-
gon mesh. Recently, region-based methods has been gaining more attention, in
particular affine invariant detectors [4]. This affine invariance is closely related
to the normal of the observed surface patch as we will see in this paper in a
general context.

The most frequently used volumetric 3D object representation obtained by
space carving [5] or variational level set methods [6] requires bounded objects.
The accuracy of the reconstruction is determined by the resolution of the spatial
grid used to define the smallest distinguishable elements. These methods would
not fit for large open scenes. Multiple depth map [7] is a possible alternative 3D
object representation, but it requires complicated registration steps in a later
stage assuring the consistency and accuracy. Patch-based scene representation is
proved to be efficient [8] and consistent with region-based correspondence-search
methods.

The importance of piecewise planar object representation in 3D stereo has
been recognized by many researchers. Habbecke and Kobbelt used a small plane,
called ’disk’, for surface reconstruction [9, 10]. They proved that the normal is a
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linear function of the camera matrix and homography. By minimizing the differ-
ence of the warped images, the surface is reconstructed. In this paper, we give a
closed form solution to surface normal and distance. Kannala and Brandt also
started from a seed region which is obtained by point detector or blob detector
[11]. An affine transformation is then applied to the seed region for further prop-
agation. In our method, we determine planar perspective transformation which
provides the surface normal and distance in a closed form. Furukawa proposed
using a small patch for better correspondence [12]. The surface is then grown
with the expansion of the patches. The piecewise planar stereo method of Sinha
et al. [13] uses shape from motion to generate an initial point cloud, then a
best fitting plane is estimated, and finally an energy optimization problem is
solved by graph cut for plane reconstruction. Combining the work by Furukawa
and Sinha [12, 13], Kowdle et al. introduced learning and active user interaction
for large plane objects [14]. Hoang et al. also started from a point cloud [15]
which was subsequently used for creating a visibility consistent mesh. In our
approach, planes are directly reconstructed from image region(s) rather than a
point cloud. Fraundorfer et al. [16] used MSER regions to establish correspond-
ing regions pairs. Then a homography is calculated using SIFT detector inside
the regions. Planar regions are then grown until the reprojection error is small.
Zhou et al. assumed the whole image is a planar object, and proposed a short
sequence SFM framework called TRASAC [17]. The homography is calculated
using optical flow. Although the role of planar regions in 3D reconstruction has
been noticed by many researchers, the final reconstruction is still obtained via
triangulation for most state-of-the-art methods. Planar objects are only used for
better correspondences or camera calibration.

In this paper we will develop a direct method to reconstruct whole planar
patches using only the camera matrices and an affine or homography map be-
tween the image region pairs corresponding to the 3D scene patch. Since we use
the correspondence-less approach of Domokos et al. [18] to estimate planar ho-
mography directly between image regions, our method doesn’t require any point
correspondences between stereo image pairs. Another important advantage of the
proposed method is its real-time performance due to the closed form solution
while also maintaining robustness. This opens the way to use our reconstruction
algorithm on mobile or embedded devices.

The theoretical derivation of the general formula for 3D plane reconstruction
is presented in Section 2, where we also discuss numerical stability of the formulas
based on geometric consideration, and a simple recipe is also proposed to avoid
unstable situations. Section 3 contains comprehensive numerical test results both
for normal and distance calculation using synthetic and real data.

2 Normal and Distance Computation

We now derive a simple, closed form solution to reconstruct the normal and
distance of a 3D planar surface patch from a pair of corresponding image re-
gions and the camera matrices. Although differential geometric approaches were
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used to solve various problems in projective 3D reconstruction, the approach
proposed here is unique to the best of our knowledge. For example, [19, 20] are
about generic surface normal reconstruction using point-wise orientation- or spa-
tial frequency disparity maps, while our method avoids point correspondences
and reconstructs both normal and distance of a planar surface from the induced
planar homography between image regions. Unlike [19, 20], which consider only
projective camera and uses a parameterization dependent, non-invariant repre-
sentation; we use a very general camera model and invariant representation.

The notation used in this section follows [21] and is widely used in contin-
uum mechanics and classical differential geometry. For vectors and tensors we
use bold letters. We use the symbol ”·” for dot product, between tensors (in
their matrix representation this is the usual matrix-matrix product). A simple
sequence of vectors represents their dyadic product. The transpose of a dyad is
the reversed sequence of the constituent vectors. A short ”dictionary” is provided
here for quick reference: aTb→ a · b, abT → ab, Ab→ A · b, bTA→ b ·A,
AB→ A ·B, where a,b are column vectors and A,B are second order tensors
represented by two-dimensional matrices. Note that in this notation (ab)

T
= ba.

2.1 Basic equations for normal computation

Herein, after briefly summarizing the theoretical backround based on [21], we will
show how these results can be applied to compute the normal of a 3D scene plane
from corresponding observed image regions. Let us consider the visible part of
the scene objects as reasonably smooth surfaces embedded into the ambient 3D
space. An image of the scene is a 3D-2D mapping given by two smooth projection
functions: x = x (X,Y, Z), y = y (X,Y, Z), with x, y being the image coordinates.
Hereafter we don’t assume any special form of these coordinate-functions, except
their differentiability w.r.t. spatial coordinates X, Y , Z of a world coordinate
system given in standard basis i, j, k. For the surface representation we use
general Gauss-coordinates:

S (u, v) = X (u, v) i + Y (u, v) j + Z (u, v)k (1)

If the projected spatial points are on the surface too, the image coordinates
depend on the general parameters as well:

x (u, v) = x (X (u, v) , Y (u, v) , Z (u, v))
y (u, v) = y (X (u, v) , Y (u, v) , Z (u, v))

(2)

We suppose that the surface point u0 =
[
u0 v0

]T
with a neighborhood consti-

tuting a small open patch are visible, therefore its mapping to the camera image

is a bijection. The differential du =
[
du dv

]T
represents a point shift on the

surface with its effect on the image being dx ≈ J · du where dx =
[
dx dy

]T
and

the Jacobian J of the mapping is invertible. Now consider a stereo camera pair
(distinguishing them with indices i, j). Since J is invertible, we can establish
correspondences between the images having the same point-shift du = J−1

i ·dxi:

dxj = Jj ·J−1
i · dxi = Jij · dxi (3)
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where Jij is the Jacobian of the xi → xj mapping. Considering the derivative of
a composite function f :

∂f

∂u
=
∂X

∂u

∂f

∂X
+
∂Y

∂u

∂f

∂Y
+
∂Z

∂u

∂f

∂Z
= Su · ∇f (4)

where ∇f is the gradient of f w.r.t. the spatial coordinates, and Su is the local
basis vector alongside parameter line u. Applying this result to the projection
functions, the Jacobians take the following form:

Jk =

[
Su · ∇xk Sv · ∇xk
Su · ∇yk Sv · ∇yk

]
, k = i, j (5)

After substitution, the products of the above quantities appear in Jij . For ex-
ample, the determinant

det (Ji) = (Su · ∇xi) (Sv · ∇yk)− (Sv · ∇xi) (Su · ∇yi) (6)

which can be expressed by dyadic products equivalent to the surface normal’s
cross-tensor as

det (Ji) = ∇xi · (SuSv-SvSu) · ∇yi
= −∇xi · [N]× · ∇yi = − |N| |∇xin∇yi | , (7)

where N is the surface normal, n is the unit normal, and |∇xin∇yi | is the triple
scalar product of the gradients and the normal. Finally, we get [21]

Jij =
1

|∇xin∇yi |

[
|∇xjn∇yi | |∇xin∇xj |
|∇yjn∇yi | |∇xin∇yj |

]
(8)

The above quantities are all invariant first-order differentials: the gradients of
the projections and the surface unit normal vector. Note that (8) is a general
formula: neither a special form of projections, nor a specific surface is assumed
here, hence it can be applied for any camera type and for any reasonably smooth
surface.

The formula derived above can be used for different purposes:

1. an affine transformation can be established between the images of a known
surface using known projection functions;

2. if the projections are known and the parameters of the affine mapping acting
between corresponding regions of a stereo image pair are estimated, then the
normal of the corresponding 3D surface patch can be computed;

3. if the 3D surface normal is known and the affine mapping parameters are
estimated, then the gradients of one of the projection functions can be com-
puted.

Case 1) is addressed in [21]. Herein, we will show how to use this formula in
case 2) for normal vector computing. Let us write the matrix components -
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estimated either directly with affine estimator or taking the derivatives of an
estimated homography - with:

Jij est =

[
a11 a12
a21 a22

]
(9)

To eliminate the common denominator we may use ratios, which can be con-
structed using either row, column, or cross ratios. Without loss of generality, we
deduce the equation for the 3D surface normal using cross ratios:

n · (∇yi ×∇xj)
n · (∇yj ×∇xi)

=
a11
a22

,
n · (∇xj ×∇xi)
n · (∇yi ×∇yj)

=
a12
a21

(10)

After rearranging:

n · [a22 (∇yi ×∇xj)− a11 (∇yj ×∇xi)] = 0
n · [a21 (∇xj ×∇xi)− a12 (∇yi ×∇yj)] = 0

(11)

Here we have two (known) vectors, both perpendicular to the normal:

p = [a22 (∇yi ×∇xj)− a11 (∇yj ×∇xi)]
q = [a21 (∇xj ×∇xi)− a12 (∇yi ×∇yj)]

(12)

Thus the 3D surface normal can readily be computed as

n =
p× q

|p× q|

2.2 Specialization to perspective camera

Let us now apply our general results to the case of perspective cameras. The
camera matrix of the i-th camera P(i) is a 3× 4 rank 3 matrix with row vectors

π
(i)T
k =

[
p
(i)
k1 p

(i)
k2 p

(i)
k3 p

(i)
k4

]
, k = 1, 2, 3. Furthermore, spatial coordinates are

represented as homogeneous four-vectors X̂ =
[
X Y Z 1

]T
and the projection

functions become rational functions due to projective division:

xi =
π
(i)
1 · X̂
si

, yi =
π
(i)
2 · X̂
si

(13)

with si = π
(i)
3 · X̂. Using these notations, the gradients become

∇xi =
1

si

[
p
(i)
11 − p

(i)
31xi p

(i)
12 − p

(i)
32xi p

(i)
13 − p

(i)
33xi

]T
∇yi =

1

si

[
p
(i)
21 − p

(i)
31 yi p

(i)
22 − p

(i)
32 yi p

(i)
23 − p

(i)
33 yi

]T (14)

Observing that each coefficient composed by cross product has exactly one gradi-
ent of projection i and one gradient of projection j, the scaled vectors P = sisjp
and Q = sisjq yields the same result

n =
P×Q

|P×Q|
with denominators si, sj eliminated.
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2.3 Using homography

It is well known from projective geometry that images of a planar surface patch
are related by planar homography, which is given by a 3 × 3 matrix realizing
the mapping between homogeneous coordinates. It follows that if this matrix
is known, one can accurately determine the affine parameters calculating the
homography’s partial derivatives. Denoting the components of the homography
matrix Hij with hkl (k, l = 1, 2, 3) acting between images i and j, the elements
of Jij become

a11 =
1

r
(h11 − h31xj) , a12 =

1

r
(h12 − h32xj)

a21 =
1

r
(h21 − h31yj) , a22 =

1

r
(h22 − h32yj)

(15)

with scale factor r = h31xi + h32yi + h33.

2.4 Discussion

For the sake of simplicity we suppose that our cameras have zero skew (e.g.
camera with CCD sensor), hence the calibration matrix is

K =

α 0 x0
0 β y0
0 0 1

 (16)

The projection functions expressed in the camera coordinate system are then
x = αX

Z +x0, y = β Y
Z +y0 and the gradients (scaled by the common multipliers)

become

1

α
Z2∇x =

[
Z 0 −X

]T
1

β
Z2∇y =

[
0 Z −Y

]T
(17)

This result shows that ∇x is on the Y = 0 plane relative to camera (i.e. per-
pendicular to its momentary ”up-down” direction), and perpendicular to the
direction of the object’s projection onto that plane. Similarly, ∇y is on the
X = 0 plane (i.e. perpendicular to its momentary ”left-right” direction), and
perpendicular to the direction of the object’s projection onto that plane.

Since we use these gradients in cross products, the ”perpendicularities on the
planes clause” can be lifted and finally we have a very important condition for
the cross products involved in (8): they admit parallelism if and only if the two
camera centers and the observed point of interest are on the same line. Note that
in the case of video sequences, this parallax-less condition renders the motion
toward the observed object as critical motion. Furthermore, the basic equations
(8) include triple scalar products with surface normal involved. The parallelism
of any gradient and the normal (the case to be excluded) means that the observed
point is imaged as contour point.
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Nevertheless, in practice the following algebraic consideration is usually suffi-
cient. As discussed in Section 2.1, the normal can be expressed by three different
ratios. Of course, in theory these ratios yield exactly the same normal vector:
Clearly, taking row ratios is equivalent to column ratios of the inverse trans-
formation and vice versa; while cross ratios are equivalent for both. In practice,
however, affine parameters are subject to noise, inherent to any image processing
algorithm, causing slight numerical differences in the normals provided by the 3
ratios. To choose the numerically most stable one, we recommend to follow this
three-step procedure:

1. Determine the estimated transformation’s Jacobian (see (9)) and choose the
two components having the smallest absolute values

2. If these values are both significantly less than the next in order (element
having the 3-rd smallest absolute value), then the equations expressed with
that particular ratios (i.e. where either P or Q are close to zero vector)
should be excluded from step 3

3. Choose the expression serving the biggest weighted value for |P×Q|

The weight we recommend is based on our numerical experience and not yet
theoretically investigated. According to that, expression based on cross ratio
seems to be the most reliable and accurate in practice. Therefore if it is not
dropped prior to step 3, we recommend its weighting with a greater number
than 1 (say 4) as its ”effective” magnitude for comparison. If more than two
cameras are involved then we can repeat the above procedure to choose the
most favorable camera pair.

2.5 Distance Calculation

While for the surface normal, only an affine mapping is needed between the
image pairs, knowing the normal and the plane-induced homography allows us
to determine the distance from an observed planar patch too. It is well known
that a plane-induced homography encapsulates the plane’s unit normal and per-
pendicular distance from the origin [2]. Furthermore, our homography matrix is
a homogeneous entity, therefore the ratio of its any two components gives one
equation for distance - leading to a highly overdetermined system which can be
solved in the least square sense. Within the cameras’ relative coordinate system,
the world coordinate system can be canonically attached to one of the cameras,
and the transformation between normalized points Xi = K−1

i xi in camera i and
Xj = K−1

j xj in camera j can be described as

Xj = (R +
1

d
tn) ·Xi (18)

where d is the perpendicular distance of the plane to the camera center i, R and t
are relative rotation and translation of the two camera coordinate frames, and n
is the normal of the 3D plane. Using homogeneous coordinates, the above equa-
tion is satisfied up to an arbitrary non-zero scale factor, hence the homography
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H can be expressed as
H ∼= dR + tn (19)

Note that the only unknown of the above equation is d. In order to set the scale
of the above relation, the last element of the homography matrix can be fixed
to 1 by dividing H with its last element, assuming it is non-zero. If it would be
0 – which is theoretically possible – then H would map points to infinity, which
is usually excluded by physical constraints in real applications.

When the camera poses are given in an arbitrary world coordinate frame,
then relative rotation and translation can be computed as

R = Rj ·R−1
i

t = Rj · (Ci −Cj)
(20)

where Ri and Rj are the orientations while Ci and Cj are the positions of
camera i and j in the world coordinate system. Furthermore, the surface normal
in relative coordinates can be expressed in terms of its world coordinates nw as
n = Ri ·nw, and the distance d = dw−nw ·Ci, where dw is the distance expressed
in the world coordinate frame. Finally, when the estimated homography Hi,j ,
mapping the corresponding regions from camera i to j, is given in unnormalized
image coordinates, then Hi,j = KjHK−1

i , where H is from (19). We thus get
the following general relation between the homography Hi,j , camera and plane
relative poses:

Hi,j
∼= (dw − nw ·Ci) ·Rj ·R−1

i + Rj · (Ci −Cj)(Ri · nw) (21)

The only unknown in the above equation is dw, which can be obtained by mini-
mizing the geometric error of the transferred points over the image regions:

arg min
dw

=
∑
p

‖Hi,jp−Ap‖2 (22)

where A is the right hand side of (21). The minimizer of the above expression is
easily obtained in a closed form as the position of the zero first order derivative
w.r.t. dw.

3 Experimental Results

The proposed method was tested on an Intel i7 3.4GHz CPU with 8 GB mem-
ory. A total of 300 synthetic examples were generated by selecting 15 templates
introduced by [18]. The camera intrinsic matrix was derived from a real world
camera. The extrinsic parameters were randomly set with the orientation be-
tween −π/6 to π/6 for each axis, the translation chosen from -20 to 20 in x and
y directions, and from -10 to -20 in z directions. The z component was set to
be negative so the scene was in front of the camera. The normal of the plane
was a random selection with the only assumption that it points out of the image
plane.
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Fig. 1. Homography error for our synthetic dataset (the test cases are sorted on the
x-axis).

Fig. 2. Distance error and normal error plot for our synthetic dataset (test cases are
sorted on the x-axis based on distance error)

The first step of our algorithm is homography estimation between the corre-
sponding region pairs. For that purpose, we use the correspondence-less method
of [18] using the publicly available implementation. For a detailed evaluation
of the method, see [18]. For reference, we show the homography error on our
synthetic dataset in terms of the percentage of non overlapping area sorted in
increasing order in Fig. 1. The registration method has less than 5% error for
more than 250 examples. Obviously, this error directly affects the reconstruction
error of our method - as we will see later.

Once the planar homography between the corresponding region pair is es-
timated, we can compute the 3D surface normal and distance using the closed
form formulas derived in Section 2. A sample 3D reconstruction for synthetic
data is shown in Fig. 3. The red surface is the ground truth surface and the blue
one is the recovered surface. We also show the error map of the reconstruction.
The color bar gives the index of the distance error in percentage - the error rate
was less than 0.3%. The different colours also indicate that the two normals of
the two surfaces are not perfectly parallel. Fig. 2 shows the error plots for the
whole synthetic dataset. It is clear that distance error plot runs together with
the normal error, hence our method provides reliable reconstructions for most
test cases, giving low error rates for both surface parameters.

It is important to note that the proposed method can reach real time speed
due to the closed form solution of the surface parameters.

3.1 Comparison with classical methods

Herein, we perform an experimental comparison of well known classical plane
reconstruction methods and quantitatively demonstrate the performance of our
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3D reconstruction

Input image pair Reconstruction error

Fig. 3. 3D reconstruction of a synthetic image pair

method with respect to these algorithms on our synthetic dataset. The compar-
ison is done first with the plane from homography method described by Hartley
and Zisserman [2] for accuracy of the plane parameters, and then with the tri-
angulation method of Fraundorfer et al. [16] for reconstruction accuracy. We
remark, that Fraundorfer et al. originally use Harris corners for point correspon-
dences to estimate homography in [16]. While the accuracy of their homography
estimation (around 6%) is comparable to our method, we used the same homog-
raphy for all methods to guarantee a fair comparison.

In Fig. 4, distance error and normal error plots are shown for the proposed
method and the plane from homography direct method [2] (the Matlab code
is available from http://www.robots.ox.ac.uk/~vgg/hzbook/code/codevgg_

plane_from_2P_H.m). The purpose of this experiment is to compare our direct
method derived via differential geometric considerations with a classical direct
methods derived via projective geometric considerations, as a basis. Of course, in
our experiments, we work with the estimated scene plane induced homography,
which is theoretically correct but subject to numerical errors (see Fig. 1 for the
homography errors). More than 200 examples gave less than 2.5% in distance
error and 5 degree in normal error. Indeed, the proposed method performs an
order of magnitude better than the classical method. Let us stress again that
both methods used exactly the same input, so the results show the (very) differ-
ent behaviour of these direct formulas in case of realistic image measurements!
These experiments show that our direct method can tolerate slight errors in the
homography, while the formula obtained via projective geometry is extremely
sensitive to the smallest amount of numerical error, as it is also noted in [2].
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Normal error plots Distance error plots

D % D% [2] N degree N degree [2]
Mean 7.5214 145.8588 8.0801 30.6649

Median 1.8717 76.0062 1.5540 17.9270

Fig. 4. Comparative error plots on our synthetic dataset with the plane from homog-
raphy direct method [2] (test cases are sorted on the x-axis based on the proposed
method’s error). The table shows distance error D and normal error N statistics.

Would we use a preprocessing to remove the effect of measurement noise as rec-
ommended in [2], then both method would become more robust – at the price
of an increased computational compexity, of course.

Distance Distance [16]
Mean 0.0358 0.2095

Median 0.0350 0.2008
Table 1. Reconstruction accuracy in terms of 3D point distance

Table 1 shows the mean and median 3D distance error of reconstructed points
for the proposed method and the triangulation method of Fraundorfer et al. [16].
The proposed method performs again and order of magnitude better. In addition,
our method recovers the whole surface patch in one step, while [16] gives only a
point cloud for matched point pairs.

3.2 Robustness

Noise % 0 1 2 5 10 15 20
x 3.325 5.222 7.861 17.73 33.54 45.23 53.06
y 3.325 5.414 8.81 20.03 36.79 51.79 67.03
z 3.325 4.638 6.997 15.17 29.73 43.72 53.51

Table 2. Normal error w.r.t. rotation error in different axes
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Noise % 0 1 2 5 10 15 20
x 1.706 2.642 3.891 8.753 15.91 19.6 20.69
y 1.706 2.624 4.072 9.495 16.48 20.98 23.92
z 1.706 2.005 3.501 6.703 14.14 19.13 20.55

Table 3. Distance error w.r.t. rotation error in different axes

Noise % 0 1 2 5 10 15 20
1.706 2.264 3.362 7.109 14.53 22.27 29.75

Table 4. Distance error w.r.t. translation error

The accuracy of the proposed method depends not only on the quality of ho-
mography estimation, but also on the camera pose parameters which are used to
compute relative rotation and translation as described in Section 2. Obviously,
normal estimation is only affected by the rotation matrix, while distance calcu-
lation depends on both rotation and translation. To characterize the robustness
of our method against errors in these parameters, we added various percent of
noise to the original values and quantitatively evaluated the reconstruction error
on our synthetic dataset. Table 3 and Table 2 show that normal is slightly more
sensitive to this type of error, but its error is still below 10% up to 2% noise.
Distance estimation can tolerate up to 5% noise in both rotation and translation.

Distance error w.r.t. different baselines Normal error w.r.t. different baselines

Fig. 5. Error plots w.r.t. different baselines (test cases are sorted on the x-axis based
on the error).

Baseline is also an important parameter for 3D reconstruction. Short baseline
is often seen in short sequence images such as video. With the distance to the
plane set to be around 15 meters, 3 different baselines were tested. The shortest
baseline is within 0− 2m, the medium one is between 2− 6m, and large baseline
is considered larger than 6m. Fig. 5 shows the error with respect to each baseline
range. Of course, shorter baseline has higher error rate, which is a well known
fact for stereo reconstruction. In addition, our method is also affected by larger
homography error in case of decreasing baseline (see Fig. 6). Nevertheless, the
proposed method still have robust performance within a large range of baselines.
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Fig. 6. Homography error w.r.t. different baselines

3.3 Real images

Fig. 7. 3D reconstruction result using MSER regions

Finally, we test our method on real world objects. There are various ways
to extract corresponding regions from real image pairs. For example, we can use
standard MSER regions - such a reconstruction result is presented in Fig. 7.
Another possibility is to extract larger regions corresponding to building facades
using e.g. color-based clustering such as in Fig. 8. Note that all real examples
contain various patch orientations, the color labels denote corresponding image
regions.

4 Conclusion

We proposed an efficient 3D reconstruction method, which allows the recon-
struction of complete planar surface patches from a homography map between
corresponding image regions and calibrated cameras. The theoretical foundation
relies on variational calculus, which leads to a closed form solution for the sur-
face normal and distance parameters. Being a direct solution, it runs in real-time
which can be particularly useful for mobile and embedded vision systems. An-
other advantage is that it works without point correspondences by making use of
segmented regions. Quantitative experiments on a large synthetic dataset con-
firm the superior performance w.r.t. classical plane reconstruction algorithms,
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Fig. 8. 3D reconstruction results using regions extracted by color-based clustering

while reconstruction of whole building facades from real images confirm the ap-
plicability of our approach for real-life problems. In our future work, the focus
will be on reliable planar segmentation methods for urban environments.
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