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Abstract. Recent decade has seen great interest in the use of discrim-
inative classifiers for tracking. Most trackers, however, focus on correct
classification between the target and background. Though it achieves
good generalization performance, the highest score of the classifier may
not correspond to the correct location of the object. And this will pro-
duce localization error. In this paper, we propose an online Maximum
Margin Correlation Tracker (MMCT) which combines the design prin-
ciple of Support Vector Machine (SVM) and the adaptive Correlation
Filter (CF). In principle, bipartite classifier SVM is designed to offer
good generalization, rather than accurate localization. In contrast, CF
can provide accurate target location, but it is not explicitly designed to
offer good generalization. Through incorporating SVM with CF, MMCT
demonstrates good generalization as well as accurate localization. And
because the appearance can be learned in Fourier domain, the computa-
tional burden is reduced significantly. Extensive experiments on public
benchmark sequences have proven the superior performance of MMCT
over many state-of-the-art tracking algorithms.

1 Introduction

Visual tracking is a significant problem in computer vision and it has been used in
various applications such as automatic object identification, automated surveil-
lance, vehicle navigation et al. Visual tracking has made great progress in the
last decades and there are many different tracking approaches, such as kernel
based tracking [1], particle filter based tracking [2], and tracking by detection
[3]. However, designing a robust tracker is still a challenging problem, as the
tracking results can be greatly influenced by moving out of plane, illumination
changes, occlusion [4] et al.

Recently, tracking by detection has become a hot topic in single object track-
ing [3]. It stems directly from the offline training object detection methods, and
it turned the offline training to online training to solve tracking problems.

Avidan [3] uses SVM to build a classifier separating the object from the
background. The classifier uses offline training SVM integrated with optical flow
algorithm to locate the object. But as the classifier is offline trained, the tracker
can not adapt to the appearance changes of the object. In order to solve this
problem, ensemble tracking [5] algorithm has been proposed. The algorithm col-
lected positive and negative samples from the object and background regions to
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train the weak classifiers, and used adaboost to select the most effective weak
classifiers. A weighted sum of the selected classifiers presents the final strong
tracker. As selecting appropriate positive and negative samples can influence
the tracking results a lot, Babenko [6] propose a more robust algorithm based
on multiple instance learning. The algorithm is more robust and have more fault
tolerance as instead of receiving a set of instances which are labeled positive or
negative, the learner receives a set of bags that are labeled positive or negative.
As wrong labeling can be always occurred in tracking, Z.Lalal proposed [7] us-
ing ’P-N learning’ to estimate the samples that are wrong labeled. The tracker
utilizes P-expert to find the wrong labeled positive samples and N-expert to find
the wrong labeled negative samples.

All of the aforementioned algorithms have one thing in common, in train-
ing process, they all regarded the tracking problem as a bipartite classification
problem. This can severely influence the localization performance of the tracker.
Assume in frame t, if we have a d -dimensional solution vector w, correlating it
with the image search patch, the peak of the response map can represent the
object center. The ideal response map obtains a sharp correlation peak, which
is centered at the object center. However, the response map of these trackers
usually exhibits very broad peaks as they use binary labels for training. Broad
peak will cause poor localization performance, as the top of the peak may be
spread over several pixels thus can not correspond to the target center. Hare pro-
posed structured SVM tracker[8] labeling every sample differently to improve the
localization performance. The training process of all aforementioned trackers is
calculated in spatical domain. Thus these trackers can not choose dense sampling
strategy which will becomes computational burdens. Instead, they choose sparse
sampling as shown in Fig.1(a): positive samples are usually randomly collected
in the target’s neighbour, which can make the results severely influenced by the
selection of samples.

Bolme [9] proposed the MOSSE tracker using the adaptive Correlation Filter
for tracking. It uses dense sampling strategy, shown in Fig.1(b). And as the
center patch labels 1 and the value of labels degrades as the distance between
the sample and the target center increases. This strategy can keep the structure
of the target and localize accurately. As the model is computed in its Fourier
domain, the computational burden can be reduced a lot. CF can generate sharp
peaks and thus provide good localization performance, but they are not explicitly
designed to offer good generalization.

While SVM are designed to maximize the margin of different classes, it usu-
ally has good generalization performance. In priciple, combining the design of
CF and SVM, Andres[10] proposed the MMCF, an offline training algorithm for
object detection. The classifier has good generalization and localization perfor-
mance rather than SVM and CF. And it can be processed in Fourier domain for
fast training. But the MMCF is an offline training method, in tracking, it can
not adapt to the appearance changes of the target.

In this paper, however, we propose the MMCT. This tracker integrates the
design of CF and SVM, using the two criteria to build the objective function.
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The tracker uses dense sampling strategy around the target, and away from the
target, it randomly sample the negative patches. By using the SVM to constrain
the coefficients of CF, the response map of the tracker can produce discriminative
sharp peaks around the target center and small values away from the target
center.

Different from MMCF, we achieve an online learning algorithm. Instead of
using a weighted sum of models to update the tracker as many traditional tracker
do, we import the previous model into the objective function. Through incorpo-
rating the last model into the SVM constraint, the tracker of consecutive frames
can maintain continuity and at the same time achieves good generalization. This
makes the tracking model more robust, and as the objective function can be
processed into Fourier domain, the computational burden can be dramatically
reduced.

The rest of the paper is organized as follows. In Sec 2, we give a brief intro-
duction for the MMCF and then present our algorithm in details. Experiments
and the results of comparing with other state-of-art algorithms are shown in Sec
3. In Sec 4, we will summarize our work.

(a) (b)

Fig. 1. This figure illustrates the sparse sampling strategy and dense sampling strategy.
(a) illustrates the sparse sampling, it randomly samples p windows and save them; (b)
illustrates the dense sampling, it samples all subwindows together and save one image.

1.1 Tracking model

In this section, we will introduce our online tracking algorithm. In Sec 2.1, we
give a brief introduction of how CF works in tracking, and in Sec 2.2, the offline
training model used in object detection is represented. In Sec 2.3, we introduce
our online updating model and in Sec 2.4, a detailed tracking strategy will be
given.

1.2 The adaptive correlation filter

As mentioned above, many traditional trackers use sparse sampling strategy, it
means that several positive patches are randomly sampled around the object



4 Han Wang, Yancheng Bai, Ming Tang

and all labeled 1. Obviously, there is a lot of redundancy because of the overlap
between samples. Besides, as the labels of positive samples are all ones, it ignores
the structure of the target, which can cause poor localization performance.

The Adaptive Correlation Filter [11] is firstly rooted on classical signal pro-
cessing, and now widely used in localization and classification. It realizes dense
sampling strategy around the object and at the same time, as it labels each
sample differently, the model can present the structure of the target.

We start a general formulation to introduce the notation. First, we introduce
the notation of circulant matrix [12]. If a matrix is circulant, means that if a n*n
matrix C(u) is extracted from the n ∗ 1 vector u by concatenating all possible
cyclic shifts of u,

C(u) =


u0 u1 u2 · · · un−1

un−1 u0 u1 · · · un−2

un−2 un−1 u0 · · · un−3

...
...

...
. . .

...
u1 u2 u3 · · · u0

 . (1)

Since the product C(u)v can be seen as the convolution of the two vectors u ,v
,we can compute it in Fourier domain, using

Ĉ(u)v = û∗ ⊙ v̂ (2)

where ⊙ denotes the element-wise product, and ˆ denote Fourier transform, and
* represents the complex-conjugate.

The dense sampling strategy at many subwindows in our paper is conceptual-
ly close to circulant matrix. In frame t, there are N target image patches from the
last N frames Pt−N+1, Pt−1, ..., Pt−1, Pt ∈ Rm∗k. For each patch Pi, The dense
sampling subwindows and their labels are (xi1, yi1), (xi2, yi2), (xij , yij) . . . (xid, yid)
, d = m ∗ k , where xij can be seen as a shifted vectorized version of image
patch Pi, while yij means the label of xij . As a linear classifier can be seen as
f(x) = wT ∗ x+ b , ignore the bias term b , just as [12] do, with quadratic loss,
the objective minimization problem can be simply seen as

min
w

N∑
i=1

∥wTBi − gi∥2 (3)

where Bi = [xi1,xi2, ...,xid] ; gi = [yi1, yi2, ..., yid]
T . Unlike traditional labeling

strategy, in order to output sharp peaks, instead of using binary labels, the model
uses a Gaussian function-like to represent gi whose peak is at the object center.
As the structure of Bi , the sampling subwindows xi1,xi2, . . . ,xid , is close to
circulant matrix. So the Fourier transform of the Eq.3 is as follows,

min
ŵ

N∑
i=1

∥ŵ⊙ x̂i − ĝi∥2 (4)
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where x̂i is the vectorized version of 2-D Fourier transform of the image patch Pi

. In tracking process, when the tracker w is correlated with the test image, the
ideal response map gt can obviously produce sharp peak to localize correctly. But
as the tracker is not designed for classification, when the background clutters, it
may not track well.

1.3 Offline training model

Trackers related to adaptive Correlation Filter are MOSSE [9] and Circulant [12]
trackers, they have fast speed in tracking.

While in object detection, the SVM classifier is designed to maximize the
margin and can always produce robust classifiers to classify the positive and
negative samples. As the training samples are binary labeled, the output, which
is resulting from cross-correlation of SVM templates with testing images, can
not produce sharp peaks. As mentioned above, this will cause poor localization
performance. Andres[10] propose an offline training object detection algorithm,
MMCF. The MMCF uses two criteria combining the design of the SVM and CF.
We first follow the notation in [10] to introduce the model.

The MMCF classifier is a multi-criteria classifier. The first criterion is SVM.
Given N of training column vectors xi ∈ Rd and the class labels ti ∈ {−1, 1} ∀i ∈
1, . . . , N , the objective function of SVM can be expressed as follows,

min
w,b

wTw+ C

N∑
i=1

ξi

s.t. ti(w
Txi + b) ≥ ci − ξi (5)

The second criterion is the CF, just as mentioned above, the objective function
is minw

∑N
i=1 ∥wTBi − gi∥2, where gi = [0, . . . , 0,wTxi, 0, . . . , 0] , we prefer the

center of the object is wTxi, while others close to 0. Combined with the SVM,
the objective function can be seen as follows,

min
w,b

(wTw+ C

N∑
i=1

ξi,

N∑
i=1

∥wTBi − gi∥2)

s.t. ti(w
Txi + b) ≥ ci − ξi (6)

where ci=1 for positive image patches and ci = ε for negative image patches,
where ε is a small value constant. That means for positive image patchs, we
expect a value above 1, while for negative patches, the expected value is close to
0. The large margin of SVM means good generalization performance, while the
CF criterion makes sharper correlation peak. The objective function suggests a
correlation response map, which has a sharp peak at the target center and small
values everywhere else.
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1.4 Online tracking model and optimization

In tracking problems, we’d like to have dense sampling in the target center’s
neighbourhood to ensure good localization performance, at the same time, tar-
get should be separated from the background. We also need an online training
strategy to adapt to the appearance changes of the object. Above these, we pro-
pose an online tracking model which can produce discriminative sharp peaks.

In our approach, suppose in frame t, after locating the object in pt, we extract
the positive image patch Pt centered at pt which has the same size with the
target, and with the last k frames’s k positive image patches, we have a positive
training set (Pt, Pt−1, . . . , Pt−k). To get the negative training set, we simply
collected m patches away from the target in frame t, (P1, P2, . . . , Pm). We then
train the online model wt+1 using the sample sets. Instead of using the simply
weighted sum wt+1 = wt + ηw to update the model, where w is the trained
model using current sample sets, we optimize ∥wt+1 − wt∥2 in SVM criterion
instead of ∥w∥2 to keep the continuity between frames. Given N = k + 2 + m
of training column vectors xi ∈ Rd which is the vectorized version of Pi, and
the class labels ti ∈ {−1, 1} ∀i ∈ 1, . . . , N , the online tracking model can be
expressed as follows,

min
wt+1,b

(∥wt+1 −wt∥2 + C
N∑
i=1

ξi,
N∑
i=1

∥wTBi − gi∥2)

s.t. ti(w
T
t+1xi + b) ≥ ci − ξi (7)

where gi = [0, . . . , 0,wT
t+1xi, 0, . . . , 0], the nonzero value wT

t+1xi is at the target
center, and the other elements are all zeros. Just the same as the offline model,
Bi represents the circulant matrix of xi, ci = 1 for positive training set and
ci = ε for negative training set. The objective function shows that in target
center, we prefer a value of above 1, and the value decays to small values as the
distance increases. The tracker uses dense sampling strategy around the target,
so it can produce sharp peaks of the correlation output, and at the same time,
using maximum margin to constrain the CF, the generalization performance
improves a lot. With the ∥wt+1 − wt∥2 constraint, the trackers of consecutive
frames can maintain continuity.

In order to make use of the property that cross-correlation in the spatial
domain is equivalent to multiplication in frequency domain, we transform Eq.7
to its Fourier domain. We turn the SVM to the frequency domain by using
the Parseval theorem. While the correlated part can be easily transformed to
the Fourier domain as shown in section 2.1. Then, Eq.7 can be transformed as
follows,

min
ŵt+1,b

(∥ŵt+1 − ŵt∥2 + C
N∑
i=1

ξi,
N∑
i=1

∥ŵ∗
t+1 ⊙ x̂i − ĝi∥2)

s.t. ti(ŵ
†
t+1x̂i + b′) ≥ ci − ξi (8)
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Where † is the conjugate transpose. The multi-criteria function shown in
Eq.8 is formulated by two quadratic function, Refregier [13] showed that this
can be optimized by minimizing a weighted sum of the two criteria, so it can be
expressed as,

min
ŵt+1,b

λ∥ŵt+1 − ŵt∥2 + λC

N∑
i=1

ξi + (1− λ)

N∑
i=1

∥ŵt+1 ⊙ x̂i − ĝi∥2

s.t. ti(ŵ
†
t+1x̂i + b′) ≥ ci − ξi (9)

where λ represents the trades-off parameter between the margin criterion and
localization criterion. When λ = 1 it equals to SVM tracker and vice versa.

For the second part, as wT
t+1xi is the same as 1

dŵ
†
t+1x̂i, using Pascal’s theo-

rem. The Fourier transform of gi is as follows,

ĝi = 1 ∗ (1
d
x̂†
i ŵt+1) (10)

where 1 represents a column vector whose elements are all 1. using the diagonal
matrix X̂i1 = x̂i, then the right part of Eq.8 can be expressed as follows,

N∑
i=1

∥ŵt+1 ⊙ x̂i − ĝi∥2 =

N∑
i=1

ŵ†
t+1X̂iX̂

∗
i ŵt+1 −

2

d
ŵ†

t+1X̂iĝi +
1

d2
ĝ†
i ĝi

=

N∑
i=1

ŵ†
t+1X̂iX̂

∗
i ŵt+1 −

2

d
ŵ†

t+1X̂i1x̂
†
i ŵt+1 +

1

d2
ŵ†

t+1x̂i1
†1x̂†

i ŵt+1)

= ŵ†
t+1Ẑwt+1 (11)

where

Ẑ =

N∑
i=1

(X̂iX̂
∗
i − 1

d
x̂ix̂

†
i ) (12)

Subsume Eq.11 into Eq.9, we can rewrite Eq.9 as follows,

minŵt+1,bλ∥ŵt+1 − ŵt∥2 + λC
N∑
i=1

ξi + (1− λ)ŵ†
t+1Ẑŵt+1

s.t. ti(ŵ
†
t+1x̂i + b′) ≥ ci − ξi (13)

With one quadratic term subsumed into the other quadratic term, Eq.13 can be
rewritten as follows,

minŵt+1,bŵ
†
t+1Ŝŵt+1 + λC

N∑
i=1

ξi − 2λŵ†
t+1ŵt

s.t. ti(ŵ
†
t+1x̂i + b′) ≥ ci − ξi (14)
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where Ŝ = λI+(1−λ)Ẑ, as 0 < λ < 1, Ŝ is positive definite matrix. And we can

transform the data that w̃ = Ŝ
1
2 ŵ and x̃i = Ŝ− 1

2 x̂i. So we can easily compute
the dual form of Eq.14,

min
a

aTTX̃†X̃Ta+ (cT − 2X̃†T w̃t)a

s.t. 0 ≤ a ≤ 1C ′,aT t = 0 (15)

where X̃ = [x̃1, . . . , x̃N ], t = [t1, . . . , tN ]T , c = [c1, ..., cN ]T , C ′ = λC, and T
is the diagonal matrix with t along the diagonal. With the dual form, we can
optimize a using Sequential minimal optimization (SMO) [14]. SMO breaks this
problem into many subproblems that each problem solve for one nonoverlap
pair of a = [a1, . . . , aN ]T . It recursively solves for a until convergence, and after
solving for a , the tracking model ŵt+1 can be computed as follows,

ŵt+1 = Ŝ− 1
2 X̃a (16)

Here as Ŝ is not a diagonal matrix, so when computing the inverse of the matrix,
it is very computationally expensive. As the target patch dimension d is always
very large, so we can approximate Ŝ as,

Ŝ = λI + (1− λ)Ẑ = λI + (1− λ)

N∑
i=1

(X̂iX̂
∗
i − 1

d
x̂ix̂

†
i )

≈ λI + (1− λ)

N∑
i=1

X̂iX̂
∗
i (17)

As the objective function can be processed in Fourier domain, the computa-
tional burden can be significantly reduced. And with the larger λ , the stronger
generalization performance and smaller λ can make the model output sharper
peak.

1.5 Tracking process

In frame t, given the model wt and pt−1 the center of frame t-1, the prediction
process is to find the new target center pt. We cropped the search patch 1.5
times as big as the target, centered at pt−1 in frame t, and correlate it with
wt, get the correlation response map gt. The strength of the peak of gt can be
measured by the Peak to Sidelobe Ratio(PSR) [9]. To compute the PSR, we first
divide the response map gt into two portions. The peak represents the maximum
value of the response map and the sidelobe is the rest of the pixels excluding an
11 ∗ 11 window around the peak. The PSR can be computed as gmax−µs

σs
, where

gmax is the peak value, and µs, σs are the average and standard deviation of the
sidelobe. The PSR can be used to detect the object occlusion or tracking failure.
If PSR is smaller than 6 (experience in our experiment), the target is supposed
to be missing, and we will search the whole image and stop updating the model.
Algorithm 1 summarizes our tracking algorithm.
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Algorithm 1 Maximum Margin Correlation Tracker.

Require:
The current frame image, Ft;
The current model, wt;
The object center of frame t-1, pt−1;

Ensure:
The new tracker wt+1 and the object center of frame t pt;

1: Cropped the current search image patch St centered at pt−1;
2: Getting the current response map, using 2-D cross-correlation, where xt is the

vectorized version of St: gt = xt ⊗wt;
3: Compute the PSR of gt, and get the object center pt according to Sec 2.4;
4: Using PSR to estimate if the object is occluded, according to Sec 2.4;
5: Sample the positive image patch P1 in frame t and add it to positive templates.

Sample negative patches P2, . . . , Pn;
6: Using the positive templates, the negative patches, and wt to update the model

wt+1 according to Sec.2.3;
7: return wt+1,pt;

2 Experiments

We evaluated our tracking system on twelve challenging videos, all of the videos
come from the benchmark. These videos contain many kinds of objects (car,
pedestrian, human body, faces animals et al).
The proposed algorithm is implemented in MATLAB on a workstation with an
Intel core i5 3.2GHz processor and 16G RAM. The average pruning time is 3-4
frames per second.
In all of the experiments, the parameters are all fixed. In the training stage, we
sample 40 negative image patches within 30 pixels away from the bounding box
of the target. And the positive patches are collected from the last 10 frames’
target patches. And we choose λ =0.15 to balance the correlation results. We
will make our experiments in two ways. First, we compare our algorithm with the
related algorithms. And then Comparison with other state-of-the-art algorithms
are made.

2.1 Pre-processing

The proposed method uses Fourier transform in training process. As Fast Fourier
Transform(FFT) is periodic, it is very sensitive to the image boundary. A noisy
Fourier representation can be generated if there exists big discontinuity between
opposite edges of the images. The effect can be reduced by multiplying a hanning
window with the image to gradually reduce the training patches to zero.

2.2 Comparison with MOSSE and SVM

To demonstrate the improvements of our approach in localization and general-
ization , we first make a experiment comparing our algorithm with the SVM,
and also the MOSSE tracker.



10 Han Wang, Yancheng Bai, Ming Tang

For generality, there are many kinds of objects ( human body, face, rigid ob-
ject and toy ). And the mean center position error per frame is used as criterion.
Table. 1 shows the quantitative performance of these algorithms.

It can be seen that the proposed method outperforms other trackers. Fig.3(a-
c) shows the results of some typical videos under difficult situations. In the ex-
periment,we also find the Moose filter is sensitive to the initialization bounding
box, if the initialization bounding box included much background information,
the tracking result can be severally influenced by background, And in SVM track-
er, tracking results can be improved by increasing positive and negative samples,
but this can increase the computational burden. It can be seen in Fig.3(a) that
under pose changes, MOSSE and our tracker can localize the object correctly,
but SVM tracker drifts. Fig.3(b-c) shows with scale changes and out of plane
rotation changes, our tracker performs well compared with others.

2.3 Comparison with other trackers

In this section, we compare the proposed tracker with other 5 state-of-the-art
trackers ( the tracking results of them are provided by the benchmark ), including
the TLD [7], Struck [8], MIL [6], L1APG [15], MTT [16] trackers.

2.4 Quantitative Evaluation

We evaluate the performance of these trackers using the center location error.
Table. 2 reports the average center location errors in pixels. It can be seen that
under different situations, our tracker can locate accurately, it always performs
best or second best. Fig.2 shows the tracking results of different trackers.

2.5 Qualitative Evaluation

Illumination,pose and Scale changes we evaluate sequences with different
kinds of illumination changes. The david and Trellis contain gradual illumina-
tion, pose and scale changes. We can see from Fig.2 that under illumination
changes (e.g. Trellis #51, #228)only our tracker and Struck tracker can locate
the object accurately, other trackers have drifts to some extent. And when the
pose changes a lot (e.g. Trellis #356), only our tracker performs well. In the se-
quence david, when the scale changes a lot (e.g. #482, #525), only the proposed
algorithm is able to track the object accurately. This can be attributed to that
we design a shape peak for the center of the target. So even the object’s ap-
pearance changes, we not only can classify the object, but also find its accurate
center.
Occlusion The target objects are partially occluded in the Women, Occluded
face 2, SUV sequences. When the target is severely occluded (e.g. SUV #526,
Woman #133), our tracker can still perform well. By using dense sampling s-
trategy around the target, the spatial information is maintained a lot and thus
can handle occlusion well.
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Out of plane rotation and abrupt motion The target objects Sylvster and
football1 undergo out of plane rotation and abrupt motion. For out of plane ro-
tation (e.g. Sylvster#0619, #1041), Most trackers except the proposed tracker
and the Struck method drift. For abrupt motion and rotation out of plane (e.g.
Football1 #0038), our tracker and TLD perform well.
Background clutters In the football1 and cardark sequences, the target object
undergos fast movements in cluttered backgrounds. Our tracker performs well
where as others fail to locate the target object.

Sequences bolt cardark Suv football1 freeman3 sylvster Trellis Woman david deer dog1 faceocc2
MOSSE 30 4.3 42 22.6 15 10.8 11.9 16.6 12 7.5 10.3 14.6
SVM 200 6.9 50 49 50 31.7 13.3 71.4 53.5 23 7.2 14.2
Ours 24 2.2 4.9 14 12 8 6.4 10 10.1 5.8 4.8 10

Table 1. The average center location error of twelve sequences is the distances between the tracking
results center and the ground truthes of them. The bold represents for the best tracker.

Sequences bolt cardark SUV football1 freeman3 Sylvster Trellis Woman david deer dog1 faceocc2
TLD 231 35 56 9.7 14 77 27 11 34 7 22 18.7
Struck 250 3.9 41 13 12 26 6.4 12.2 15 7 11 58
MIL 286 48 12 32 19 90 135 27 73 9 21 83
L1APG 283 25.2 15 22 30 40 165 71 345 11 14 101.5
MTT 278 20.7 17 18 12 58 170 25 350 9 16 119
Ours 24 2.2 4.9 14 12 8 6.4 10 10.1 5.8 4.8 10

Table 2. Compared average center error(pixels)on twelve sequences. The bold represents for the
best tracker, and italic for the second best.

3 Conclusion

In this work, we present a new adaptive tracking-by-detection method based on
adaptive correlation filter and the SVM. Unlike existing method using sparse
sampling strategy and focusing on classification, thinking from the intension of
tracking, localizing the target, we build the model getting good performance in
localization and also separate the target from the clutter background. And we
transform it to Fourier domain for fast training using FFT. And in training, we
do not simply use the weighted sum of the model, which are computed from
different frames, representing the new model. But we change the SVM objective
criteria to both adapt to new samples and also keep consistence with previous
model. Through experiments on public benchmark sequences, we also clearly
demonstrated that our algorithm can track objects very well under large pose,
scale variation ,occlusion and cluttered background. And our MMCT can almost
always outperform the state-of-the-art algorithms.
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Fig. 2. Tracking results on six of the twelve vedios(faceocc2, SUV, cardark, david,
sylvster, football1, Threllis, Woman).
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(a) football1

(b) Woman

(c) bolt

Fig. 3. The tracking results of different trackers
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