
ORB in 5ms: An efficient SIMD friendly
implementation

Prashanth Viswanath, Pramod Swami, Kumar Desappan, Anshu Jain, Anoop
Pathayapurakkal

Texas Instruments India Private Ltd, Bangalore, Karnataka, India

Abstract. One of the key challenges today in computer vision applica-
tions is to be able to reliably detect features in real-time. The most promi-
nent feature extraction methods are Speeded up Robust Features(SURF),
Scale Invariant Feature Transform(SIFT) and Oriented FAST and Ro-
tated BRIEF(ORB), which have proved to yield reliable features for
applications such as object recognition and tracking. In this paper, we
propose an efficient single instruction multiple data(SIMD) friendly im-
plementation of ORB. This solution shows that ORB feature extraction
can be effectively implemented in about 5.5ms on a Vector SIMD engine
such as Embedded Vision Engine(EVE) of Texas Instruments(TI). We
also show that our implementation is reliable with the help of repeata-
bility test.

1 Introduction

Keypoint detectors and descriptors play an important role in computer vision ap-
plications such as object recognition, image stitching, structure from motion etc.
The most commonly used methods are Scale Invariant Feature Transform(SIFT)
[1], Speeded up Robust Features(SURF) [2] and Oriented FAST and Rotated
BRIEF(ORB) [3]. These methods have been proven to be reliable in detect-
ing features in real world images. However, the biggest challenge is to meet the
real-time performance requirements. In most applications, keypoint extraction is
followed by computationally intensive processing such as tracking the features or
recovering 3D points and so on. Ethan Rublee et al. [3] shows that it takes about
15.3ms to compute ORB descriptors for roughly 1000 keypoints in a 640x480 im-
age on an Intel i7 2.8GHz processor. Kwang-yeob Lee and Kyung-jin Byun [4]
proposes a hardware accelerator for ORB whose run time is 18ms for an input
image of 640x480. Our solution takes about 5.5ms to process 3 levels of the
input image whose base resolution is 400x400 and compute 500 descriptors on
Embedded Vision Engine(EVE) of Texas Instruments(TI) running at 650MHz
[5].

In this paper, we propose a computationally efficient implementation of ORB
which is suited for single instruction multiple data(SIMD) architecture. Our
contributions are as follows:

– An alternate SIMD friendly implementation of FAST9 keypoint detection

2 Authors Suppressed Due to Excessive Length

– An alternate approach to computing FAST9 score instead of the iterative ap-
proach keeping the definition of FAST9 score the same, which is the highest
threshold at which a keypoint still remains a keypoint [6]

– Sparse point non-maximal suppression based on the FAST9 score
– SIMD friendly implementation of the Harris score and rBRIEF descriptor

computation

We also share the performance details of the implementation on EVE which is
part of the TDA2x device of TI. EVE is a fully programmable accelerator cre-
ated specifically to enable the processing, latency and reliability needs found in
computer vision applications. The EVE includes one 32-bit Application-Specific
RISC Processor(ARP32) and one 512-bit Vector Coprocessor(VCOP) with built-
in mechanisms and unique vision-specialized instructions for concurrent, low-
overhead processing. The VCOP is a SIMD engine with built-in loop control
and address generation. It is a dual 8-way SIMD engine. It has certain special
properties such as transpose store, de-interleave load, interleaving store and so
on. The VCOP also has specialized pipelines for accelerating lookup tables and
histograms [5]. To validate the ORB implementation, we perform the repeata-
bility test for images with varying view points and blurring.

The rest of the paper is organized as follows: Section 2 provides the details
of our implementation, Section 3 shows the results and performance of the im-
plementation on EVE and Section 4 offers conclusions as to effectiveness of our
implementation.

2 Proposed Solution

2.1 Overview

The ORB algorithm flow is as shown in Fig. 1. The input to our algorithm is
an 8-bit image of size WxH. The output is a list of 256-bit ORB descriptor, the
corresponding XY co-ordinates and the level of image at which the feature was
detected. Since FAST is not a multi-scale algorithm, we obtain different levels
of the image using image pyramid and employ FAST9 feature detection on each
level. The FAST9 detector outputs the list of XY co-ordinates in 32-bit packed
format indicating the location of the keypoints. For these keypoints, we compute
the FAST9 score as explained in Section 2.3. We compute FAST9 score only for
the keypoints and not every pixel of the image. This results in significant reduc-
tion of memory bandwidth and computational requirements. After the FAST9
score computation, we apply non-maximal suppression as detailed in Section 2.4.
Since FAST9 keypoints are clustered together, we apply 4-way non-maximal sup-
pression which suppresses non-maximas considering neighbors in four directions:
top, bottow, left and right. The traditional approach of non-maximal suppression
involves applying a sliding 3x3 window across the entire image and determine the
non-maximas. However, our implementation of non-maximal suppression oper-
ates on the sparse keypoints directly. This further results in significant reduction
of memory bandwidth and computational requirements. After suppression, we

ORB in 5ms: An efficient SIMD friendly implementation 3

sort the non-suppressed keypoints based on the FAST9 score and output the
best 2N keypoints. For these best keypoints, we compute the Harris score. At
this stage, we have multiple lists of co-ordinates and their Harris score, each
corresponding to a particular image level. We then sort the lists across multiple
levels based on the Harris score and output the best N keypoints for which the
rBRIEF descriptors are computed.

Fig. 1. ORB algorithm flow.

2.2 FAST9 keypoint detection

FAST is a popular feature detector in real time systems. FAST algorithm picks a
7x7 window around each pixel p as shown in Fig. 2. It takes intensity threshold
between the center pixel p and those in a circular ring around p as an input
parameter. The algorithm checks if there is a contiguous arc of K or more pixels
in the circular ring which satisfy either the bright or dark condition. We use
FAST9 (K = 9), which has been shown to have good performance [7] [6].

Although the algorithm is simple, it poses following challenges for a Vector
SIMD engine:

– Though the pixel access pattern around each pixel in a 7x7 window is fixed,
these are non-sequential locations and hence not friendly towards a simple
vector load instruction.

4 Authors Suppressed Due to Excessive Length

Fig. 2. FAST9 pixel pattern. This image is taken from
http://www.edwardrosten.com/work/fast.html.

– For every pixel, we need to check if there is a contiguous arc of K pixels
that satisfy the FAST property. This results in the need to check 16+(K-1)
combinations. In the case of FAST9, we would need to check 24 combinations.

Traditional approach to check how many consecutive pixels in the circular
ring that are similar involves running a loop 16+(K-1) times which updates a
counter to indicate the number of pixels satisfying the condition. It also needs to
reset the counter selectively for the appropriate elements while maintaining the
status of other elements. This level of control logic does not work well in Vector
SIMD engines. Hence, we propose a simple ’SHIFT’ and ’AND’ based technique
to find K consecutive pixels which are similar.

We store the comparison of 16 offset pixels with the center pixel in a bit
packed format such that we form a 16-bit mask for each center pixel. If bit
number 5 is 0, it means that pixel 5 in the circular ring is not similar to center
pixel and so on. This kind of mask is simple to generate on a Vector SIMD
engine. Since the contiguous arc of K similar pixels can be in any location (i.e
last bit followed by first K-1 bits), we need to do a wrap around search. This can
be easily accommodated by duplicating the mask and generate a 32-bit mask.
For FAST9, it is sufficient if we duplicate only lower 8 bits of the mask and place
it from bit 17-24 to obtain a 24-bit mask X. Now, we can perform the ’SHIFT’
and ’AND’ logic as follows:

Pseudo code to find 9 consecutive similar pixels

begin

// Will tell if there are 2 consecutive similar pixels

ORB in 5ms: An efficient SIMD friendly implementation 5

X1 = X >> 1

X2 = X1 & X

// Will tell if there are 4 consecutive similar pixels

X3 = X2 >> 2

X4 = X3 & X2

// Will tell if there are 8 consecutive similar pixels

X5 = X4 >> 4

X6 = X5 & X4

// Will tell if there are 9 consecutive similar pixels

X7 = X6 >> 1

X8 = X7 & X6

If X8 != 0, mark pixel as a corner

end.

As is apparent, this technique has logarithmic convergence. This approach
requires just 4 steps against the 16 + (9-1) = 24 steps required in the traditional
approach for FAST9 keypoint detection. For FAST12, we would also need just
4 steps with the change in the shift factor from 1 to 4 in the last step.

In order to address the first challenge, we use 17 vector load instructions
of SIMD width, one vector load for the center pixels, and 16 vector loads for
the offset pixels in the circular ring. Although this approach has certain short
comings such as minimal data reuse, it is efficient since we are operating on
SIMD width elements at a time. In EVE, the SIMD width is 8. Hence, we can
work on 8 pixels at a time. Hence, there is an 8x performance benefit.

The ORB requires orientation of FAST keypoints. This is computed at a later
stage while computing the descriptor rather than at FAST keypoint detection
stage, since the detecting stage operates at every pixel in the image as opposed
to the descriptor stage which is operating only on the best N key points.

As mentioned earlier, the input to the FAST9 keypoint detector is an input
image or a level of the image. The output is the XY co-ordinate list in 32-bit
packed format (16-bit X followed by 16-bit Y) indicating the location of the
keypoint. It is important that the XY co-ordinate list is generated in the raster
scan order of the image for applying the sparse point non-maximal suppression.
This is explained in Section 2.4.

This method of FAST9 detection has been implemented on EVE and the core
compute performance is 5.3 cycles/pixel. This implementation has the same cycle
count for every pixel as opposed to other approaches such as machine learning
approach whose cycle count is highly data dependent [6] [7].

2.3 FAST9 score computation

FAST9 score is defined as the threshold for which, a FAST9 key point still re-
mains a key point [6]. For a given FAST9 key point, its score is given by the
highest threshold for which the key point still has 9 contiguous similar pixels
around it. The traditional approach of computing the score would involve iter-
atively incrementing the threshold and check if a key point still remains a key
point [6]. The challenges posed by this approach are:

6 Authors Suppressed Due to Excessive Length

– The keypoints given by FAST9 detector are sparse in nature and hence poses
challenges in vectorizing the operations

– The iterative approach of computing the score and conditionally exiting is
not suitable for Vector SIMD engines

FAST9 detector gives the XY location of the key points. We pick 7x7 window
of pixels around each of the key point. In order to be able to vectorize our
computations, we re-order the data by picking only the 16 pixels of the circular
ring from the 7x7 window and place them consecutively. Again, in order to take
into account the wrap around nature of FAST9, we pick the lower 8 pixels again
and place them as well. Hence, for every key point we have 24 offset pixels placed
consecutively.

Next, we compute maximum and minimum intensity values of the offset pix-
els taking them 9 at time, i.e max(0-8), max(1-9)...max(15-23) and min(0-8),
min(1-9)..min(15-23). Hence, for every center pixel key point, we have 16 max-
ima and minima values. Maxima are used if the center pixel satisfies the dark
condition(center pixel is darker compared to the offset pixels) of the FAST9 algo-
rithm and Minima are used if the center pixel satisfies the bright condition(center
pixel is brighter compared to the offset pixels) of the FAST9 algorithm. Since
we do not indicate whether the keypoint is bright or dark during the FAST9
keypoint detection stage, we compute both maxima and minima in this stage.
Out of the 16 maxima and minima, only one of them is the score. In order to
compute that, we find minimum value Vmin from the maxima values and max-
imum value Vmax from the minima values. We compare the Vmin and Vmax
with the center pixel. There are only two possibilities: either Vmin and Vmax
are greater than center pixel intensity or Vmin and Vmax are lesser than center
pixel intensity. The other two possibilities where Vmin is greater than center
pixel intensity while Vmax is lesser than center pixel intensity and vice versa
are not possible by the definition of FAST9. Hence, the final score is computed
as follows:

– If Vmax and Vmin are greater than center pixel, the score is the minimum
of difference of Vmax and Vmin with the center pixel intensity minus one.
This represents the dark condition.

– If Vmax and Vmin are lesser than center pixel, the score is the maximum
of difference of the center pixel with Vmax and Vmin minus one. This rep-
resents the bright condition.

Pseudo code to compute FAST9 score

begin

cb = center pixel;

for(startpos=0; startpos<16; startpos++)

{

pMin = co[startpos]; // co[] = offset pixel array

pMax = pMin;

for(i=1; i<9; i++)

ORB in 5ms: An efficient SIMD friendly implementation 7

{

if(pMax < co[startpos+i])

pMax = co[startpos+i];

if(pMin > co[startpos+i])

pMin = co[startpos+i];

}

Bscore[startpos] = pMax; // Bscore[] = array of maxima

Dscore[startpos] = pMin; // Dscore[] = array of minima

}

score_b = Bscore[0];

score_d = Dscore[0];

for(i=1; i<16; i++)

{

if(score_b > Bscore[i])

score_b = Bscore[i];

if(score_d < Dscore[i])

score_d = Dscore[i];

}

if((score_b > cb) && (score_d > cb))

{

if(score_b > score_d)

score = score_d - cb - 1;

else

score = score_b - cb - 1;

}

else if ((score_b < cb) && (score_d < cb))

{

if(score_b > score_d)

score = cb - score_b - 1;

else

score = cb - score_d - 1;

}

end.

The above approach is not iterative and involves simple operation such as max
and min which are supported by most of Vector SIMD engines. The core compute
performance of this approach is 31.5 cycles/keypoint on the EVE engine of TI.
For the data rearrangement, we use the table look up hardware and transpose
store property which are supported by EVE [5]. The speed up of computing
FAST9 score is due to:

– Vectorizing the operations to compute FAST9 score and non-iterative ap-
proach

– Operating on keypoints only and not every pixel of the image

8 Authors Suppressed Due to Excessive Length

2.4 Sparse point non-maximal suppression

FAST9 keypoints obtained for an image are generally clustered. Hence, non-
maximal suppression is an important step to obtain the most reliable feature
points. Traditional approach of non-maximal suppression involves applying a
2D 3x3 running window across the input and retain only the maxima in the
window. This approach has the following disadvantages:

– FAST9 score has to be computed for every pixel of the input image in order
apply the 2D suppression which results in significant wastage of compute
cycles and memory bandwidth

– Assuming that FAST9 score is computed only for the keypoints, it has to be
mapped back into the 2D image structure which is again a challenging task

Hence we propose an approach which operates on sparse keypoints directly with-
out the 2D notion and can be vectorized easily. This approach is split into two
stages: horizontal non-maximal suppression and vertical non-maximal suppres-
sion.

Horizontal non-maximal suppression: In this stage, we find the maxima along
the X direction. For every keypoint, we check if it has a neighbor in either the
left or right direction and then compare their FAST9 scores to suppress the non-
maximas. As it was mentioned earlier, it is important that the XY co-ordinate
list of keypoints are in raster order. This would mean that the keypoints would
be listed in buckets of Y, i.e, same Y but different X (example XY list - 0x0303,
0x0403, 0x0803, 0x0404.. and so on). Once we have the data in this format, we can
easily determine if a neighbor exits in the right or left by checking against (X-1,Y)
and (X+1,Y). We can also compare the FAST9 scores accordingly and suppress
the non-maximum keypoints along the horizontal direction. While storing the
co-ordinates of the non-suppressed keypoints, we pack them with ID such that
the 32-bit output is 10-bit X, followed by 10-bit Y and 12-bit ID. This ID is
used in the next stage of vertical non-maximal suppression. As you can see, this
implementation is simple and vector friendly.

Pseudo code to for Horizontal non-maximal suppression

begin

// i = 1 to num_corners-1 since we need 1 pixel border in each side

for(i=1; i<(num_corners-1); i++)

{

left_xy = corners[i-1];

center_xy = corners[i];

right_xy = corners[i+1];

left_scr = scores[i-1];

center_scr = scores[i];

right_scr = scores[i+1];

left_xy += 0x10000;

right_xy -= 0x10000;

//Generate right and left neighbor mask

ORB in 5ms: An efficient SIMD friendly implementation 9

Vnf1 = (left_xy == center_xy);

Vnf2 = (right_xy == center_xy);

//Generate score mask

Vsf1 = (center_scr <= left_scr);

Vsf2 = (center_scr <= right_scr);

Vf1 = Vnf1 & Vsf1;

Vf2 = Vnf2 & Vsf2;

//Final mask indicating the neighbor and the maximum score

Vf1 |= Vf2;

x = center_xy & 0xFFFF0000;

y = center_xy & 0x0000FFFF;

// pack X, Y and ID: 10 bit X, 10 bit Y and 12 bit ID

nms_x_corners[i] = (x << 6) | (y << 12) | (i);

if(Vf1)

nms_x_score[i] = 0;

else

nms_x_score[i] = scores[i];

}

end.

Vertical non-maximal suppression: In order to suppress along the Y direction
(top and bottom), it would be easy if the co-ordinate list is arranged in raster
order of Y, i.e. buckets of X, same X and different Y (example XY list - 0x0303,
0x0304, 0x0306, 0x0403.. and so on). In order to obtain the data in this format,
we sort the XY-ID output from the horizontal non-maximal suppression stage
in ascending order. Since the XY-ID list is now in different order, we need to
obtain the corresponding score values. This is done using the ID to look-up
the score values of the corresponding XY. Once the score values are re-ordered,
we can follow the same approach as in horizontal suppression to suppress the
non-maximas in top and bottom direction.

In order to obtain the best 2N keypoints, we then sort the non-suppressed
keypoints based on the FAST9 score and output it. The horizontal non-maximal
suppression and vertical non-maximal suppression takes 1.8 cycles/keypoint and
1.3 cycles/keypoint respectively on EVE. 32-bit sort takes 4.78 cycles/point for
a 2048-point sort on EVE. The speed up of is due to:

– Vectorizing the suppression operations
– Operating on sparse keypoints only and not every pixel of the image

2.5 Harris score computation and rBRIEF descriptor computation

Since literature suggests that FAST does not produce a measure of cornerness
and has large responses along edges, Harris score is used to order the FAST
keypoints [3]. Harris score is computed by picking a 7x7 window around each
keypoint and computing the gradient and the tensor matrix in that region. Again,
there is significant reduction in computational requirements and memory band-
width by computing gradients only in the region around the keypoint instead of

10 Authors Suppressed Due to Excessive Length

operating on the entire image. Once the score is computed, it is sorted to output
the best N keypoints and the image level in which they were found. On these N
keypoints, the rBRIEF descriptors are computed.

The rBRIEF descriptor is based on the rotated BRIEF algorithm [8] [9]. The
descriptor is computed by picking a 48x48 window around each keypoint. We
first compute the orientation of the keypoint by computing the moments as in
[3]. We use the table lookup to generate the moment mask. Before computing
the descriptor, the image is smoothened to reduce the effect of noise. We apply
the 5x5 smoothing function only within the 48x48 window around each key-
point. This further reduces computational requirements and memory bandwidth
compared to applying 5x5 smoothing function on the entire image. We use the
table lookup to generate the 256 pairs of source-destination pattern needed to
compute the descriptor.

The performance of the sparse point Harris score computation is 39 cy-
cles/keypoint on the EVE. The rBRIEF descriptor computation takes 2192 cy-
cles/keypoint on the EVE. The rBRIEF descriptor cycle count is higher as it
also includes the smoothing filter and the moment computation.

3 Experiments and Results

In this section, we provide performance details of the algorithm implementation
on the EVE engine of TI. We also show that it is reliable by providing the results
of repeatability test.

3.1 Processing time

For our experiments, we consider an image of size 400x400. We compute the ORB
descriptors on 3 levels of the input image i.e 400x400, 200x200 and 100x100. The
maximum number of keypoints that can be detected in each level of the image
is 2048. We then output the best 500 keypoints across the 3 levels and compute
the descriptors for those. The algorithm has been implemented on EVE which
is running at 650MHz.

In Table 1, column 1 indicates the stage of the algorithm, column 2 indicates
the processing time taken in cycles/pixel and column 3 indicates total time
taken in ms to process the 3 levels of 400x400 input image. Column 2 not only
includes the computation cycles, but also the direct memory access(DMA) cycles
required to move data between memories and other system level overheads. The
total time taken is around 5.5ms. This is atleast 3 times faster compared to
previous implementations mentioned in [3] and [4].

3.2 Repeatability

The detector is evaluated with the repeatability metric defined as the percentage
of points simultaneously present in two images [10] [11]. The higher the repeata-
bility rate between two images, better the correspondence between the keypoints

ORB in 5ms: An efficient SIMD friendly implementation 11

Table 1. Average processing time of various stages of ORB.

Stage Processing time cycles/pix Time taken in ms

Pyramid 0.43 0.138

FAST9 8.28 2.67

FAST9 score + NMS + Sort 181.8 0.572

Harris score + Sort 157.68 0.496

rBRIEF descriptor 2192 1.68

Total 2540.19 5.56

in the two images. We evaluate our detector for viewpoint changes and blurring.
We use the images, Matlab code to carry out performance tests, and binaries
of other detectors from http://www.robots.ox.ac.uk/vgg/research/afne for our
evaluation.

Fig. 3a shows the repeatability rate of different detectors for viewpoint changes.
Our implementation(tiorbf) outperforms other methods such as Edge based de-
tector(ebraff), Intensity extrema based detector(ibraff), Maximally stable ex-
tremal regions(mseraf), Harris-Affine(haraff) and Hessian-Affine(hesaff) upto
viewpoint changes of less than 30 degrees. Fig. 3b shows the repeatability rate of
different detectors for blurred images. Blurred images were obtained by chang-
ing the focus of the camera. It can be seen that our implementation outperforms
other methods for blur factors less than 5.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

re
pe

at
eb

ili
ty

 %

viewpoint angle

ebraff
haraff
hesaff
ibraff
mseraf
tiorbf

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

re
pe

at
eb

ili
ty

 %

blur factor

ebraff
haraff
hesaff
ibraff
mseraf
tiorbf

Viewpoint changes (a) Blurring (b)

Fig. 3. Repeatability test viewpoint change and blurring.

4 Conclusion

In this paper, we have presented an efficient SIMD friendly implementation of
ORB. We have provided key optimization techniques used in the implementa-

12 Authors Suppressed Due to Excessive Length

tion such as detecting 9 consecutive pixels, alternate non-iterative solution to
compute FAST9 score and applying non-maximal suppression on sparse points.
The main factor that contributes to the performance gain in our solution is that
most of the processing is done on the sparse keypoints directly and not on every
pixel of the image. We have shown that our solution is atleast 3 times faster
compared to other approaches. Further, we have run the repeatability test to
show that our solution is reliable despite the optimizations and modifications
done.

One of the challenges that we have not addressed adequately is the approach
taken during the non-maximal suppression. Our implementation can only per-
form 4-way non-maximal suppression, while the traditional approach uses 8-way
non-maximal suppression. However, this can be addressed by performing an
additional step post the 4-way non-maximal suppression to suppress based on
neighbors along the diagonal direction.

References

1. Lowe, D.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60 (2004) 91–110

2. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. European
Conference on Computer Vision 3951 (2006) 404–417

3. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative
to sift or surf. Internation Conference on Computer Vision (2011) 2564–2571

4. Lee, K., Byun, K.: A hardware design of optimized orb algorithm with reduced
hardware cost. Advanced Science and Technology Letters 43 (2013) 58–62

5. Lin, Z., Sankaran, J., Flanagan, T.: Empowering automotive with ti’s vision ac-
celerationpac (2013) http://www.ti.com/lit/wp/spry251/spry251.pdf.

6. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning ap-
proach to corner detection. IEEE Trans. Pattern Analysis and Machine Intelligence
32 (2010) 105–119

7. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. 1
(2006) 430–443

8. Huang, W., Wu, L.D., Song, H.C., Wei, Y.M.: Rbrief: a robust descriptor based
on random binary comparisons. IET Computer Vision 7 (2013) 29–35

9. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent
elementary features. European Conference on Computer Vision 6314 (2010) 778–
792

10. Mikolajczyk, K., Tuytelaars, T., Schmid, C., A Zisserman, J.Matas, F.T., Gool,
L.: A comparison of affine region detectors. International Journal of Computer
Vision (2005) 43–72

11. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27 (2005)

