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Abstract. Branch retinal vein occlusion (BRVO) is one of the most
common retinal vascular diseases of the elderly that would dramati-
cally impair one’s vision if it is not diagnosed and treated timely. Auto-
matic recognition of BRVO could significantly reduce an ophthalmolo-
gist’s workload, make the diagnosis more efficient, and save the patients’
time and costs. In this paper, we propose for the first time, to the best
of our knowledge, automatic recognition of BRVO using fundus images.
In particular, we propose Hierarchical Local Binary Pattern (HLBP) to
represent the visual content of an fundus image for classification. HLBP
is comprised of Local Binary Pattern (LBP) in a hierarchical fashion
with max-pooling. In order to evaluate the performance of HLBP, we es-
tablish a BRVO dataset for experiments. HLBP is compared with several
state-of-the-art feature presentation methods on the BRVO dataset. Ex-
perimental results demonstrate the superior performance of our proposed
method for BRVO recognition.

1 Introduction

Branch retinal vein occlusion (BRVO) is the second most common retinal vas-
cular disease after diabetic retinopathy, with a prevalence range from 0.6% to
1.1% in the population [1]. BRVO is a blockage of the small veins in the retina.
It usually occurs in the elderly, and can be caused by hypertension, cardio-
vascular disease, obesity, etc. Without timely treatment, BRVO would lead to
macular edema, intraretinal hemorrhage, surface wrinkling retinopathy, and vit-
reous hemorrhage, which can then cause vision impairment or even blindness
to the patients. These severe complications can be prevented or alleviated if
BRVO is diagnosed early and treated timely. The diagnosis of BRVO is mainly
made by analyzing a patient’s fundus images or fluorescein angiography images.
Although fluorescein angiography images provide more details about one’s reti-
nal conditions, the acquisition process is invasive and costly. By contrast, the
acquisition of fundus images is non-invasive and inexpensive [2]. Moreover, an
ophthalmologist can diagnose BRVO effectively by analyzing fundus images only.
The recognition of BRVO is thus based on fundus images in this paper.
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Fig. 1. BRVO fundus images and normal fundus images.

Analyzing every fundus image by an ophthalmologist can get high diagnosis
accuracy. But this would increase the ophthalmologist’s workload, in particular
when the ophthalmologist has a large number of images to examine every day.
Furthermore, the patients need to pay more money and spend more time to
waiting for the results if all the images are analyzed by the ophthalmologist.
If the fundus images can be automatically recognized and diagnosed with an
acceptable accuracy, the workload of an ophthalmologist and the cost and time
of the patients can be significantly reduced. Automatic recognition of fundus
images can be a powerful auxiliary diagnosis tool to an ophthalmologist. For
instance, the automatic recognition system could make preliminary results for
all the patients’ cases first. The ophthalmologists could then concentrate on cases
whose results look suspicious or cases specially required by the patients. It has
been shown that automatic retinopathy recognition could significantly reduce
the workload of manual image graders (usually ophthalmologists) by 50% [3]. In
addition to that, automatic recognition systems would help improve the diagnosis
conditions of rural areas that are short of ophthalmologists. Other advantages of
an automatic recognition system for fundus images include release from fatigue
and improved repeatability [4]. It is meaningful, therefore, for us to propose an
automatic BRVO recognition method based on fundus images in this paper.

Figure 1 shows some color fundus images of BRVO in the first row, and some
normal eyes’ images in the second row for a comparison. The main components
of a normal retina include blood vessels, optic disc and macula. For BRVO, the
blockage of small veins in the retina causes retinal hemorrhages, retinal edema
and intraretinal microvascular abnormalities etc. There is why we can see from
Figure 1 that BRVO fundus images have abnormal regions, as pointed out by red
circles. The purpose of our work is to automatically and precisely distinguish the
BRVO images from the normal images. The fundus images are captured in differ-
ent positions and illuminations, which would increase the recognition difficulty.
There are some research papers working on the detection of microaneurysms and
diabetic retinopathy [2, 4–6]. To the best of our knowledge, however, no paper
working on the automatic recognition of BRVO has been published. One main
method to process fundus images, such as the detection of diabetic retinopathy
[4–6], performs the detection or segmentation of vessels and/or optic disc first,
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and then conducts further recognition based on the detection or segmentation
result. One drawback of this method is that the the performance of the detec-
tion or segmentation of vessels and/or optic disc remarkably affects the final
recognition result. In light of that, we would like to process a fundus image by
extracting its global visual features, without any detection or segmentation of
vessels and/or optic disc.

Computer vision achieved rapid developments in the past two decades. Nu-
merous successful feature representation methods have been proposed, e.g., Local
Binary Pattern (LBP) [7], Histograms of Oriented Gradients (HOG) [8], SIFT
[9], Spatial Pyramid Matching (SPM) [10], Gist [11], and CENTRIST [12] etc.,
among which LBP is a simple and efficient texture descriptor. LBP has been
successfully applied to various computer vision tasks, e.g., pedestrian detection
[13], segmentation [14], face analysis and recognition [15–17], biomedical image
analysis [18], etc. Different variations of LBP have been proposed as well [19–22].
As shown in Figure 1, the BRVO images have strong texture features. It is well
known that LBP is a powerful texture descriptor. Therefore, we choose LBP for
solving the BRVO recogniton problem. In this paper, we propose Hierarchical
Local Binary Pattern (HLBP) for BRVO recognition. The architecture of HLBP
is motivated by deep learning, a type of promising machine learning algorithm
boomed in recent years.

Deep learning started to attract increasingly significant attention in both aca-
demic and industrial communities since 2006 when Hinton and Salakhutdinov
proposed a novel algorithm to train deep neural networks effectively [23]. It has
been demonstrated that deep architectures can extract high-level and more ab-
stract features than shallow architectures [24], making deep architectures a good
solver for image recognition problems. Convolutional neural networks (CNNs)
are one of the most successful deep architectures for image recognition. They
have shown state-of-the-art performance for different problems, e.g., image clas-
sification [25], scene labeling [26], facial point detection [27], video classification
[28], etc. A CNN consists of multiple (usually two or three) stages. Each stage
has a convolution layer and a subsampling layer. In general, a CNN is a hierar-
chical combination of coding (convolution) and pooling (subsampling) operators.
By following this idea, we constructs HLBP, where LBP acts as the coding op-
erator, for BRVO recognition. The architecture of HLBP will be elaborated in
Section 2.2. In order to evaluate HLBP, we establish a BRVO dataset for ex-
periments, and compare the performance of HLBP with several state-of-the-art
feature representation methods. The rest of this paper is organized as follows.
Section 2 describes LBP and the proposed HLBP. Section 3 introduces a BRVO
dataset, and reports experimental results. Section 4 concludes this paper, and
points out future research work. Before ending this introductory section, it is
worth mentioning the contributions of this paper as follows.

1. We propose for the first time, to the best of our knowledge, automatic recog-
nition of BRVO using fundus images. The automatic recognition of BRVO
could significantly reduce an ophthalmologist’s workload, improve the diag-
nosis conditions of rural areas, and save the patients’ time and costs.
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Fig. 2. Calculation of local binary pattern.

2. We propose a new feature representation method, termed hierarchical local
binary pattern, to effectively characterize the visual content of a fundus
image for recognition.

3. We establish a BRVO dataset to evaluate the performance of the proposed
method and other state-of-the-art methods. The dataset is made public for
free use, such that people can conduct experiments and comparisons conve-
niently.

2 Methodology

This section presents the methodology used in our work. In particular, LBP is
introduced first, and then the proposed HLBP is elaborated.

2.1 Local Binary Pattern (LBP)

LBP is a local texture descriptor. LBP is calculated by comparing a central
pixel’s intensity with its neighboring pixels. Figure 2 illustrates the calculation
procedure of LBP. For each 3 × 3 gray patch, compare the intensity value of
the central pixel and its eight neighboring pixels. If a neighbor is bigger than or
equal to the central pixel, a bit 1 is set in the corresponding neighbor’s position.
Otherwise, a bit 0 is set. After that, all the eight neighbors are set to binary bits.
The eight binary bits are then concatenated in a clockwise or counterclockwise
order, to form a 8-bit binary number. The binary number can be finally converted
to a decimal number in [0 255]. The decimal number is the LBP value of the
central pixel. Mathematically, the LBP of a central pixel c can be formulated as
follows [7]:

LBPc =

7
∑

p=0

2ps(gp − gc), s(x) =

{

1, if x ≥ 0;
0, otherwise.

(1)

where gc is the intensity of the central pixel c, and gp is the intensity of the
neighboring pixel p. Using Eq. (1), we can have LBP values for all the pixels
(the boundary pixels could be removed), and calculate a histogram for the LBP
values as the representation of an image.

Figure 2 and Eq. (1) show the calculation of LBP with eight neighboring
pixels. There are also schemes that consider circles with larger radiuses as neigh-
borhood and use more than eight neighbors for the calculation of LBP [7]. In
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Fig. 3. The proposal hierarchical local binary pattern method.

this paper, however, we only take into account eight-pixel neighborhood, as this
is the most simple and popular scheme for the calculation of LBP.

LBP is a local texture coding method. It can be roughly regarded as a con-
volution or filtering operator as well. The convolution of CNN for the central
pixel of a 3× 3 patch can be defined as follows:

yc = f(

9
∑

p=1

kpxp + b), (2)

where b is a bias, and f(·) is a transfer function. By observing Eq. (1) and Eq. (2),
we can find that when the bias b = 0 and f(·) is a linear function, LBP is similar
to a convolution operator. The main differences include: (1) LBP performs “con-
volution” on the differences between the central pixel and its neighbors, rather
than on the original pixels; (2) LBP uses fixed weights 2p, while the weights
kp in CNN are trainable. Intuitively, we can construct hierarchical local binary
pattern by following the architecture of CNN: hierarchical combination of coding
and pooling.

2.2 Hierarchical Local Binary Pattern (HLBP)

The proposed HLBP is shown in Figure 3. HLBP consists of two levels, each
of which has a max-pooling layer and a LBP-coding layer. HLBP process an
image as follows. Firstly, Level 1 receives an gray image as input. Max-pooling
is first performed on the input image to generate a feature map M1. LBP is then
conducted on M1 map in the LBP-coding layer to generate a LBP1 feature map.
Secondly, LBP1 map is fed to Level 2 to perform max-pooling and LBP-coding,
as a result of which M2 map and LBP2 map are produced. Thirdly, the histogram
of LBP1 map and the histogram of LBP2 map are calculated, respectively. The
two histograms are concatenated to form a feature vector as the representation
of the input image.

The formulation of LBP-coding has specified in Eq. (1); while the max-
pooling with a m×m window is defined as follows:

y = max(xi), i ∈ {1, 2, · · · ,m×m}, (3)
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where xi is the gray intensity of pixel i. The reason for us to choose max-pooling
rather than other pooling schemes is that max-pooling is invariant to small
translations [26]. The max-pooling window slips over the whole image or LBP1
map with a step size of one pixel to generate M1 or M2 map. Thus, given an
n × n image (or LBP1 map) and m×m pooling window, the resulting M1 (or
M2) map would be in size (n−m+ 1)× (n−m+ 1). The pooling window size
is an essential component that would affect the final performance. An intuitive
consideration is that the pooling size should not be too large. Otherwise, the
pooling result would lose an image’s important local properties. The effect of
pooling size on the recognition accuracy will be studied in Section 3.

It is worth pointing out that CNN uses a coding-pooling order, while HLBP
uses a pooling-coding order. There are two reasons for us to use a pooling-coding
order. Firstly, it was demonstrated that patch-based LBP achieves better perfor-
mance than LBP [29]. Performing LBP on max-pooling results is like performing
LBP on image patches, as each max-pooling value is calculated in a small win-
dow (patch). Secondly, according to our observation, HLBP using pooling-coding
(max-LBP) order performs much better than that using coding-pooling (LBP-
max) order. One possible explanation could be that max-pooling-based LBP or
patch-based LBP is able to incorporate spatial information of neighboring small
regions/patches, since LBP is run on small regions/patches. The extracted fea-
tures are hence more discriminative. The operation of max-pooling increases the
input values. So the feature maps in Level 2 are much whiter (higher gray values)
than that of Level 1, as shown in Figure 3. After two levels, all of the feature
maps’ values tend to be 255 (the highest value of an 8-bit gray image). In other
words, it is hardly to extract useful features after Level 2. There is why we only
consider two levels in HLBP. The working mechanism of HLBP could be as fol-
low. LBP2 can be regarded as a LBP of LBP, or a feature of feature. It is more
discriminative but sensitive. In the recognition phase, LBP1 is to classify most
of the relatively easy samples; while for samples that seem difficult to LBP1,
LBP2 is expected to provide better results.

3 Experiments

This section presents the experiments. A BRVO datasest is first described, and
then the experimental results and corresponding analysis are presented.

3.1 Experimental Dataset

With the help of a hospital, we establish a BRVO dataset for our experiments.1

The dataset has in total 200 fundus images acquired from 200 persons, 100
BRVO fundus images and 100 normal fundus images. All the images are of size
768 × 576. Some of the images are shown in Figure 1. All the original fundus
images are in color. But only gray information is used in this paper. We use

1 The dataset can be downloaded on: http://pan.baidu.com/s/1ntohK5V
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Table 1. Accuracy rates (%) of different methods using SVM with linear kernel.

Fold no. Gist [11] HOG [8] SPM [10] CENTRIST [12] LBP [7] HLBP

1 85 90 95 95 95 95
2 90 90 95 85 85 100
3 95 100 100 95 100 100
4 95 100 95 90 90 95
5 100 100 95 90 95 95
6 100 85 100 85 100 100
7 95 95 85 90 80 95
8 95 95 95 85 85 95
9 100 95 100 90 85 100
10 100 90 90 85 85 95

Std 4.97 5.16 4.71 3.94 7.07 2.58

Mean 95.5 94.0 95.0 89.0 90.0 97.0

Matlab built-in function rgb2gray to convert the original RGB images into gray
images.

We adopt ten-fold evaluation scheme. That is, the dataset is randomly par-
titioned into ten folds. Each fold has ten BRVO images and ten normal images.
Each time one fold is used for testing, and the remaining nine folds for training.
As a result, ten results of ten testing folds are obtained. The average accuracy
of the ten results is used as the final performance for a comparison. SVM clas-
sifier [30] is employed for classification. The parameters of SVM is determined
by two-fold cross-validation on the training data. Both linear kernel and RBF
kernel will be investigated.

3.2 Experimental Results

HLBP will be compared with LBP, CENTRIST, Gist, HOG, and SPM. The two
histograms of LBP1 and LBP2 of HLBP are normalized to sum to one, respec-
tively. Thus, each HLBP feature vector sums to two. Both LBP and CENTRIST
are normalized to sum to one as well. Note that CENTRIST highly relates to
LBP, with a difference in bit ordering. The features of Gist, HOG, and SPM are
normalized to [-1 1], respectively.

The recognition accuracy rates of different methods for ten testing folds and
the overall performances are tabulated in Table 1 and Table 2. Table 1 uses lin-
ear kernel, while Table 2 uses RBF kernel. The HLBP compared in Table 1 and
Table 2 utilizes a 4 × 4 max-pooling size. As can be seen, HLBP outperforms
the other methods in terms of mean accuracy rate and standard deviation, for
both linear kernel and RBF kernel. In particular, the improvement of HLBP over
LBP is significant, indicating that the hierarchical architecture could enhance
the discriminative power of LBP. As CENTRIST is similar to LBP, they achieve
similar overall accuracy rates. The standard deviation of LBP with linear kernel
is relatively high. The main reason is that it performs poor on Fold 7. Gist,
HOG, and SPM achieve better performance than LBP and CENTRIST. One
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Table 2. Accuracy rates (%) of different methods using SVM with RBF kernel.

Fold no. Gist [11] HOG [8] SPM [10] CENTRIST [12] LBP [7] HLBP

1 95 90 95 95 95 95
2 90 90 95 85 85 100
3 90 100 95 90 100 100
4 95 100 100 95 95 95
5 100 100 95 90 95 95
6 100 90 100 90 95 100
7 95 95 85 95 80 90
8 95 95 95 85 90 95
9 95 95 100 95 90 100
10 100 95 90 80 90 100

Std 3.69 4.08 4.71 5.27 5.80 3.50

Mean 95.5 95.0 95.0 90.0 91.5 97.0

reason could be that their feature coding algorithms encode spatial information
between regions. For example, SPM exploits spatial pyramid to encode spatial
relationships of regions in different scales. HOG organizes oriented gradient us-
ing cells and blocks. Gist is originally designed to represent the dominant spatial
structure of an image. Thanks to the max-pooling and the hierarchical architec-
ture, HLBP is able to incorporate the spatial information of an image, as a result
of which high performance can be achieved. By comparing Table 1 and Table 2,
we can see that RBF kernel cannot always guarantee better results than linear
kernel.

In order to investigate the effect of max-pooling size on the recognition ac-
curacy, we test several pooling sizes, and the results of using linear kernel are
depicted in Figure 4. Figure 4 shows the curves of recognition accuracy rates
for three cases: (1) using LBP1 only; (2) using LBP2 only; and (3) using both
LBP1 and LBP2 (i.e., HLBP). As shown in Figure 4, LBP1 always outperforms
LBP2. Their combination LBP1+LBP2 can obtain better results for a moderate
pooling size. This indicates that LBP2 is complementary to LBP1. LBP2 could
recognize samples that seem difficult to LBP1. By comparing Figure 4 and Table
1, we can see that for pooling sizes from 3 × 3 to 6 × 6, LBP1 achieves higher
accuracy than LBP, meaning that performing LBP on the max-pooling result is
a better choice than performing LBP on the original image pixels. HLBP (LBP1
+ LBP2) achieves the best performance on the BRVO dataset when 4× 4 max-
pooling size is adopted. The performance gradually reduces when the pooling
size decrease or increase from 4 × 4 size. This is reasonable, because if the size
is too small (e.g., 2 × 2), the spatial information incorporated is not significant
enough; while if the size is too large, local spatial properties would lose. When
the pooling size is too large (e.g., 7× 7 or 8× 8 in Figure 4), the accuracy rate
of LBP2 drops remarkably, and the combination of LBP1+LBP2 does not make
a better result than LBP1. Figure 4 demonstrates that it is crucial to adopt a
moderate (e.g., from 3 × 3 to 5 × 5) max-pooling size, if HLBP is expected to
achieve a good performance.
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Fig. 4. Accuracy rates (%) of HLBP using different max-pooling sizes and linear kernel.

Figure 5 shows the six images that are misclassified by HLBP using a 4 × 4
pooling size and linear kernel. As can be seen, the two misclassified BRVO images
have only a few irregular dark ares. They look similar to normal images. For the
four normal images, different illuminations make them difficult to recognize.

4 Conclusion and Future Work

We propose a new feature representation method HLBP, based on LBP and
max-pooling, for automatic recognition of BRVO in this paper. The proposed
method is simple but efficient. We establish a BRVO dataset to evaluate the
proposed HLBP. The performance of HLBP is compared with widely-used fea-
ture presentation methods. Experimental results demonstrate that HLBP with
a 4×4 max-pooling size outperforms other methods. The improvement of HLBP
over LBP is significant. The performance of HLBP reduces as the max-pooling
size decreases or increases from 4 × 4. When the max-pooling size is too large,
combining LBP1 and LBP2 would not produce a better result. It is, therefore,
important to choose a proper pooling size. We recommend that the max-pooling
size should be from 3× 3 to 5× 5.

Although HLBP performs well on the BRVO dataset, more experiments on
various types of images need to be conducted to examine the performance of
HLBP. In the future work, we would like to apply HLBP to other image recog-
nition tasks, e.g., face recognition, large-scale scene classification etc. Moreover,
the BRVO dataset used in this paper is not very large. We will continue to collect
fundus images to enlarge the dataset. We would like to establish a large retinopa-
thy dataset that contains images of not only BRVO, but also other retinopathies
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BRVO BRVO normal

normal normal normal

Fig. 5. Images misclassified by HLBP using a 4× 4 pooling size and linear kernel. The
caption underneath each image is the ground truth.

such as diabetic retinopathy etc., to help the research on the automatic recog-
nition and diagnosis of retinopathy using computer vision methods.
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