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Abstract. Determining the categories of different parts of a scene and
generating a continuous traversable region map in the physical coordi-
nate system are crucial for autonomous vehicle navigation. This paper
presents our efforts in these two aspects for an autonomous vehicle op-
erating in open terrain environment. Driven by the ideas that have been
proposed in our Cognitive Architecture, we have designed novel strate-
gies for the top-down facilitation process to explicitly interpret spatial
relationship between objects in the scene, and have incorporated a vi-
sual attention mechanism into the image-based scene parsing module.
The scene parsing module is able to process images fast enough for real-
time vehicle navigation applications. To alleviate the challenges in using
sparse 3D occupancy grids for path planning, we are proposing an ap-
proach to interpolate the category of occupancy grids not hit by 3D
LIDAR, with reference to the aligned image-based scene parsing result,
so that a continuous 2 1

2
D traversable region map can be formed.

1 Introduction

It is widely accepted that humans possess two distinct visual pathways, the
ventral stream (known as “what pathway”) involved with object identification
and recognition, and the dorsal stream (or, “where pathway”) involved with
processing the object spatial location relevant to the viewer [1, 2]. Similarly,
for autonomous vehicle to successfully drive on road, our scene understanding
systems must tell the vehicles not only what are in the environment, but also
where the roads and obstacles are in a physical coordinate system, other than
in the image plane.

In the last two decades, the study on computer vision systems mainly focus
on solving the problem about what are in a scene, taking images as input. Many
prototypes detect/recognize individual objects in the images. Effective features,
such as SIFT [3] and HOG [4], have been proposed and widely used in these
systems. The HMAX [5, 6] tried to model objects via a hierarchical representa-
tion involving increasingly complex features. In [7], Latent SVM was proposed
to learn deformable part models. One common feature of these systems is that
they all apply sliding windows to exhaustively search for object locations. To
reduce unnecessary computation and speed-up the detection process, strategies
like combining multiple, increasingly complex classifiers in a “cascade” have been
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proposed [8] and adapted in [9]. Some other systems recognize overall scene cate-
gories (e.g., beach) from the image, usually making use of features reflecting the
“gist” of scenes [10–14]. To facilitate autonomous systems’ response to environ-
ment, it is insufficient to recognize only a certain category of objects. Instead,
scene parsing, which conducts classification for all parts in the scene including
road and vegetation, is required to form a continuous traversable map for navi-
gation. While early scene parsing systems tried to classify each pixel separately,
recent scene parsing systems perform the task on the superpixel level. In the
superParsing system [15], features like shape, SIFT, color and appearance are
extracted for each superpixel. Total scene understanding, which conducts scene
parsing and object detection simultaneously, has also been studied, as in [16,
17]. Inspired by the findings in cognitive science, the strategies taken for object
recognition and scene understanding also evolves from pure bottom-up process-
ing to combination of both bottom-up processing and top-down facilitation [18,
19]. Graph models have been proposed to control the top-down process, among
which, CRF (Conditional Random Field) has been the most popular framework
[20–22].

Another line of research in perception for autonomous vehicles is to under-
stand “where” the objects are in a physical coordinate system, which is necessary
for autonomous vehicles to navigate or to response to the environment. 3D LI-
DAR sensors have been widely used to achieve it, as demonstrated in DARPA
Grand Challenges [23]. 3D LIDAR-based scene classification is usually conducted
on occupancy grids, whereby the physical region is divided into 3D cubes or 2D
grids of pre-defined size. Authors in [24] have made attempt to classify, from
LIDAR responses, classes including surface (ground bare terrain surface, solid
object, large tree trunk), linear structures (wires, thin branches) and scatter
(tree canopy, grass), based on eigen-values of the covariance matrix of the local
pointcloud. In [25], an SVM classifier is trained using features extracted from
LIDAR points, such as intensities of LIDAR points, scatterness, linearness, and
surfaceness. One disadvantage of 3D LIDAR based classification is that the clas-
sified grids are not continuous due to the sparseness of pointcloud. Furthermore,
the classified grids will get even sparser with the increase of distance from the
vehicle, resulting in extra challenges to the path planning and navigation mod-
ules.

With the progress in the above two directions, it is natural to compensate
LIDAR with image based scene understanding. For example, Stanley [26], the
1st winner of DARPA Grand Challenge 2004, made use of 3D LIDAR data to
conduct terrain labelling, and image-based vision analysis for early warning of
obstacles in the distance beyond the range of LIDAR. Little fusion of image
and LIDAR was involved in the Stanley system. There are also work to fuse
LIDAR and camera for road boundary detection [27, 28], but such tracking based
approaches are constrained to roads with nearly parallel borders or when the
road model is known a prior. They do not work well on complex terrains, e.g.,
open fields without clear road boundary.
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Our work follows the line of fusion of image and LIDAR for scene parsing.
The scene parsing module is an integral part of the Cognitive Architecture, for
which we have proposed a computational infrastructure that defines the various
regions and functions working as a whole to produce human-like intelligence [2,
31]. In particular, for scene parsing, the architecture has specified sub-functions
including initial scene classification based on bottom-up, low-level features, top-
down facilitation, visual attention-based priming and object-level fine grained
classification. In this paper, we will first give some details about our strategy for
initial classification and context-based top-down facilitation. We will then focus
on reporting our effort to combine the LIDAR and scene parsing result to create
a continuous traversable region map for vehicle navigation in outdoor, off-road
environment. In the same time, we will also exemplify how the visual attention
mechanism is implemented and applied to enhance the capability of man-made
obstacle detection from images.

Compared with existing work, our system has some special features. First, we
have incorporated not only the contextual-based top-down processing in scene
parsing, but also the visual attention mechanism to enhance the capability of
obstacle (man-made objects) detection. Although strategies of applying different
features to detect various objects have been widely used [33], traditional super-
pixel level scene parsing techniques treat all parts of an image equally, ignoring
the function of visual attention in finding objects of interest [34]. Secondly, al-
though it is not new anymore to utilize the top-down process to enhance scene
parsing, most existing systems only make use of the co-occurrence or neighboring
relations between objects in the process, while our approach explicitly interpret
the relative spatial relations between irregular-shape components in a semantic
way (for example, in a front view image, road regions cannot be above the sky,
but can be below the sky). It is no doubt that the interpretation of specific spatial
relation will solve uncertainties in the initial classification more efficiently than
simple neighboring relations. Thirdly, to our knowledge, this is the first work to
generate continuous road regions from combination of scene classification and
LIDAR detections, making it possible to provide continuous traversable region
map under complex situations, e.g., when there are obstacles on road and the
road boundary is cluttered or in irregular shapes.

2 Image-based scene understanding in the Cognitive
Architecture

Fig. 1 presents the high-level structure of the visual perception module, showing
the biological regions where the sub-functions are accomplished in human brains
and the interaction between the perception module and other modules, such as
the Reasoner module, in our Cognitive Architecture. Total scene understanding
is achieved via two processes:

1. An interactive process among initial classification and top-down facilita-
tion, which emulates the typical bottom-up and top-down interaction [31,
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Fig. 1. Building block of the visual perception module in DSO-CA

32], and the visual attention process[34]. Initial classification refers to the
early, coarse-level classification (e.g., road, vegetation) of scene parts based
on low-level features. The visual attention mechanism is responsible for iden-
tifying potential objects of interest, some of which may have been successfully
detected by the coarse-level initial classification sub-module. Furthermore,
it will also pick up some new objects of interest which are unknown to the
learning-based initial classification sub-module. Top-down facilitation is not
only responsible for making use of contextual knowledge to resolve uncer-
tainties in initial classification through a contextual analysis process, but
also responsible for suggesting regions of interest worthy of further attention
via attention priming.

2. Fine-grained object classification which determines more specific categories
of objects of interest (e.g., pedestrians, bus, cars, etc), identified by attention
priming. Known object classification techniques, such as HOG-based classi-
fication[4], and the deformable part-based models[7], can be adapted for the
purpose. In particular, a special blending mechanism, as proposed in [29] has
been adapted in the Cognitive Architecture, as shown in Fig. 1.

In comparison, most state-of-the-art scene parsing systems treat every part
of the image equally, in that they classify each part (an object may be seg-
mented into several parts), while individual object detection systems search for
specific categories of objects via sliding window. There is barely a system that
conducts both functions simultaneously. Furthermore, although sliding window
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based search of objects is effective in engineering systems, it is not consistent
with the biological way of object detection, and it takes unnecessary longer time
to process irrelevant information. According to cognitive findings, visual search
is conducted via the visual attention mechanism: individual objects pop-out due
to its saliency, and task-based intention help to achieve selective attention[34],
resulting in detections of potential objects of interest. Fine-grained object classi-
fication is conducted only to verify these potential object in the identified regions.
The integration of attention mechanism in our framework makes it more simi-
lar to biological system in quickly switching the focus of process to the regions
potentially containing objects of interest.

A detailed breakdown of the scene understanding module is illustrated in
Fig. 2. The scene part parsing mechanism will classify each superpixel via a
bottom-up initial classification process and a top-down contextual analysis pro-
cess. The visual attention mechanism involves bottom up saliency map genera-
tion and binding, as well as top-down attention priming.

Fig. 2. Detailed diagram of the implementation of scene understanding

2.1 Initial classification

The initial classification sub-module consists of algorithms to achieve early,
coarse-level classification of local image regions. Each image is over-segmented
into superpixels as described in [35]. Color and texture features are extracted
to describe each superpxiel. In detail, histograms of RGB/HSV color features,
anisotropic Gauss filtering responses[36], Gabor filter responses[37] and Local
Binary Patterns[38], can be extracted for each superpixel.
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Popular classifiers, such as Support Vector Machine (SVM) and Multiple
Layer Perceptron (MLP) are included in the Perception module of the Cognitive
Architecture. According to our experience, the MLP classifier can consistently
achieve similar accuracy to that achieved by SVM with RBF kernel, which is
much better than linear SVM for natural scene parsing. Besides, MLP can run
much faster than SVM with RBF kernel when there are thousands of support
vectors generated, which is always the case for natural scene parsing.

2.2 Top-down facilitation via contextual analysis

The design of the top-down facilitation strategy in the Cognitive Architecture
is mainly motivated by the cognitive findings as reported in [39]. According to
[39], there are two factors contributing to top-down facilitation: the object-based
and context-based facilitation. The object-based mechanism refers to the case
that “initial guess” of object type based on low level information triggers a more
fine-grained object classification process, which is emulated by the attention
priming mechanism in the framework. The context-based mechanism triggers top
down facilitation through contextual association between objects in scenes. The
contextual association activates predictive information about which objects are
likely to appear together, and can influence the “initial guesses” about an object’s
identity. It has been widely accepted[40] that contexts affects classification in two
aspects: (1). The presence of objects that have a unique interpretation improves
recognition of ambiguous object in a scene; (2). Proper spatial relations among
objects decreases error rate in the recognition.

Spatial relations have been applied to improve object detection, which con-
fines objects by bounding boxes [41]. However, most superpixel-based scene pars-
ing systems limit contextual analysis to the co-occurrence of neighboring objects.
As a matter of fact, the spatial relation is very useful for natural scene classi-
fication. For example, we know that “road” cannot be on top of a “tree”, but
“road” is possible to appear beside a “tree”. In this case, simple co-occurrence,
or adjacency relation between “road” and “tree” will not help much in resolv-
ing uncertainties in the classification of either “road” or “tree”. However, the
spatial relation, one is on top of the other, will clearly verify the situation. To
efficiently interpret such semantic relations, we first group the superpixels into
connected components based on their initial classification. For example, as shown
in Fig. 3(b), all superpixels falling on the circled component, which are initially
classified as ”sky”, are grouped together. The contexts about whether its top,
bottom and sides are tree, sky, etc., are extracted and represented as soft evi-
dence passed to a learned Nave Bayes structure illustrated in Fig. 4. Each node
in the structure, except the node “category”, represents a spatial relation. For
example, the node “isTopSky” has two values: 0 if the top of the component
under consideration is not “sky”, 1 otherwise. Inference based on soft evidence
updates the probability of the values of node “category”, i.e., the classification
of the component under consideration. For example, based on the evidence that
the top and two sides of the circled component in Fig. 3(b) are all “road”, the
classification of the component will be updated to “road”, as shown in Fig. 3(c).
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Fig. 3. Illustration of the contextual analysis process. (a). Original image; (b). Result of
initial classification, with misclassifications for some parts; (c). Result after contextual
analysis.

Fig. 4. Nave Bayes structure for contextual analysis

2.3 Visual attention

In a computer vision system, the purpose of visual attention module is to de-
termine the region of objects of interest. The visual attention mechanism in the
framework consists of a saliency map generation submodule, a binding submod-
ule and a top-down priming submodule. In the following, we will use the image
in Fig. 5(a) to illustrate how the mechanism works.

First, an initial saliency map is computed for the image based on the algo-
rithm in [42]. This initial saliency map is further refined by suppressing the effect
of large patches of background, whereby the background region is determined
based on the consistency of color/intensity of the image. The refined saliency
map is shown in Fig. 5(b). The task of binding is to group the saliency regions
into proto-objects, which are believed to be the form of output in visual atten-
tion [43]. The MSER algorithm [44] is modified to accomplish the binding task.
Major modifications to the MSER algorithm lie in the change of maximally sta-
ble criteria. Besides the ratio of region change as defined in [45], we also consider
the orientation consistency when two components are to be merged, as well as
the contour completeness. The bounding boxes of the initial proto-objects are
shown in Fig. 5(c). There are false alarms of proto-objects in Fig. 5(c) because
only information from the bottom-up saliency map and the contour is made use
of at this stage. The top-down process - attention priming, steps in to reduce
false alarms. It works as follows: First, it makes use of domain knowledge about
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the task requirement to determine potential object size and object types. For
example, for a driving vehicle, the potential objects of interest may be cars and
other obstacles on the road that the vehicle should avoid colliding. This inference
will further activate the use of other knowledge such as “obstacles should be on
the road, not on the top of trees”. Combining such domain knowledge with the
image context derived from the scene parsing process (as shown in Fig. 5(e)), the
priming process will switch the attention to the true object of interest, removing
the false alarms that does not fit for our domain knowledge, leading to the result
as in Fig. 5(d), with only one potential obstacle. This visual attention result is
then applied to update the scene part parsing result on superpixel level, and the
final scene understanding result is shown in Fig. 5(f).

Fig. 5. : Illustration of the Visual attention process. (a). Original image; (b). Saliency
map; (c). Bounding boxes for initial proto-objects output by binding process, (d). Final
bounding box for a proto-object after attention priming; (e). Output of the scene part
parsing mechanism; (f). Final output combing scene part parsing and visual attention.

The example shown in Fig. 5 clearly demonstrates one function of the visual
attention mechanism - it can discover some potential objects of interest that
the scene part parsing mechanism misses. As shown in Fig. 5(e), the obstacle
(in this case, the truck) is misclassified as ”longGrass” by the scene part parsing
mechanism. There are two possible reasons for the misclassification. It is possible
that the superpixel level classification, which is based on only partial structure
of objects, is not effective in detection of obstacles. It is possible too that the
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object is “new” to the training-based scene part parsing process. However, the
visual attention mechanism, which is based on contrast and contours, success-
fully makes the obstacle “pop out”, and complement the scene part parsing
mechanism in detection of obstacles. On the other hand, the information from
scene part classification provides scene contexts for attention priming.

The scene part parsing mechanism has been tested with many scenarios of
different terrains. In a recent exercise, we have collected a variety of data covering
diversified terrains like cluttered unstructured fields, narrow tracks with water
bodies and wide open areas with ponds. From the data collected, we selectively
labelled 356 images, with effort to ensure that the selected images are sufficient
to reflect the diversities in terrain and illumination changes. From these labelled
images, we have randomly chosen 178 images to train the classifier for initial
classification and the Naive-Bayes model for contextual analysis, while the re-
maining 178 images for test. The F-measure (measured on superpixel level) for
the major categories is shown in Table 1.

Table 1. F-measure for different categories

processing F-measure (%)
stage road highVeg longGrass sky water obstacle

initial classification 0.961 0.910 0.767 0.991 0.726 0.624

after contextual analysis 0.965 0.922 0.784 1.0 0.731 0.622

As can be easily observed from Table 1, the top-down contextual analysis
improves the classification performance for most categories, and the scene part
parsing submodule performs constantly well for categories like “road”, “highVeg”
(representing high vegetation) and “sky”, which are the major categories in off-
road natural scenes. Considering that the vehicle has to traverse over long grass
on narrow tracks, a category “longGrass” is added to the classification module.
Although “longGrass” is quite confusing with “highVeg”, the scene part parsing
mechanism works reasonably well for the category.

Another feature of the module is its high efficiency in computation. It takes
only about 0.08 seconds to process an image of 400X300 in a 64-bit Windows
system with Inter i7-3520 Dural Core and 8GB RAM.

The scene part parsing submodule is not very successful in classification of
“obstacle”, which includes all kinds of man-made structures/objects in our case.
It is reasonable considering the diversity of obstacles and that the scene parsing
is conducted on superpixel level, which may not extract complete topological
features to interpret the structure of obstacles as a whole. Its weakness in obstacle
detection can be partially complemented by the visual attention mechanism, as
shown in Fig. 5. It will also be complemented by the LIDAR obstacle detector,
which is known to be good for obstacle detection.
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3 Fusion-based traversable region formation

Fig. 6 presents our framework to fuse the image-based scene parsing module
and LIDAR detections. Both monocular camera and LIDAR are installed on
top of an autonomous vehicle. The LIDAR applied is Velodyne 64-HDL with
64 sensors to generate pointcloud. A LIDAR based detector classifies the 3D
points into ground points or obstacle points mainly based on their z-coordinates
(the height of objects). It futher groups the obstacle points into clusters based
on the distance between the points. A data registration process is conducted to
align the image frames and LIDAR scans in time and estimate the homography
transform so as to acquire the point-level correspondence between image pixels
and 3D LIDAR points.

Fig. 6. Framework for image and LIDAR fusion

Fig. 7 illustrates an example of data registration. The original image is shown
in Fig. 7.(a), and the aligned LIDAR occupancy grid with cell size 20cm x 20cm)
is shown in Fig. 7.(e). Fig. 7(f) shows the clusters (on occupancy grid) provided
by the LIDAR detector, while Fig. 7(b) shows the correspondence between the
LIDAR points and the image after data registration. In both Fig. 7(b) and
Fig. 7(f), ground points are represented in gray, while each other color corre-
sponds to an individual cluster output by the LIDAR detector.

3.1 Image and LIDAR fusion

The fusion module first identifies the LIDAR clusters belonging to man-made
“obstacle” and “longGrass” based on features including the height of the clus-
ter, its position relative to the ground plane, depth difference within the cluster,
and the image-based scene parsing result. It then makes use of LIDAR informa-
tion to achieve more reliable scene parsing. There are several cases that LIDAR
information will help to resolve ambiguities in image-based scene parsing. For
example, if all 3D points projected to a superpixel are on ground level, the super-
pixel is unlikely to be part of an obstacle. On the other hand, if most of the 3D
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Fig. 7. Illustration of the fusion process. (a). Original image; (b). LIDAR clusters pro-
jected to the image; (c). scene classification without fusion, with errors in regions A
and B; (d). scene classification after fusion; (e).Original LIDAR pointcloud (on occu-
pancy grid); (f). LIDAR clusters output by the LIDAR detector; (g). Classification of
LIDAR cells with presence of misalignment; (h). Classification of LIDAR cells with
misalignment removed.

points projected to the superpixel belong to obstacle, the superpixel is unlikely
to be classified as ”road”. The fusion strategy is similar to that applied in [29].
Once the classification of superpixels is updated, the categories of the individual
3D points are set to be the same as the corresponding image point. Accord-
ingly, the classification of the cells in the occupancy grid that are occupied by
LIDAR points can be determined based on that of points in it using majority
voting rule. As shown in Fig.7(g), gray points correspond to ground cells, red
for obstacle cells, green for long grass and dark green for high vegetation which
is non-traversable.

Another issue in the fusion process is the imperfectness of data registration.
For example, in Fig.7(g), there are some scattered false alarms of ”obstacle”
cells further away from the real obstacle. This is because, due to misalignment,
some 3D points of road and vegetation in the distance are projected to the
obstacle in the image, resulting in misclassification to these 3D points. The
misalignment removal mechanism removes such misclassified points by referring
to the classification of 3D clusters, utilizing ad-hoc rules. For example, If LIDAR
points of a non-obstacle cluster is projected to an “obstacle” in the image, they
are removed from the occupancy grid. After misalignment removal, we will get
the updated, more reliable classification of occupancy grid , as shown in Fig.7(h).
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3.2 Region interpolation

The classified cells as shown in Fig.7(h) are very sparse, resulting in extra
challenge for autonomous vehicle navigation. We are intending to make the
traversable region continuous to facilitate navigation.

The main technique used in continuous region formation is interpolation. To
begin with, the physical regions corresponding to the field of view of the image
are divided into an occupancy grid of 20cm x 20cm. The classification of the cells
in the occupancy grid that are hit by LIDAR points can be determined based
on that of points in it using majority voting rule. The task of interpolation is to
infer the category of those unoccupied cells based on their occupied neighbors.
The interpolation is conducted in order of categories. The first category to be
processed is “road/ground”, followed by other categories that are adjacent to
the road or overlaid on the road, for example, “obstacle” and “longGrass”.

Fig. 8. Flowchart of the interpolation process along a border

For each category of interest (e.g., “road”, “obstacles” and “longGrass”), the
connected components are first identified in the image plane. For each connected
component, the classified cells on the LIDAR occupancy grid are identified along
the left, right, top and bottom borders of the component. The bordering cells
along each direction are discontinuous, and they may not reflect the actual border
position due to the sparseness of the classified cells. However, they form a proper
estimation about the border regions of the component. For each direction, the
search and interpolation of actual borders will be around the initial bordering
region. As shown in Fig. 8, along each direction, the non-classified cells which
have at least one neighboring cell classified, are pushed to respective seed stacks
based on the number of classified neighbors. A classified neighbor is a cell on
the occupancy grid, the category of which has been either inferred in the fusion
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process, or interpolated before. The interpolation will start from the cells with
the most classified neighbors: the z-coordinate of the cell is set to the averaged
z-coordinates of its classified neighbors, the coordinates of the four corners of the
cell (the x and y coordinates of the cell is known based on the location of the cell
on the occupancy grid) is then projected to the image plane. If all the four corners
fall in the connected component under consideration, the cell is considered to
belong to the component. Therefore, its category is set to be the same category
as the component. In the meantime, its unclassified neighbors are pushed to the
neighbor stack. After all the cells in the seed stacks are interpolated, the cells
in the neighbor stack will be interpolated. This interpolation process will be
repeated until there is no new cell processed in the iteration.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Figure 9: Illustration of the interpolation process.(a). 1st iteration along left
(seed cells are in purple); (b).3rd iteration along left; (c).10th iteration along left; (d).
4 borders of road are interpolated; (e). internal area of road are filled; (f). obstacle and
long grass regions are interpolated



14 Xuhong Xiao, Gee Wah Ng, Yuan Sin Tan, Yeo Ye Chuan

Fig. 9(a) to Fig. 9(c) illustrate the intermediate results of the 1st, 3rd and
10th iterations to interpolate the large road region in Fig. 7(a), along the left
border. The points in cyan correspond to the cells in the seed stacks in the
iteration. Fig. 9(d) illustrates the result after interpolation is conducted along
left, right, top and bottom sides of the road region. As can be observed, most of
the interpolated borders are continuous. The border regions are then smoothed
and the internal holes are filled to achieve a continuous region as shown in
Fig. 9(e). Fig. 9(f) presents the result after the interpolation process are also
applied to category “longGrass” and “obstacle”. The region for “longGrass” is
not fully continuous even after the interpolation. One of the reasons is that
due to irregular height of the long grass, the estimated coordinates of the four
corners of unclassified cells covered by long grass are not accurate enough to get
the correct projection to image pixels. The other reason is that there is no clear-
cut boundary between “longGrass” regions and ”“highVeg” regions, as shown in
Fig. 9(a). Likewise, there are gaps between the road boundary and “longGrass”
region. However, the continuous road region and the approximation of borders
between “road” and other categories form a good 2 1/2 D map for navigation
purpose.

4 Summary

In this paper, we have introduced the scene parsing mechanism in our Cog-
nitive Architecture, which has successfully integrated a visual attention mech-
anism with the super-pixel level scene parsing mechanism. We have also pro-
posed a novel way to explicitly interpret spatial relations between objects and
applied them to the top-down facilitation process of the scene part parsing mech-
anism.The scene part parsing and visual attention mechanisms have been tested
in many experiments and trials and proved to be effective. In the meantime,
we have also proposed a new approach to acquire a continuous 21

2D map of
traversable regions via fusion of image and LIDAR detections. This algorithm is
under test involving autonomous vehicle navigation in off-road environment.
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