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Abstract. We propose a new type of saliency as inspired by findings
from visual search studies - the searching difficulty is correlated with
the target-distractor contrast, the distractor homogeneity, as well as the
target uniqueness. By putting an image pixel as the target and the sur-
rounding pixels as distractors, a search guided saliency model is designed
in accordance with these findings. In particular, three saliency measures
in correspondence to the three searching factors are simultaneously com-
puted and integrated by using a series of contextual histograms. The
proposed model has been evaluated over three public datasets and exper-
iments show superior prediction of the human fixations when compared
to the state-of-the-art models.
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1 Introduction

Visual saliency [27] characterizes the distinct perceptual quality of an object or
image region with respect to its surrounding. It helps to serialize the attending
of objects in scenes which the human vision system cannot process in parallel
due to the tremendous amount of visual information involved. Computational
modeling of visual saliency aims to build an attention model that is capable of
predicting where people will look at given an image or scene. It has increasingly
attracted research interest in recent years due to its importance in both human
visual attention study and a wide range of applications in object detection, object
segmentation, visual search, etc [8, 21, 24, 29].

Quite a number of saliency models [3] have been reported in recent years that
exploit the local contrast and global image contrast. The local contrast based
models make use of a center surround difference to compute the contrast of an ob-
ject or image region with respect to its surrounding [9, 14, 15, 18]. Itti and Koch’s
model [14, 15] is probably one of the earliest that exploit the center surround
difference which is computed using a set of spatial filters. Other approaches have
also been proposed that exploit decision-theoretic discrimination [9], object-level
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Fig. 1. Illustration of the Search Guided Model: The search guided model is tolerant
to image edges and dynamic structures and capable of predicting the human fixations
accurately. For the sample images in the first row (from AIM dataset [5], SR dataset
[13], and MIT300 dataset [16]), rows 2-3 show the searched guided saliency maps and
the corresponding fixational maps, respectively.

segmentation [18], etc. for center surround difference computation. The major
limitation of the local contrast based models is that certain global features which
are closely related to the perceptual saliency is not captured.

A number of models have been reported to incorporate the global contrast
that is often pertaining to the perceptual rarity, uniqueness, unusualness. In
particular, image histograms have been extensively used to capture the low-
frequency global features. For example, Cheng et al. [6] employ color histograms
to capture the global color contrast and combine it with a local region contrast for
saliency computation. Lu et al. [19, 20] exploit a 2D co-occurrence histogram that
captures both local contrast and global unusualness simultaneously. Contextual
information has also been exploited [10, 28, 22] to capture both local and global
contrast in different ways. In addition, several frequency space models [1, 11–13]
are reported that compute saliency based on global unusual amplitude or phase
spectrum of the Fourier transform of an image.

Though local and global contrast has been exploited in various ways, the
contrast-based models are often over-responsive to inconspicuous image edges
which are associated with the local contrast and often represent certain globally
abnormal features. Several learning based models [4, 5, 17, 31, 32, 23] have been
proposed to learn the statistics or eye fixation data directly. These learning based
models are not sensitive to inconspicuous image edges but the computed saliency
often lacks discrimination between salient and inconspicuous objects.
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We propose a novel saliency model as inspired by findings from the visual
search studies, i.e., searching difficulty is determined by the target-distractor
difference, the center uniqueness, as well as the distractor homogeneity as illus-
trated in Fig. 1. In the proposed model, the three saliency features are computed
and integrated by using a series of contextual histograms that can be directly
determined within a local neighborhood window. The proposed model has a num-
ber of novelties. First, it computes and integrates several search-guided saliency
features and obtains superior human fixation prediction performance compared
with state-of-the-art models. Second, it makes use of contextual histograms and
overcomes one typical limitation of many existing models, i.e., high saliency re-
sponse around inconspicuous image edges or other dynamic structures. Third, it
is simple and easy for implementation.

(a) (b) (c) (d)

Fig. 2. Visual Search Principle: Compared with the target (the vertical bar at the
center) in (a), the target in (b) has a higher pop-out effect due to its higher target-
distractor difference, the target in (c) has a lower pop-out effect due to its lower dis-
tractor homogeneity (the distractors have the same average slant angle as those in (a)),
and the target in (d) has a lower pop-out effect due to its lower uniqueness level.

2 Principle of Search Guided Saliency

The visual search guided saliency is inspired by the feature integration and
stimulus similarity theory [26, 7] as illustrated in Fig. 2 - the target will have
a shorter searching time and stronger pop-out effect when the target-distractor
contrast is stronger, the surrounding distractors have a higher homogeneity level
and the target has a high uniqueness level. It integrates three principles from
the visual search studies [7, 26, 30] including:

1. A target will have a stronger pop-out effect when it has a larger contrast to
the surrounding distractors. As shown in Fig. 2, the target - the vertical bar
at the center in 2b has a stronger pop-out effect than that in 2a. This can
be further illustrated by simulated images in Fig. 3 where the target pixel
at the center in 3b is more salient than the one in 3a due to its stronger
contrast to the surrounding distractor pixels.
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2. A target will have a stronger pop-out effect when the surrounding distractors
have a higher homogeneity level. As shown in Figs 2, the vertical bar at the
center in 2c has a lower pop-out effect than that in 2a. This can be further
illustrated by simulated images in Fig. 3 where the target pixel in 3c is less
salient than the one in 3a due to its lower homogeneity level.

3. A target will have a stronger pop-out effect when it has a higher uniqueness
level, i.e., fewer distractors have the same visual properties as the target.
This can be shown in Fig. 2 where the vertical bar at the center in 2d has a
lower pop-out effect than that in 2a. It can be further illustrated by simulated
images in Fig. 3 where the target pixel in 3d is less salient than the one in
3a due to its lower uniqueness level.

(a) (b) (c) (d)

Fig. 3. Visual Search Principle: Compared with the target pixel at the center of the
image in (a), the target pixel in (b) has higher saliency due to its higher center-surround
contrast, the target pixel in (c) has lower saliency due to its lower surround homogeneity
(the distractor pixels have the same mean but much smaller variance than those in (a)),
the target pixel in (d) has lower saliency due to its lower uniqueness.

Under the same target-distractor paradigm, the proposed model constructs a
contextual histogram based on the “distractor” pixels that surround each “tar-
get” pixel at the center. The saliency of the target pixel is computed by integrat-
ing three search-inspired saliency measures including the surround homogeneity,
the center uniqueness, and the center surround contrast, all of which can be
computed from a series of contextual histogram simultaneously. Due to the in-
tegration of the three saliency features by using the contextual histograms, the
proposed model is tolerant to the image edges and demonstrates better predic-
tion of the human fixations when compared with those local and global contrast
based models as illustrated in Fig. 4.

Related models also exploit the image histogram and contextual information
to capture the local and global image contrast [10, 12, 19, 20, 2]. The frequency
space model in [12] makes use of the global contrast which is tolerant to image
edges but often detects only the boundary of salient objects as illustrated in Fig.
4b. The context models [10, 2] integrate the local and global contrast and but
are over-responsive to inconspicuous image edges and corners as shown in Fig.
4c. The histogram based models [19, 20] exploit occurrence and co-occurrence of
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image intensity and color to capture the local and global contrast concurrently.
They are capable of detecting multiple salient objects with a complex background
but are also over-responsive to image edges as shown in Fig. 4d.

3 Visual Search Guided Saliency Modeling

This section describes the visual search guided saliency modeling technique. For
each “target” pixel, several contextual histograms are first constructed based
on the “distractor” pixels that surround the target pixel. A saliency level is
then determined by integrating the three saliency measures that are computed
from each contextual histogram. The overall saliency is finally determined by
integrating the saliency that is computed across multiple contextual histograms
and multiple image channels.

(a) (b) (c) (d) (e) (f)

Fig. 4. Search Guided Saliency: For the sample image in 3a [5], the images in 3b-3e
show the saliency that is computed using the spectral residual [12], the context [10],
the co-occurrence histogram [20], the search guided principles, and the corresponding
fixational map (Gaussian smoothing of eye fixations of 20 subjects), respectively.

3.1 Contextual Histogram

A contextual histogram is constructed to emulate the target-distractor paradigm.
For each target pixel, a contextual histogram H is constructed by using a number
of distractor pixels that surround the target pixel at the center. Neighborhoods
of different shapes such as circular or square-shaped can be used to pick the
distractor pixels. At the same time, neighborhoods of different sizes can be used
to capture contexts of different distances to the target pixel (to be described in
Section 3.4). Note that the distractor pixels are picked along the neighborhood
boundary instead of from within the neighborhood.

Fig. 5b shows the contextual histogram of three typical image pixels as la-
beled in the image in Fig. 5a, where histogram graphs have the same color as the
corresponding labeling neighborhood squares. In particular, the three example
pixels have the same intensity (80 as indicated by the arrow) but are picked
from a homogeneous image region (blue square), an inconspicuous image edge
(red square), and a salient image region (brown square), respectively. The cor-
responding three contextual histograms are distinctive as illustrated in Fig. 5b.
For the pixel in the homogeneous region, its contextual histogram (blue graph)
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has a large global peak and its intensity lies close to the global peak. For the
pixel along the image edge, its contextual histogram (red graph) usually has two
major peaks and its intensity lies somewhere between the two major peaks. For
the pixel in the salient image region, its contextual histogram (brown graph)
often has a large global peak and its intensity lies far away from the global peak.

The contextual histogram can be smoothed to suppress the undesired saliency
response (for the three saliency measures) around the image edge. For the three
contextual histograms shown in Fig. 5b, Fig. 5c shows the smoothed contextual
histograms by using a Gaussian filter. As Fig. 5c shows, the salient pixel and
the one in the homogeneous region still have a small and large histogram values,
respectively, after the smoothing. As a comparison, the edge pixel has a much
higher value after the smoothing because the smoothing raises its histogram
values due to the two major peaks at both sides as illustrated in Fig. 5c. The three
saliency measures can be computed from the smoothed contextual histogram as
shown in Fig. 5d (to be described in the next subsection).

(a) (b) (c) (d)

Fig. 5. Search Guided Saliency Measures: (a) shows a sample image with three typical
pixels from a homogeneous region (square neighborhood of blue color), an image edge
(square neighborhood of red color) and a salient region (square neighborhood of brown
color). (b) and (c) show the contextual histogram H and the smoothed contextual
histogram H ′ of the three pixels, respectively (with the same coloring as the square
neighborhood in Fig. 5a). (d) shows the three saliency measures of the three pixels as
well as their integrated saliency.

3.2 Search Guided Saliency Measures

With respect to the three visual search principles, three saliency measures can be
defined and computed from the contextual histogram simultaneously. The first
saliency measure is center surround difference that has been widely exploited in
the literature. It is defined as follows:

Sc(x, y) = ‖I(x, y)−Hc‖ (1)

where I(x, y) denotes the intensity of the target pixel at (x, y). Hc is the cen-
troid of the contextual histogram which is equal to the mean of the surrounding
distractor pixels that are picked to construct the histogram. Note that the con-
textual histogram here is the original before smoothing.
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Image pixels in a salient region usually have much larger center-surround
difference Sc than those in a homogeneous region whose intensity is usually
close to the histogram centroid Hc. Edge pixels often have a small Sc because
the intensity of edge pixels usually lies between the two major histogram peaks
and will be close to the histogram centroid Hc as illustrated in Fig. 5c (red
graph). This can be further illustrated in Fig. 5d where the first bar group (with
the same labeling colors as in Figs. 5a-5c) shows the Sc of the three pixels which
is normalized by their maximum. As Fig. 5d shows, the pixel in a salient region
has a much higher Sc than the edge pixel and the pixel in a homogeneous region.

The second saliency measure is the surround homogeneity which is closely
correlated with the perceptual visual saliency. Within a smoothed contextual
histogram H ′, the surround homogeneity is mainly demonstrated by a large
global peak. This saliency measure is defined as follows:

Sh(x, y) =
(
H ′

x −H ′(I(x, y)
))p

(2)

where H ′
x denotes the global peak of the smoothed contextual histogram H ′.

Parameter p is a number larger than 1 which controls the weight of this saliency
measure.

For image pixels having the same center-surround difference, those with a
more homogeneous surrounding should have a larger Sh. In particular, target
pixels with a more homogeneous surrounding should have a larger histogram
peak H ′

x but a smaller H ′(I(x, y)), where the smaller H ′(I(x, y)) is largely due
to fewer distractor pixels whose intensity lies between the global peak intensity
and the target pixel’s intensity I(x, y). This can be illustrated in Fig. 5d where
the second bar group shows the Sh of the three sample pixels that is normalized
by their maximum. It should be noted that image pixels in a homogeneous
region usually have a large H ′

x but a small Sh because the histogram value of
these pixels, i.e., H ′(I(x, y)), is usually large and close to H ′

x. As Fig. 5d shows,
the pixel in a salient region has a much higher Sh than the edge pixel and the
pixel in the homogeneous region.

The third saliency measure captures the uniqueness level of the target pixel.
With a smoothed contextual histogram H ′, this measure is defined as follows:

Su(x, y) = 1−H ′(I(x, y))q (3)

where I(x, y) denotes the intensity of the target pixel and q is a number ly-
ing between 0 and 1 which controls the weight of this saliency measure in the
integrated saliency.

Image pixels with a higher saliency level usually have a larger Su. In particu-
lar, a higher center uniqueness level means fewer distractor pixels with the same
intensity as the target pixel, i.e., a smaller H ′(I(x, y)) that leads to a larger Su.
Note that Su is related to the Sc and Sh as a larger center-surround difference
and surround homogeneity usually lead to a higher center uniqueness. On the
other hand, Su captures certain specific saliency information, i.e., the center
uniqueness, that is not captured in either Sc or Sh (as illustrated in Figs. 2d
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and 3d). This can be illustrated in Fig. 5d where the third bar group shows the
Su of the three sample pixels that is normalized by their maximum. As Fig. 5d
shows, the pixel in a salient region has a much higher Su than the edge pixel
and the pixel in a homogeneous region.

3.3 Saliency Modeling

The saliency of an image can be determined by integrating the three saliency
measures that are computed for different channel images of different scales. We
use the Lab color space where channel L encodes the image lightness and con-
trast information and channels a and b encode the image color information. In
addition, each channel image is down-sampled to n image scales to capture con-
texts of different sizes (to be described in Section 3.4). Note that image values
in the three image channels are first mapped to 0∼255 (first subtracted by the
minimum intensity, then divided by the maximum value, and finally multiplied
by 255) and then rounded to integers for the contextual histogram construction.

With the three saliency measures as defined in Eqs. 1-3 in the previous sub-
sections, the saliency level of a target image pixel is determined as follows:

S(x, y) = Sc(x, y) ∗ Sh(x, y) ∗ Su(x, y) (4)

where Sc(x, y), Sh(x, y), and Su(x, y) denote the three saliency measures that
are computed for the target image pixel at (x, y), respectively. A multiplication
strategy is adopted because all the three saliency measures change in the same
direction as the overall perceptual saliency. For the three sample pixels labeled
in Fig. 5a, the fourth bar group in Fig. 5d shows the corresponding integrated
saliency, where the pixel from a salient region has much higher saliency compared
with the other two sample pixels.

The overall saliency of a target pixel can be finally computed as follows:

So(x, y) =
∑
Lab

max
(
S1(x, y), · · · , Sn(x, y)

)
(5)

where S1(x, y), · · · , Sn(x, y) refer to the integrated saliency in Equation 4 that is
computed for one image channel of different scales. Two strategies are adopted
to integrate the computed saliency. First, max-pooling is employed to take
the maximum of the saliency that is computed across n image scales, i.e.,
S1(x, y), · · · , Sn(x, y). Note that saliency computed at different image scales is
first scaled back to the original image scale before the max-pooling. Second,
average-pooling is implemented to determine the overall saliency level by aver-
aging the saliency that is computed over the three image channels.

3.4 Discussion

The proposed model involves several parameters. In particular, p and q are used
to control the weights of the surround homogeneity and the center uniqueness
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as described in Section 3.2. Evaluation over the eye fixational map shows that
saliency can be detected properly when p and q are set around 0.05-0.2 and 2-4,
respectively. Neighborhoods of different shapes and sizes can be set to pick the
distractor pixels as described in Section 3.1. In our implementation, a square-
shaped neighborhood is used and the neighborhood radius is set at 10 pixels.
In addition, each channel image is down-sampled to n image scales for saliency
computation as described in Section 3.3. In our implementation, five image scales
are used where each image is down-sampled to 0.6, 0.5, 0.4, 0.3, and 0.2 of the
original image scale. Last, the contextual histogram is smoothed by using a
Gaussian filter as described in Section 3.1. The width of the filter window can
be around 20-40 based on the humans’ perceptible visual contrast.

Fig. 6. Comparison of the search guided model with six state-of-the-art models over
the AIM dataset: For the sample images in the first row, row 2 shows the corresponding
fixational maps as described in Section 4, row 3-9 show the corresponding saliency maps
by the search guided model and the six state-of-the-art models in [20, 12, 5, 10, 31, 1],
respectively.
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The three saliency measures help to suppress the response at the inconspicu-
ous edges and other dynamic structures such as tree branches effectively. First,
edge pixels usually have a small Sc because their intensity lying between the two
major histogram peaks is often close to the Hc, the mean of the distractor pixels
that are counted into the contextual histogram. Second, edge pixels usually have
a small Sh because they have a smaller global histogram peak H ′

x but a larger
H ′(I(x, y)), largely due to the smoothing of the contextual histogram with two
major peaks at the left and right sides. Third, edge pixels usually have a small
Su because a small q (e.g. q = 0.1) will left H ′(I(x, y))q to be close to 1 even
when H ′(I(x, y)) is very small by itself.

4 Results

The proposed model has been evaluated over three public datasets including
the SR dataset [13], the AIM dataset [5], and the MIT300 dataset [16]. The
SR dataset consists of 62 static images and for each image, salient regions are
manually labeled by four subjects which are further averaged to form a hit map
as illustrated by the first three graphs in the second row of Fig. 7. The AIM
dataset includes 120 static images and the corresponding fixational maps as
illustrated in the second row in Fig. 6, which are created by Gaussian smoothing
of the eye fixations that are collected from 20 subjects for each image. The
MIT300 dataset consists of 300 natural images that capture different scenes
such as humans, buildings, flowers, etc. For each image, fixations of 39 subjects
are collected in similar way as the AIM dataset with which a fixational map is
computed as illustrated in the last three graphs in the second row of Fig. 7.

The proposed model is compared with six state-of-the-art models including
the context model [10], the signature model [12], the frequency tuned (FT) model
[1], the AIM model [5], the SUN model [31], and the CCH model [20]. The
implementations of the state-of-the-art models are downloaded from the authors’
websites. For the search guided model, parameters p and q are set at 0.1 and 3,
and the window width of the histogram filter is set at 30. Fig. 6 show several
images of the AIM dataset in the first row, the corresponding fixational maps in
the second row, and the saliency maps that are computed by using the search
guided model and the six state-of-the-art models [20, 12, 5, 10, 31, 1] in 3-9 rows,
respectively. Fig. 7 show the saliency maps of the search guided model and the
six compared models for the SR dataset (the first 3 images) and the MIT300
dataset (the last 3 images). As Figs. 6 and 7 show, the search guided model
predicts the human fixations accurately.

In particular, the contrast-based models [20, 12, 10]are often over-responsive
to the inconspicuous image edges as illustrated in rows 4, 5, and 7. As a compari-
son, the search guided models helps to suppress such “false alarms” effectively as
shown in row 3. For example, most contrast-based models are over-responsive to
the inconspicuous image edges and dynamic tree branches and grasses as shown
in the second, fourth, fifth and seventh images in Fig. 6 where the search guided
model has little responses as shown in row 3. The learning based models [31,
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Fig. 7. Comparison of the search guided model with six state-of-the-art models over
the SR and MIT300 datasets: For the sample images in the first row, row 2 shows the
corresponding fixational maps as described in Section 4, row 3-9 show the corresponding
saliency maps by the search guided model and the six state-of-the-art models in [20,
12, 5, 10, 31, 1], respectively.
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5] are instead blurry where salient and non-salient regions both have certain
saliency as illustrated in rows 6 and 8. In addition, the search guided model is
capable of detecting salient objects or image regions of small scale such as the
dark object in the second image and the red flowers in the fifth image in Fig. 6,
largely due to the incorporated context homogeneity information. As a compar-
ison, the contrast-based models often fail to detect such salient objects because
other inconspicuous objects often have much higher contrast.

Table 1. sAUC of the search guided model and six compared state-of-the-art models
based on the AIM dataset [5] (CSC: center-surround contrast in Eq. 1; SH: surround
homogeneity in Eq. 2; CU: center uniqueness in Eq. 3).

Models Shuffled AUC
AIM dataset SR dataset

Search Guided Model 0.7311 0.7224

SH+CU Model 0.7217 N.A.

SH Model 0.7039 N.A.

CU Model 0.6942 N.A.

CSC Model 0.6899 N.A.

Co-Occurrence Model in [20] 0.7221 0.7291

Signature model [12] 0.7147 0.6881

AIM model [5] 0.6990 0.7149

Context Model in [10] 0.6958 0.7458

SUN model [31] 0.6813 0.6668

FT model [1] 0.5885 0.6108

Quantitative experiments have also been conducted based on the AIM dataset.
The MIT300 dataset is not evaluated as only nine images have fixational maps
available (used for comparison of different models on the authors’ website)
whereas fixational maps of the rest images is not available. The performance is
evaluated through the analysis of the receiver operating characteristic (ROC)
and the corresponding shuffled area under the ROC curve (sAUC). For the
saliency computed by different models, 25 rounds of Gaussian smoothing are
implemented by changing the smoothing window size from 0.01 to 0.13 of the
image width with an increase step of 0.005 as described in [12]. In addition, the
ROC computation procedure in [25] is adopted which compensates for center-
bias that commonly exists within the human fixations.

Table 1 shows the sAUC of the search guided models and the six compared
models. With the three saliency measures, five sAUCs are computed where the
“Search Guided Model” integrates all three saliency measures, the “SH+CU
Model” integrates the surround homogeneity and the center uniqueness, the
“CSC Model” uses the center-surround contrast alone, the “SH Model” uses
the surround homogeneity alone, and the “CU Model” uses the center unique-
ness alone. As For the AIM dataset, the “CSC Model” does not model the vi-
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sual saliency well, with a sAUC at 0.6899. The “SH+CU Model” integrates the
novel surround homogeneity and center uniqueness, which greatly outperforms
the “CSC Model”. In addition, the “SH Model” clearly outperforms the “CU
Model”, meaning that the surround homogeneity plays a heavier role in percep-
tual saliency compared with the center uniqueness. Furthermore, the “Search
Guided Model” obtains a sAUC of 0.7311 which outperforms all sub-component
models as well as the six contrast-based models. For the SR dataset, the search
guided model obtains a sAUC of 72.24% which is close to that of the AIM dataset
(sAUC of the sub-component models are not computed). Note that the context
based model [10] obtains a clearly higher sAUC, largely due to a face detector it
incorporates that helps to predict the high saliency of human and animal faces
within a number of images of the SR dataset.

The proposed search guided model exploits only the low-level features. On
the other hand, the human eyes are often attracted by familiar objects with
semantic meaning such as human bodies, animals, human faces, vehicles, texts
in scenes, etc. Relevant visual search models such as face detector, text detector,
vehicle detector, etc. will be investigated and combined with the search guided
model for better prediction of the human fixations.

5 Conclusions

This paper presents a novel saliency model that is inspired by visual search stud-
ies. Three saliency measures including the widely used center-surround contrast,
the surround homogeneity, and the center uniqueness are defined and integrated
for saliency modeling. A series of contextual histograms are constructed for each
image pixel from which all the three saliency measures can be computed simulta-
neously. Experiments over three widely used public benchmarking datasets show
that the proposed model predicts the human fixations accurately.
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