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Abstract. Classifying scenes (such as mountains, forests) is not an easy
task owing to their variability, ambiguity, and the wide range of illumi-
nation and scale conditions that may apply. Bag of features (BoF) model
have achieved impressive performances in many famous databases(such
as the 15 scene dataset). A main drawback of the BoF model is it dis-
regards all information about the spatial layout of the features, leads to
a limited descriptive ability. In this paper, we use co-occurrence matrix
to implant the spatial relations between local features, and demonstrate
that feature co-occurrence matrix (FCM) is a potential discriminative
character to scenes classification. We propose three FCM based image
representations for scenes classification. The experimental results show
that, under equal protocol, the proposed method outperforms BoF model
and Spatial Pyramid (SP) model and achieves a comparable performance
to the state-of-the-art.

1 Introduction

Classifying scenes into semantic categories is a problem of great interest in both
research and practice. For example, an online collection of photos needs to be
grouped into categories like ’coast’, ’highway’, and ’office’ to support efficient
browsing and/or retrieval tasks. At the same time, scene classification is not an
easy task owing to their variability, ambiguity, and the wide range of illumination
and scale conditions that may apply.

Recently, there is a trend of using low-level image features in classification of
imagery data [1–3]. The development and analysis of low-level feature descrip-
tors have been widely considered in the past years. Among the vastly employed
methods are the scale-invariant feature transform(SIFT) [4], speeded up robust
feature(SURF) [5], histogram of oriented gradients(HOG) [6], gradient location
and orientation histogram(GLOH) [7], region covariance matrix(RCM) [8], local
binary patterns(LBP) [9] etc. How to organize these local features to construct
an robust image descriptor is crucial to the performance of scene classification.
The most popular image representation is the bag of features(BoF) [1], which
describes an image by the overall distribution of low level features. Traditional
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BoF framework equally encodes all local features and does not emphasize any
elements with regard to spatial layout. Hence, spatial pyramid (SP) structure
representation is often used to extend the global BoF representation. SP mod-
el [2] approximates geometric layout of local features by partitioning the image
plane into increasingly fine sub-regions. Due to its better performance and simple
implementation, it has become a standard procedure for scene classification.

In this paper, we investigate the relationship between spatial layout of lo-
cal features and the scene categories. It is shown that when using feature co-
occurrence matrix(FCM) to map the original scene image from gray space to
features distribution space, from a statistical point, there is an explicit differ-
ence between scene categories. Based on this observation, we propose to use
co-occurrence matrix to extend the orderless BoF representation and construct
three FCM based image representations. We evaluate the proposed method and
compared it with original BoF model and SP model on 15 scene database with
equal experimental protocol. The experimental results show that the proposed
method outperforms BoF model and SP model and achieves a comparable per-
formance to the state-of-the-art. The proposed method is a good alternative to
image representation for scene classification tasks.

The remaining of this paper is organized as follows. We briefly review the
related works on BoF and its extension models and co-occurrence matrix in Sec-
tion 2. Then we introduce the proposed FCM method and local features used
in our work in Section 3. In Section 4, we propose three FCM based image rep-
resentation methods. The evaluation to our method and comparisons to others
are described in Section 5. Finally, we conclude the paper in Section 6.

2 Related Works

2.1 Bag of Features Model and Its Extensions

State-of-the-art methods following the bag of features (BoF) framework main-
ly contain four steps: (1) local feature extraction and description, (2) feature
coding/encoding, (3) feature pooling and (4) classifier learning.

The local features are firstly extracted by densely or randomly sampling, or
sparse keypoints detector(such as Harris detector [10], scale and affine invariant
detector [11] etc). SIFT [4], GLOH [7], HOG [6] etc. are usually used to build
a descriptor to local interesting points. In “coding” step, a clustering method
(such as k-means clustering [12]) is conducted over all descriptors to obtain a
vocabulary (codebook). “encoding” procedure deals with how to use one or mul-
tiple codes from codebook to represent a new descriptor. Hard voting [13] , soft
voting [14] and reconstruction based methods (LCC [15], sparse coding [16] etc.)
are three typical methods. In pooling step, the quantization indices of all the lo-
cal features are summarized to form the global image representation. Histogram
is a typical average pooling strategy, which sums up all the occurrences of each
index throughout the entire image in an orderless manner. Instead of performing
averaging operation, max pooling adopts the element wise maximum values of
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feature vectors over the whole image as the pooled features. The classifier learn-
ing step generally uses the kernel built on matching scores of the global image
representations.

To overcome the loss of spatial information in original BoF model, Lazeb-
nik et al.[2] propose the spatial pyramid matching (SPM) model. The image is
subdivided at three different levels of resolution. For each level of resolution,
the features falling in each sub-region (bin) are counted. Finally, each spatial
histogram is weighted according to:

κL(X,Y ) = IL +

L−1∑
`=0

1

2L−`
(I` − I`+1) (1)

The success of spatial pyramid representation comes from the valid assump-
tion that the images with similar scene and geometry layout possibly belong to
the same category. While due to there exists large intra-class variation of same
scene categories as well as significant inter-class similarity between different scene
categories. In many visual classification tasks, the spatial distribution of discrim-
inative information is non uniform. Thus different parts of image should serve
different roles for scene classification. Sharma et al. [17] use the saliency maps
to weight the corresponding visual features improves the discriminative power of
the image representation. Chen et al. [18] introduces so-called side information
(i.e., prior knowledge such as clues of object layout) for image classification based
on BoF representation. Using the side information, the image local feature pool
can be clustered into cells and further a coarse to fine hierarchical representation
can be generated. Since the partition of the cells is guided with side information
more semantically concerned, the encoding within each cell tends to be more
semantically matchable and thus is expected to achieve better performance.

2.2 Co-occurrence Matrix

Co-occurrence matrix is essentially a two-dimensional histogram in which the
(i, j)th element of the matrix M is the frequency of event i co-occurs with event
j. Here “event” can be a pixel value and also can be a specific low level feature
of image. In texture classification community, gray level co-occurrence matrix
(GLCM) is firstly introduced by Haralick [19]. A GLCM is specified by the
relative frequencies M(i, j, d, θ) in which two pixels, separated by distance d ,
occur in a direction specified by the angle θ, one with gray level i and the other
with gray level j:
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M(i, j, d, θ) =

Iy∑
p=1

Ix∑
q=1

I(p, q) = i and I(p+ dy(θ), q + dx(θ)) = i

if θ = 0, dy = 0 and |dx| = d

if θ = 45, dx = dy = d or dx = dy = −d
if θ = 90, dx = 0 and |dy| = d

if θ = 135, dx = −d, dy = d or dx = d, dy = −d (2)

where Iy and Ix represents the row and column number of the image I, I(p, q)
is pixel gray value in p− th row and q− th column. i and j is the gray level with
the maximum H.

C1 

Ci 

CH 

C2 

C1 

C2 

… 

Ci 

… 

CH 

1 

2 

… 

i 

… 

H 

Training 

Test 

1 2 1 2 

2 2 2 

1 H H H 

19 21 14 23 28 

19 99 61 14 48 

21 34 46 22 31 

36 25 47 63 52 

38 42 19 42 86 

21 11 24 29 18 

24 99 61 14 48 

22 34 46 22 31 

46 25 47 63 52 

17 42 19 42 86 

12 32 24 43 31 

24 99 61 14 48 

18 34 46 22 31 

35 25 47 63 52 

38 42 19 42 86 

2 1 2 3 

3 2 2 2 

1 H H H 

2 2 2 2 

2 2 2 2 

1 H H H 

L
ea

rn
in

g
 

2 4 3 7 9 1 

3 7 2 6 5 3 

4 2 8 7 2 9 

3 5 5 7 8 2 

C
la

ss
if

ic
a
ti

o
n

 

Training Images 

Feature Extraction Coding 

Codebook Code Mapping 

Training 

Images 

Encoding 

Image Mapping 

Feature Co-occurrence Matrix 

Image 

Representation 

Classifier 

Test Images 

Highway 

Fig. 1. Toy example of FCM based scene classification framework.
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3 Feature Co-occurrence Matrix

3.1 Feature Co-occurrence Matrix

The framework to use FCM method to conduct scene classification is shown in
Fig. 1. In training phase, we first use standard BoF method to construct a code-
book. Then we build a mapping from codes(visual words) to numerical indexes,
i.e. we assign a specific number to each code. The maximum number is the size
of the vocabulary. By this way, we can calculate the co-occurrence relationship
between codes simply. In learning phase, low level features are extracted from
each image firstly, then are encoded according to the codebook. Then the im-
age pixel value where the feature is extracted is replaced by the number which
represent the corresponding code. By this way, an image is mapped from the
gray/color space to code index space. After that, we compute the FCM accord-
ing to equation 2. Once the frequency of each code transition is computed, a
normalization is conducted to M(i, j, d, θ) based on:

M∗(i, j, d, θ) =
M(i, j, d, θ)∑H

m=0

∑H
n=0 M(m,n, d, θ)

(3)

where H denotes the size of codebook.
Due to the similarity between two matrix is hard to evaluate, we need trans-

form the FOM to a vector as the image representation. In this paper, we in-
troduce three methods to conduct this operation. The details is described in
Section 4.

3.2 Discrimination of FCM for Scenes Classification

We investigate the discriminative ability of FCM to different scene categories.
As an instance, we plot the mean FCM of four scenes from 15 scene dataset in
Fig. 2. From the heat maps, we find when describing scenes with FCMs, there
are distinct statistical differences between categories. Based on this observation,
we argue that FCM is a potential discriminative features to classify scenes.

4 FCM based Image Representation

We propose three strategies to build an image representation based on FCM.

4.1 Image Representation by Unfolding FCM

A simple method to construct an image representation with FCM is unfolding
the matrix to a vector. Considering the dictionary capacity up to hundreds of
thousands of levels, we use PCA to reduce the dimension of original unfolded
vector to a reasonable level, e.g. 256 etc. Then the compact vectors extracted
from four FCMs are concatenated in a single feature vector as the final image
representation.
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Table 1. Haralick’s Statistical Properties of GLCM

Name Formula

Angular f1 =
∑
i

∑
j M(i, j)2

Contrast f2 =
∑H−1
n=0 n

2∑H
i=1

∑H
j=1 M(i, j)

Correlation f3 =
∑

i

∑
j(i,j)M(i,j)−µxµy

σxσy

Variance f4 =
∑
i

∑
j(i− µ)2M(i, j)

Inverse difference moment f5 =
∑
i

∑
j

1
1+(i−j)2M(i, j)

Sum average f6 =
∑2H
k=2 kM(k)

Sum variance f7 =
∑2H
k=2[(k − f6)2Mx+y(k)]

Sum entropy f8 = −
∑2H
k=2 Mx+y(k) log[Mx+y(k)]

Entropy f9 = −
∑
i

∑
j M(i, j) log[M(i, j)]

Difference variance f10 =
∑H−1
k=0 [k −

∑H−1
l=0 lMx−y(l)]2Mx−y(k)

Difference entropy f11 = −
∑H−1
k=0 Mx−y(k) log[Mx−y(k)]

Measure of correlation 1 f12 =
f9+

∑H
i=1

∑H
j=1 M(i,j) log[M(i)M(j)]

max(HX,HY )

Measure of correlation 2 f13 =√
1− exp[2(

∑H
i=1

∑H
j=1 M(i)M(j) log[M(i)M(j)] + f9)]

Maximal correlation coefficient f14 =
√
〈(
∑H
k=1

M(i,k)M(j,k)
Mx(i)My(j)

)〉2

Abbreviations:

M(i, j): (i, h)th entry in M, H: dimension of M , µ is the mean of µx and µy

M(x)i =
∑H
j=1 M(i, j), M(y)j =

∑H
i=1 M(i, j), µx =

∑H
i=1 iMx(i), µy =

∑H
i=1 iMy(i)

σx =
√∑H

i=1Mx(i)(i− µx)2, σy =
√∑H

i=1My(i)(i− µy)2

Mx+y(k) =
∑H
i=1

∑H
j=1,i+j=kM(i, j), Mx−y(k) =

∑H
i=1

∑H
j=1,|i−j|=kM(i, j)

〈·〉 denotes 2nd largest eigenvalue
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Fig. 2. FCMs of four scene categories, from left to right is coast, bedroom, forest, and
kitchen respectively. SIFT is used as low level feature. The codebook size is 200. To
obtain better visualization, we segment a subregion, i.e., the up-left corner of whole
FCM with the area of 20× 20.

4.2 Image Representation by Properties of FCM

The second method is use the properties contained in the co-occurrence matri-
ces to construct the image representation. In this paper, we use Haralick’ [19] 14
statistical properties computed from the co-occurrence matrices i.e., (1)angular
second moment, (2)contrast, (3)correlation, (4)sum of squares, (5)inverse dif-
ference moment, (6)sum average, (7)sum variance, (8)sum entropy, (9)entropy,
(10)difference variance, (11)difference entropy, (12-13)two information measures
of correlation, and (14)maximal correlation coefficient. Once the properties ex-
tracted from four directional FCMs, we concatenate them in a single image
representation vector.

4.3 Image Representation by Singular Value of FCM

In this method, we conduct a singular value decomposition (SVD) to FCM. For-
mally, the SVD of anH×H real feature co-occurrence matrixM is a factorization
of the form:

M = UΣV∗ (4)

where Σ is an m × m rectangular diagonal matrix with nonnegative real
numbers on the diagonal. The diagonal entries Σi,i of Σ are known as the singular
values of M. The non-zero singular values of M are the square roots of the non-
zero eigenvalues of both M∗M and MM∗. To construct a image descriptor, we
combine all diagonal entries of Σ corresponding to four FCMs.
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5 Experiments

5.1 Databset

Scene 15 1is a dataset containing 15 scene categories, e.g. ’coast’, ’beach’, ’office’,
with 4485 images. The task is multi-class classification with the dataset split into
100 random images per class for training and the rest for testing.

5.2 Local Visual Features

Low level feature has significant effect on total performance of algorithm. In this
paper, we evaluate and compare three features, raw gray value, SIFT [4] and
LBP [9]. For color images, we first transform it to gray image, then use above
algorithms to build descriptors to all sampling points in a single gray channel.
For SIFT, we use the square root of normalized 128 dimensional descriptor. For
LBP, a standard 256-bin histogram is used as a feature descriptor.

5.3 Experimental Protocol

Here we present some details of our experiments. In our experiments, the local
features are extracted by dense sampling, the sampling interval in both row
and column direction is set to 8 pixel. For gray feature, we use the average
of neighboring 4 × 4 pixels around the sampling point as the descriptor. For
SIFT, we use neighboring 16 × 16 pixels to describe the sampling point. While
for LBP, we use neighboring 3 × 3 pixels to build the descriptor. In “coding”
step, k-means clustering is used to construct codebook, while in“encoding” step,
minimizing Euclidean distance based hard voting method is used. In this paper,
the size of codebook is fixed as 256. For “pooling” step, we compare the proposed
method with two baselines, i.e., original BoF model and SP model(three levels).
To compute FCM, we use 0, 45, 90, 135 four transition directions and d = 1 as
step interval. When image is represented by unfolding FCMs, we use PCA to
reduce the dimension of descriptor from 4×200×200 to 256. When using FCM’s
properties to represent the image, we build a 4×14 dimensional descriptor. When
using SVD to FCM, we build a 4 × 200 dimensional descriptor. RBF kernel
based SVM [20] is used to learn classifier. We conduct 15 binary one-vs-rest
classification problems to solve multi-class task. All experiments are repeated 10
times and the mean and standard deviation are reported.

5.4 Results

The experimental results is listed in Tab. 5.3. For gray feature, our method
Unfold+FCM achieves 51.1% improving the better baseline(SP) by 17.1%. For
SIFT and LBP features, our method SVD+FCM achieves 80.2% and 82.7% im-
proving the better baseline(SP) by 2.3% and 3.7% respectively. We also compare

1 http://www-cvr.ai.uiuc.edu/ponce grp/data/
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Table 2. Evaluation of different methods

Feature
Baseline FCM

BoF SP Unfold Property SVD

gray 29.8± 0.8 34.0± 078 51.1± 0.6 33.5± 0.4 49.8± 0.7

SIFT 67.3± 0.4 77.9± 0.6 73.3± 0.9 54.8± 0.5 80.2± 0.9

LBP 74.3± 0.6 79.0± 0.5 80.9± 0.7 57.3± 0.9 82.7± 0.8
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Fig. 3. Confusion matrix for evaluated methods. The top row from left to right are
BoF+SIFT, SP+SIFT and SVD+SIFT respectively. The bottom row from left to right
are BoF+LBP, SP+LBP and SVD+LBP respectively.
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our method with two state-of-the-art methods, [17](85.5%) and [21](88.1%).
The former use the saliency maps to weight the corresponding visual features and
the latter combines 14 different low level features to improve the discriminative
power of the image representation. While our method use a simple framework
and a single feature(LBP) achieves a comparable performance. The confusion
matrix is shown in Fig. 3

6 Conclusion

In this paper, we demonstrate that FCM is a potential discriminative feature
to classify scenes. The experimental results show the proposed method outper-
forms the original BoF model and its popular extension SP model. The pro-
posed method achieves comparable performance to the state-of-the-art on 15
scene dataset. There still is a lot of potential to improve its performance when
considering the follows. The first is the size of a codebook which is controlled by
the number of keypoint clusters in the clustering process. The second is that we
can use the proposed framework to combine multiple complementary features to
improve the performance. In future work, we will optimize the proposed method
from above two aspects.
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