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Abstract. In the paper we present a novel method for three-dimensional
scene recovering from one image of a man-made environment. We use
image segmentation and perspective cues such as parallel lines in space.
The algorithm models a scene as a composition of surfaces (or planes)
which belong to their vanishing points. The main idea is that we ex-
ploit obtained planes to recover neighbor surfaces. Unlike previous ap-
proaches which use one base plane to place reconstructed objects on it,
we show that our method recovers objects that lie on different levels
of a scene. Furthermore, we show that our technique improves results
of other methods. For evaluation we have manually labeled two pub-
licly available datasets. On those datasets we demonstrate the ability of
our algorithm to recover scene surfaces in different conditions and show
several examples of plausible scene reconstruction.

1 Introduction

(a) (b)

Fig. 1. Most people can infer the 3D structure of the scene from the image above. It
is a little harder from (b), but it can be done too.

Generally, some computer vision and image processing applications may ben-
efit from scene reconstruction. E.g. some reconstructed objects like pillars can be
used to avoid them by robots [13]. This knowledge may greatly improve object
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detection and their understanding [13, 23, 12, 18]. Moreover, full scene recover-
ing can be applied in rendering synthetic objects into photos [22, 13, 20]. Image
surfaces can be used in image segmentation, e.g. road, buildings [8]. In addition,
spatial layout and spatial understanding can be improved by scene recovering
[23, 12].

A plausible recovery of a 3D scene is a major problem for most single view 3D
reconstruction algorithms. Look at the image in Fig. 1a. From this single image
you can see the basic structure of the scene, which consists of orientation of main
surfaces like walls, floor and ceiling. Nevertheless, automatic reconstruction of
a scene from a monocular image is challenging due to the ambiguity of the
perspective projection. Often an image of interests comes from urban or indoor
scenes where certain structural regularities are presented, this can help us to
disambiguate this problem. Those scenes usually contain a lot of straight lines
(see Fig. 1b) which can be grouped as parallel lines in space. Most viewers can
recognize structure of a scene even from that image. However, there are a lot
of missing lines, because not all of them are perfectly detected by low level
algorithms. People can still understand that scene because a) we see all objects
in a case of perspective, so we can recognize objects if we see their projections
on a plane, b) we can show where objects boundaries are, because we see how
lines are grouped on that image.

In the paper we present an algorithm whose purpose is to reconstruct a 3D
model from a single image. The basic assumption which we chose is that the main
characteristics of a scene should have an agreement with “Manhattan” worlds
[3]. This assumption states that most of horizontal lines in space are divided into
two orthogonal groups.

The first step of our method includes the use of parallel lines in space for
recovering scene planes. Then, those planes are used to predict other scene sur-
faces. The information extracted by the algorithm contains main planes of a
scene like floors, ceilings, walls and facets of big objects. This can be done only
through getting main camera parameters from an image. Camera characteristics
like the focal length are gotten automatically. To get the focal length we use
vanishing points. Vanishing point is a single point on the image plane which is
created by intersection of projections of parallel lines on an image.

The novelty of the algorithm is that it recovers objects from different levels
of a scene and it does not use only one bearing surface, e.g. ground. In addition,
our method works on both indoor and outdoor man-made scenes. Next, we
propose the formulation of surface prediction approach. Eventually, we show
combinations of our algorithm with other approaches that outperform state-of-
the-art methods.

2 Prior Work

Recent years have seen a large progress in scene understanding. Many works
state that the Manhattan world assumption can be enough to generate plausible
interpretation of man-made scenes. E.g. In [2] Boulanger et al. have extracted
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camera parameters and generated a simple 3D model from an image. They have
used straight lines and three vanishing points to produce this result.

Spatial layout reconstruction was shown in [10–12, 24, 23]. The main base of
those works is the Manhattan world assumption. Gradient features have been
used to produce 3D boxes for big objects like beds in [11, 12]. In [24, 23] ori-
entation map was used for this purpose. We applied this orientation map as a
starting point of our algorithm.

It is important to get vanishing points for scenes of Manhattan type. In [6]
Denis et al. have shown that a better way for extracting vanishing points is to
use localized edges of objects rather than gradient maps. In [31] a fast algo-
rithm was presented to extract three vanishing points. To improve this result an
Expectation–maximization algorithm was used. In [33] vanishing points recover-
ing was expanded to high-level geometric primitives like horizon and zenith. In
addition, they have presented framework which can be used for images that are
not in agreement with the Manhattan world assumption.

Recovering 3D structure of urban scenes can be done by using 3D model
which consists of vertical walls and ground plane, where ground-vertical bound-
ary is a continuous polyline. This was shown in [1].

Some works have shown that understanding the type of a surface can produce
a good 3D model. Labeling geometric classes for image surfaces was shown in [15–
17]. In [13, 18] those works were combined to produce 3D models of scenes. They
have used various cues like color, texture gradient and projection information
(vanishing points). In [28, 29] surface connectivity and image depth was used
to generate plausible 3D model. All those works use this information to train a
surface classifier on a training set of images. Moreover, they have shown that the
use of superpixels instead of pixels significantly improves algorithm speed and
surface recovering. We combined our approach with [17] to improve our result
and to show that the proposed algorithm can be easily combined with other
methods.

The significance of occlusion boundaries was shown in [13, 18, 19]. In [8] oc-
cluded surfaces were restored from both indoor and outdoor images. Those re-
sults can improve 3D scene reconstruction.

In [30] depth ordered planes were used. Those planes are generated using
vanishing points and relative depth cues. Spatial layout of cluttered rooms was
successfully applied for rendering synthetic objects into photographs in [20]. An
interesting observation has been made in [9] that the world can be presented as
a set of 3D blocks. Besides, it uses density classes to estimate each block, such
as “light” for trees and “high-density” for buildings.

As we see, there are various methods to get a three-dimensional model from
one image. For a wide range of image types training algorithms have shown
the highest percentage of getting correct surfaces, but we focus only on a man-
made environment which is mostly in agreement with the Manhattan world
assumption. As a result, we decided to use this assumption as a base of our
work.
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3 Overview of Approach

2
1 1

v1
v2

Fig. 2. We recovered two planes of a figure, but we do not have the third (top surface).
Numbers indicate votes for surfaces. v1 and v2 are two horizontal vanishing points.

In the paper we introduce surface prediction approach. By surface prediction
here, we understand how recovered surfaces can be used to predict their neighbor
planes. As we can see on Fig. 2 there can be a cube, but one surface is missing
(top). Moreover, there are can be two missing surfaces instead of one. What
can we do with that? Assume, that if we know one object surface or surface
of neighbor object, then we can find other surfaces. We say that each plane or
surface votes for neighbor planes. On Fig. 2 top surface receives 2 votes. As we
will see, this simple assumption helps us to recover main surfaces of a scene.

The main difference of our method is that it restores most of the planes of a
scene without building hypothesis for objects. We do not use only one bearing
surface (like ground in [1]). Furthermore, we recover objects from different levels
of a scene, because all surfaces are generated iteratively bearing on each other.
Moreover, we use the Manhattan world assumption as the base for recovering
scene surfaces. Consequently, our approach works on both indoor and outdoor
man-made scenes. We do not generate object fitting, but we think that it can
be easily obtained if blocks world assumption is used.

First, in our work we automatically find vanishing points and the focal length.
Vanishing points are computed using straight lines of objects. To make compu-
tation easier we state that the vertical vanishing point is the point at infinity.
For the focal length we assume that the principal point is located in the center
of an image. Then, we calculate the focal length from vanishing points. This
information is needed to recover 3D surfaces. In the second part of this paper
we present our new method for surface recovering. Its origin is based on orien-
tation map (omap) [24]. We collect votes (predicted surfaces) from each surface
from omap and choose the most appropriate result. To improve our result we
use surface approximation based on the Manhattan world assumption. Last, we
present experimental validation on two datasets. To evaluate our algorithm we
have used Delage et al. [5] and York Urban [6] datasets. Most of the images here
are in agreement with the Manhattan world assumption. For surface testing
those images were manually labeled with LabelMe tool [27].
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4 Finding Camera Parameters

For finding vanishing points we follow [31, 26] approaches with some modifica-
tions. Initially, we extract object edges with Canny edge detector. Next, we use
the following steps to extract line segments from obtained edge map. First, to
speed up computation, we remove all junctions on received binary image. Then,
we extract connected components using flood fill algorithm. As the next step we
get line segments with Kovesi Matlab toolbox [21]. Each edge of an edge map
is divided into straight line segments by splitting it when standard deviation of
pixels is larger than one pixel.

Next, we use j-linkage algorithm [32] to get vanishing points from obtained
lines. We need a consistency measure to link lines to theirs vanishing points.
If we use the distance between a vanishing point and a line, for only a small
deviation of a line from a point, we can get large distances, e.g. vanishing points
at infinite. To avoid that, we use approximation from [31], it represents the
distance between edge ending and a line through a vanishing point and the edge
center. You can see obtained lines on Fig. 3a.

After this step, to get three orthogonal vanishing points we use the Man-
hattan world assumption and the guess that the vertical vanishing point is the
point at infinite. Once vanishing points are found on an image, we get the focal
length of the camera by finding a focal length that makes angles 90 degrees with
vectors to vanishing points and assuming that principal point location is in the
center of an image [4].

4.1 Finding Surface Coordinates

Now, to compute object surfaces we need only a complete orientation map which
we obtain in the next part of this article. When we have it, we reconstruct a
3D scene only to the scale factor, because we do not know original metric of a
scene. We iteratively compute coordinates for each surface and its neighbors. To
minimize an error, we choose surfaces with maximum area and neighbors, then
compute them first. Basing on their received coordinates we compute others.
Due to the iterative process of 3D model recovering we restore objects that lie
on different levels of a scene.

5 Orientation Map

First, to recover the orientation of surfaces we need a starting point. We get it
from [24, 23]. We use an orientation map which is described in those articles. We
give here only a brief description. An example of orientation map can be seen on
Fig. 3b. This map indicates the orientation of some region which is produced by
two vanishing points. The main idea is that if you have a region which consists
of two groups of lines referred to two different vanishing points, then those lines
can produce a surface. On Fig. 3a we can see that the horizontal planes consist
of green and blue lines (marked as 2 and 3 respectively), while vertical are from
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Fig. 3. (a) Line segments from Section 4 which are labeled with respect to their van-
ishing points (only long lines have labels). (b) Initial orientation map from [24]. Color
represents orientation of regions and lines.

red and blue (1 and 3) or red and green (1 and 2) lines. Each line segment is
extended until it abuts against a line (stopping parameter) which is orthogonal
to the surface this line segment generates. This assumption is correct, because a
line cannot lie on a plane which is orthogonal to that line. Detailed explanation
and formal description can be seen in [24].

6 Surface Recovering

There are some problems with original orientation map (omap) from Section 5:
1) incorrect surfaces, which are formed due to the wrong lines, 2) omap approach
cannot restore a surface without lines, as you can see there are a lot of free space
on Fig. 3b, 3) in addition to the previous point, omap method does not restore
occluded surfaces, e.g. walls of a building behind a tree.

To overcome problems that were mentioned in the previous paragraph we
propose our new surface prediction (SP ) approach. First, we remove all surfaces
whose area is lower than the threshold. In that case we do not loose much
information, because we will fill this free space during next steps. Second, our
algorithm recovers missing planes by predicting them using surfaces that were
restored in Section 5. Finally, our method reconstruct occluded surfaces. For
example, if one part of a building wall was occluded, then a recovered segment
of the wall will vote for the occluded part.

Our method extends the idea of line continuation from [24] to plane con-
tinuation. Moreover, we introduce a voting scheme to get final orientation of
surfaces. Next, we propose a surface approximation step to further improve the
result. We have found that it is especially useful for building 3D models.

6.1 Surface Prediction

Suppose, we know one surface of an object, in our case it is an initial orientation
map from Section 5, then we can recover others. For example, if we reconstruct
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(a) (b) (c)

Fig. 4. The first two figures show predicted surfaces for one red plane from Fig. 3b
(marked as R). (a) shows surfaces without a stopping parameter, on (b) for the stopping
parameter we use neighbor planes from Section 5, on (c) you can see the final result
which is obtained after adding together all predicted surfaces.

only one cube facet, then we can say that the cube can have other facets or it
lies on a different object (there are no flying objects on an image or they are
supposed to be a noise). Following this assumption we define a position and
an orientation of other surfaces, see Fig. 4 for an example of predicted surfaces
for a red plane. Basically, we continue boundaries of planes from Section 5 to
vanishing points. Then, we calculate votes for each orientation from all predicted
surfaces and receive full orientation map.

The formal description of the method: let Sx = {sx,1, sx,2, ..., sx,nx
} be the

set of surfaces (or planes), which are orthogonal to the x, where x ∈ {1, 2, 3}
denotes one of the three orientations and nx is the number of planes with cor-
responding orientation. Remember that in Manhattan world, we have only 3
vanishing points (2 horizontal, 1 vertical) and each surface is produced by 2 of
them. Consequently, we have only 3 orientations for surfaces. Next, the set of
points which are produced by Ramer–Douglas–Peucker algorithm [25, 7] for each
surface boundary is:

Px,n = {px,1,1, ..., px,nx,mx
} (1)

where mx is a number of points which are obtained by this approximation
and n ∈ {1 : nx},m ∈ {1 : mx}.

Algorithm 1 Predict neighbors for surface

Require: Points from approximation Px,n, vanishing points vd, where d ∈ {1, 2, 3}.
Ensure: Orientation map for each surface Ox,n.
1: p← Px,n[1]
2: for i← 2 to mx do
3: g ← linesegment(p, Px,n[i]), a line segment between two points.

4: Ox,n ← Ox,n + getomap(g, vd) (getomap returns orientation map Ô from Sec-
tion 5 for g and vd)

5: p← Px,n[i]
6: end for
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After that, we get orientation maps Ox,n by Algorithm 1, you can see the
example for the vertical vanishing point on Fig. 4. It is important that Fig. 4b
presents the result which uses the same idea for a line segment continuation as
the one in Section 5, the only difference is that continuation stops when a line
segment abuts a surface, not a line. Then, we sum up all surfaces:

Ox =
∑

1≤n≤nx

Ox,n (2)

This addition represents voting for surface prediction. During algorithm eval-
uation we realized that horizontal surfaces performed poorly compared to verti-
cal, due to the fact that ground and floor parts of an image usually contain many
incorrect surfaces from original omap. Therefore, we decided to use surfaces from
[17] for horizontal surfaces in Eq. (2). In the testing section we show results with
and without this information. The final equation for the whole orientation map
O calculates as:

O = Ô ∨maxx(Ox) (3)

where x ∈ {1, 2, 3} and Ô is an orientation map from Section 5, the function
maxx denotes orientation of a pixel on the base of votes for each orientation,
which we obtain when we get the sum from Eq. (2). The result can be seen in
Fig. 4c.

6.2 Approximation of Surface Edges
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Fig. 5. Smoothed boundaries and a final orientation map. Boundaries (a) divided into
three groups of line segments. The final orientation map (b).

Orientation map which is obtained in the previous part, see Fig. 4c, is not
good. It has a lot of noise among edges of different channels. Due to the iterative
process of building a 3D model, see Section 4.1, this may lead to gross errors
at those surfaces that are computed in the last instance. Thus, we need smooth
boundaries for surfaces. To get a better result we must use lines which belong
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to vanishing points for those boundaries. We propose the following method to
do that.

First of all, we use erosion for each channel of orientation map. Next, we
add all channels together and get a binary image (after voting, channels do not
intersect)

B =
∑

1≤x≤3

Ox (4)

Then, we reverse image ¬B and use thinning operation on it. We break
obtained edge map into line segments as we did in Section 4. After that, we
link all line segments to their vanishing points through consistency measure,
see Section 4. We need to align each line segment to its vanishing point. For
g = linesegment(t1, t2), where t1 and t2 are endpoints of g, let m be midpoint
of g and l be the line which passes through m and v (vanishing point), then
aligned line segment is:

r = (proj(t1, l), proj(t2, l)) (5)

where proj(t, l) function returns the projection point of a point t on a line l.
The result can be seen on Fig. 5a.

Obtained line segments are added together and imposed to an orientation
map dividing it to distinct components. After noise removing we get smoothed
orientation map, see Fig. 5b.

Fig. 6. From left to right: orientation map after multiscaling, two projections of the
reconstructed 3D model.

To get a better result we can use different scales of an image or multiscaling.
However, the algorithm execution time grows a lot. The idea is pretty simple:
we choose several scales of an image, compute an orientation map for each scale,
then we add all orientation maps from all scales together and use voting to
choose the best orientation for each pixel. The result can be seen in Fig. 6.

7 Experiments and Results

We have tested our algorithm on Delage et al. [5] dataset (48 images) of indoor
scenes and we have also labeled its images with LabelMe tool [27]. In particular,
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Fig. 7. Percentage of pixels with the correct orientation. Compared methods: omap
— raw orientation map from [24], SP — Surface Prediction approach (Section 6),
GC (Geometric Context) — [17] for all channels, GC(horizontal) — [17] to vote for
horizontal surfaces (red channel on images), multi — multiscaling, see Section 6.2.

we have manually marked ground truth orientation for each surface formed by
vanishing points. You can see the percentage of pixels that have the correct
orientation on Fig. 7.

Here we present a comparison of the average percentage of correct pixels
among all images in Delage et al. dataset. First, we have tested our SP method
and got 73.2%. With multiscaling this result was improved to 73.6%. Multiscaling
for SP added less than a percent for an output result, so it is not so useful due
to the additional time cost. We applied it only to the final result to slightly
improve it and to obtain better 3D models (boundaries which are produced
after multiscaling are much smoother). After that, to improve the result we
combined SP with [17] (Geometric Context) approach for horizontal surfaces
GC(horizontal) and in that case this combination outperformed method that
was shown in [24] (81.9% versus 80%). Next, as reported in [24], they got 87%
for [14] approach on Delage et al. dataset, we have tested this with GC for all
orientations and got nearly the same result. Interestingly, GC + multiscaling
produced worse result (86%) than GC itself. Finally, we combined GC for all
surfaces with our Surface Prediction method and got 88.9%, that outperformed
GC for indoor scenes. The average percentage for each method can be seen in
Table 1.

For Delage et al. dataset the number of images with ≥ 50% of correct surfaces
is near 94% for SP and 100% for its combinations with GC.
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Table 1. Results that were obtained on Delage et al. [5] (second column) and York
Urban [6] (third column) datasets. The first column shows used methods for surface
recovering, two last columns denote an average percentage of correct pixels for surface
orientation.

Method components Avg Delage Avg York

omap 46.7 51.8
SP 73.2 73
Lee et al. [24] 80 –
SP + GC(horizontal) 81.9 81.1
GC [17, 14] 87 –
SP + GC + multi 88.9 –

We have also tested our approach on York Urban [6] dataset (102 images),
which consists of indoor and outdoor urban scenes. On this dataset we got 81.1%
correct surfaces in average with SP+GC(horizontal) params, which corresponds
to the average percentage of Delage et al. dataset. This means that our algorithm
is robust to different types of Manhattan world scenes. We do not provide a
result for [24] approach, because it is suitable only for indoor scenes. In addition,
original GC cannot be easily applied for images of outdoor scenes for vertical
surfaces which belong to vanishing points, so we did not use it in our experiments
on York Urban dataset.

Eventually, 3D models have been tested by four people who were not a part of
our project. They have tested if obtained 3D model was plausible interpretation
or not, we have got around 55% correct models for all images.

Some examples of 3D scene reconstruction can be seen on Fig. 8. Typical
errors are shown on Fig. 9 and Fig. 10. For each photo there are four images:
original image, our final orientation map, two images of an obtained 3D model.
It is worth noting that there are two main types of errors:

1. Wrong output 3D model due to the large amount of noise on an image Fig. 9.
2. Irregular surface position while the orientation of a surface is obtained cor-

rectly Fig. 10.

8 Conclusion

In this article, we introduced a new method for 3D surface reconstruction. It was
shown that it works on both urban scenes and indoor apartments. Moreover,
we addressed the problem of restoring objects that are not connected to only
one base plane (ground or floor). By evaluation on popular image datasets, we
showed that the presented algorithm restores plausible 3D models from different
images. In addition, due to the voting process this approach is easily combined
with other algorithms and obtained results outperformed several state-of-the-art
techniques. The proposed concept of surface prediction can be useful for many
computer vision applications as well.
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Fig. 8. Scene reconstruction examples. From left to right: original image, obtained
orientation map, two views of a 3D model.

Fig. 9. An example of failure in the presence of significant noise (trees).
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Fig. 10. Another example of errors when surface positions are irregular while most of
surface orientation is obtained correctly.
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