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Abstract. In this paper, we propose a Scale and Rotation Invariant Im-
plicit Shape Model (SRIISM), and develop a local feature matching based
system using the model to accurately locate and identify large numbers
of object instances in an image. Due to repeated instances and cluttered
background, conventional methods for multiple object instance identifi-
cation suffer from poor identification results. In the proposed SRIISM,
we model the joint distribution of object centers, scale, and orientation
computed from local feature matches in Hough voting, which is not only
invariant to scale changes and rotation of objects, but also robust to false
feature matches. In the multiple object instance identification system us-
ing SRIISM, we apply a fast 4D bin search method in Hough space with
complexity O(n), where n is the number of feature matches, in order
to segment and locate each instance. Futhermore, we apply maximum
likelihood estimation (MLE) for accurate object pose detection. In the
evaluation, we created datasets simulating various industrial applications
such as pick-and-place and inventory management. Experiment results
on the datasets show that our method outperforms conventional methods
in both accuracy (5%-30% gain) and speed (2x speed up).

1 Introduction

Locating and identifying multiple objects in an image is important for robotics
[1, 2] and automation [3]. Furthermore, it also attracts attentions for industrial
applications such as inventory management and planograms [4, 5]. Figure 1(a)
shows an example of multiple object identification. In such applications, instead
of understanding general object classes [6], recognizing specific object instances
and there poses (e.g. its location, orientation and relative scale) is of interest.
Though the definition of the object instance is varied in researches [4, 7, 8], in
this paper we are interested in the problem like [2, 4], in which an instance is a
particular object example that has identical texture (i.e. appearance) with the
database object.

For object instance detection, local feature based methods using SIFT [9]
and SURF [10] are very popular. A classic process includes feature extrac-
tion (i.e. keypoint detection and local descriptor generation), feature matching,
and geometric verification by Hough transform or RANdom SAmple Consensus
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(a)Example of multiple object identification (b)Results of object center estimation

Database image

Fig. 1. Multiple object identification.

(RANSAC). When there are few or no repeated instances in the query image, the
problem can be simply treated as detecting objects by identifying true feature
matches from false feature matches caused by background or irrelevant objects in
the foreground. However, in the case when many repeated instances are present
in an image (e.g. images of production lines or store shelves), in addition to iden-
tifying true matches from false matches, since all instances generate true feature
matches, it is also crucial to segment those correct feature matches individually
and locate each instance accordingly.

In order to locate and identify each instance in an image containing multiple
object instances, [2, 4, 11] propose methods that cluster keypoint coordinates in
query images. Specifically, the method in [4] applies windows to locate possi-
ble positions of object instances. In contrast, [11] applies graph based method
using Markov Random Field (MRF) on the feature matches to segment object
instances. Finally, in [2], a scalable and low latency object recognition system
called MOPED is introduced. The system locates object instances by roughly
clustering keypoints coordinates using mean-shift after feature matching, and
then applying coarse-to-fine object detection steps using RANSAC iteratively.
In order to improve the speed for the process, the system is carefully imple-
mented by taking advantages of parallel computing technology such as OpenMP
and GPU. These methods, however, have a common problem. Since keypoints
of an instance are sparsely distributed and do not form dense clusters for each
instance, it is therefore very difficult to achieve high detection accuracy by clus-
tering on keypoint coordinates in complex scenes (e.g. many repeated instances
or cluttered background).

Alternatively, [1, 3, 5] propose Hough voting based methods. These methods
allow each feature match to cast a vote for the common object center position
estimated using keypoint scale, orientation and the coordinates, and then locat-
ing object instances by clustering object centers using mean-shift [1, 3] or grid
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voting [5]. Methods employing object centers are effective in locating instances
since object centers are more densely clustered in Hough space. However, when
applied to real world applications, these methods are still problematic due to
large number of false matches. Figure 1 (b) illustrates the difficulties in detect-
ing multiple objects in a complex scene, in which we plot the object centers
computed from local features using methods in [1, 3, 5]. It shows that though the
estimated object centers from true feature matches form clusters, they are over-
whelmed by object centers estimated from false matches, thus making it difficult
to locate individual instance. In [9], a 4D Hough voting method is introduced
combined with an iterative outlier removal scheme. However, as will be discussed
later, the object location vote (instead of object center vote) in [9] is very sensi-
tive to both scale changes and rotation of objects. When repeated instances are
present, location votes from different instances will be excessively overlapped in
the Hough space, making it hard to differentiate and locate objects by Hough
voting. Therefore, this method is not suitable for multiple instance detection.

Recently, in a related area of object category detection, Implicit Shape Model
(ISM) [6] has been proposed and received a lot of attentions. It successfully
combines feature matching, codebook learning and Hough voting into the same
framework and produces promising results. ISM adopts scale invariant object
centers in Hough voting and extends the voting space to include scale changes
as the third dimension. Nevertheless, ISM is not invariant to object rotation and
thus can only be used under the assumption that all objects in query images
have no rotation.

In this paper, we apply the idea of ISM to instance identification and extend
it to accommodate scale and rotation changes by proposing Scale and Rotation
Invariant Implicit Shape Model (SRIISM). Specifically, we compute object cen-
ters using keypoint scale, orientation and coordinates so that they are invariant
to object centers compared to original ISM. In addition, we add object scale
and orientation votes to make the Hough voting more robust to false matches
compared with conventional methods [1, 3, 5]. This is equivalent to weighting
object centers according to the distribution of object rotation and scale. The
main contributions of this paper are:

(1) We propose a method called SRIISM that models the joint distribution
of object centers, scale and orientation in Hough voting. The proposed method
is not only invariant to object scale changes and rotation, but also very robust
to false matches caused by cluttered background and irrelevant objects.

(2) We apply the model of SRIISM and develop a system for multiple ob-
ject instance identification, which includes 4D Hough voting, fast 4D bin search
of complexity O(n), and pose estimation using maximum likelihood estimation
(MLE). The system is tested on datasets simulating various applications such
as pick-and-place and inventory management, and we show that superior per-
formance in both speed and accuracy can be achieved.

The paper is organized in the following way. In section 2, the proposed
model of SRIISM is discussed. In section 3, the details of the multiple object in-
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stance identification system using SRIISM is introduced. Finally, the evaluation
datasets and experiment results are described and discussed in section 4.

2 Scale and Rotation Invariant Implicit Shape Model
(SRIISM)

In this section, we introduce the Scale and Rotation Invariant Implicit Shape
Model (SRIISM) for instance identification, inspired by ISM [6, 12]. Different
from the original ISM using visual words which can be seen as a special type of
local feature, our model uses original local features extracted from images. Let
fj be the observed local feature (represented by descriptor) in the query image
and lj be the associated parameters (feature pose) of the feature, which is the
2D coordinates, orientation and scale of the feature. lj can be easily obtained
from scale and rotation invariant local features such as SIFT and SURF. Let
p(O, x) be the probability of the presence of object O with pose x. x includes
object center, orientation and scale. We denote a local feature entry as Di, which
contains the local descriptor as well as associated coordinates, orientation and
scale. The SRIISM then computes the probability of p(O, x) by marginalizing
through local features (p(O, x, fj , lj)) in an query image, i.e

p(O, x) =
∑
j

p(O, x, fj , lj) (1)

=
∑
j

p(fj , lj)p(O, x|fj , lj) (2)

Assume that the prior term p(lj , fj) over features and feature pose are uni-
formly distributed, we marginalize again for the feature entries (Di) in the
database, and get the following equations,

p(O, x) ∝
∑
j

p(O, x|fj , lj) (3)

=
∑
i,j

p(O, x|Di, fj , lj)p(Di|fj , lj) (4)

=
∑
i,j

p(O, x|Di, lj)p(Di|fj) (5)

=
∑
i,j

p(x|O,Di, lj)p(Di|fj)p(O|Di) (6)

From Eq. (4) to Eq. (5), we used the fact that p(Di|fj , lj) = p(Di|fj), which
means that an observed local feature fj is matched to the feature entries Di

only by its local feature. Moreover, p(O, x|Di, fj , lj) = p(O, x|Di, lj) is based on
the fact that object pose x is only inferred by the feature coordinates, scale and
orientation from query images (lj) and database images (Di). Finally, applying
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Bayes rule to p(O, x|Di, lj) and assuming that p(O|Di, lj) = p(O|Di) (i.e. coor-
dinates, scale and orientation of local features are independent to the presence
of objects), we obtain Eq. (6).

In Eq. (6), p(x|O,Di, lj) is the probabilistic Hough vote. The original ISM
defined voting elements as object center and object scale, computed from 2D
coordinates and scales. Instead, we propose the following voting elements that
can elegantly handle scale and rotation changes to the object.

[
xobj

yobj

]
=

[
ximg

yimg

]
− simg

sdb
×

[
cos θobj − sin θobj

sin θobj cos θobj

]
(

[
xdb

ydb

]
−

[
xc

yc

]
) (7)

sobj = simg/sdb (8)

θobj = θimg − θdb (9)

Here, x = (xobj , yobj , sobj , θobj) is the proposed 4D scale and rotation invari-
ant Hough vote for object center, scale and orientation. (ximg, yimg, simg, θimg)
and (xdb, ydb, sdb, θdb) are the 2D coordinates, scales and orientations for local
features from query image and database, respectively. (xc, yc) are registered ob-
ject centers (or any reference points) from the database images. Figure 2 (b)
shows an example of the proposed Hough vote. In practice, since scale votes
computed by taking ratio (Eq. (8)) are sensitive to even small changes in divi-
sor, we thus take the logarithm of the values to convert the computation from
division to the substraction.

In Eq. (6), the term p(Di|fj) is the matching quality between feature fj and
database entry Di. One way to define this probability is to assign matching score
based on the feature distance. A more general treatment in object identification
[5, 9] is to perform exhaustive search between features fj of query image and
each database image, then find the closest Di in the feature space for further
processing. This is equivalent to assigning p(Di|fj) to 1 if Di is matched to fj ,
and otherwise to 0.

Finally, term p(O|Di) represents the confidence of making inference of object
O when observed Di. One way is assigning term frequency inverse document fre-
quency (tf-idf)[13, 14] to this probability. For simplicity, we assume local features
have the same chances to be observed in each database object, thus we assign
1/M to this probability, where M is the number of database objects.

Here, we would like to compare our method with that in [9]. In [9], a Hough
transform based method is mentioned in which object location, scale and orien-
tation are used in Hough voting. Though the calculation of location vote is not
clearly specified, as written in [15], the location is computed as the difference
of 2D coordinates of keypoints. This means that the estimated location is easily
affected by scale change and rotation of the object, thus the estimated locations
from each keypoint will scatter in the voting space. For multiple object iden-
tification, especially when repeated instances are close together, this scattering
will cause excessive overlap in the Hough space, making it extremely difficult to
identify and locate each object instance (shown in Fig.2 (a)). In our method, we
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(a)Hough votes computed in [9] (b)Hough votes computed by this paper

Database image

Fig. 2. Example of 4D Hough votes proposed in [9] (a) and in this paper (b) when
instances in query images have different rotation and scales compared to objects in
database images. The root position of the arrow represents the object location (object
center), direction of the arrow represents object orientation and the length of the
arrow represents object scales. Notice that our Hough votes shown in (b) are clustered
in object centers, and scale and orientation are consistent.

instead estimate the object center position, which is calculated by using keypoint
scale and orientation in addition to the 2D coordinates (in Eq. (7)), so that it
is invariant to the scale change and rotation of the object. Thus the estimated
object center position is much more consistent among keypoints, forming a much
tighter cluster in the voting space (shown in Fig.2 (b)). This is very effective for
multiple object identification, since it can help to accurately identify and locate
each object instance.

It is also important to compare our model with other multiple object iden-
tification methods in [1, 3, 5]. In those methods, only the coordinates of object
center computed by Eq. (7) are used for Hough voting, whereas in our method
we additionally use scale sobj and orientation θobj of the object. In order to il-
lustrate the difference, we denote object centers as (xobj , yobj), object scale as
sobj , object orientation as θobj . Since object center, scale and orientation are
independent, the joint distribution of object centers, scale and orientation can
be written as,

p(O, xobj , yobj , sobj , θobj) = p(O, xobj , yobj)p(O, sobj)p(O, θobj) (10)

The term p(O, xobj , yobj , sobj , θobj) on the left-hand side is our proposed joint
distribution for Hough voting containing object centers, scale and orientation,
and the term p(O, xobj , yobj) on the right-hand side is the object center vote used
in the conventional methods. Therefore, by modeling the joint distribution of



Title Suppressed Due to Excessive Length 7

(a) Query image (b) Orientation distribution (degree) (c) Scale distribution

Fig. 3. Example of scale distribution and orientation distribution for multiple object
identification.

object centers, scale and orientation instead of object centers alone, our method
can be seen as assigning weights to object centers by the distribution of object
orientation p(O, θobj) and scale p(O, sobj), while conventional methods implicitly
assume uniform distribution of scale and orientation. Figure 3 shows an example
of distribution of the orientation and scale computed by Eqs. (8) and (9) from
a query image. It shows that the distribution of scale and orientation exhibit
bell shape property (peaked at the object scales and orientation). Thus, this
distribution can help to perform more accurate Hough voting.

3 Multiple object instance detection and identification

3.1 Overview

In this section, we explain how to apply the model of SRIISM to detect and
identify multiple object instances in query images. Figure 4 shows the block
chart of the proposed system to detect multiple objects. For object images in
database, we extract local features and create feature entries Di, including local
descriptors, scale and orientation extracted at keypoints. For each object, we
also save its object center position (xc, yc) to the database.

For the query image, local features are first extracted and matched with
features of the database. After feature matching, scale and rotation invariant
Hough voting are carried out in the 4D space (Algorithm 1). Then a fast 4D bin
search is employed and object pose (represented by bounding box) are recovered
using maximum likelihood estimation. Finally, post processing is performed by
which over detection is removed.

3.2 Scale and rotation invariant Hough voting

Algorithm 1 illustrates how to compute the p(O, x|fj , lj) in Eq. (3). After feature
matching, each matched feature pair votes for the possible object center, scale
and orientation of the objects. Since the probability should be summed to one, we
assign the term p(x|O,Di, lj) to 1/Nf , where Nf is the number of local features
in the query image.
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Fig. 4. Overview of the proposed algorithm.

Algorithm 1 4D Hough voting

for all features in query image (fj , lj) do
for all feature entries in database Di do //compute scale and rotation invariant

vote according to Eqs. (7),(8),(9)
x← (xobj , yobj , sobj , θobj)
p(x|O,Di, lj)← 1/Nf //Nf is the number of features in query images
p(O, x|fj , lj)← p(x|O,Di, lj)p(Di|fj)p(O|Di) .

end for
end for

3.3 Fast 4D bin search

After Hough voting is carried out, we then detect the possible position (repre-
sented by object center) and associated pose of the object. Conventionally for
this purpose, methods such as in [1] apply density estimation methods such as
mean-shift to locate object instances and recover their poses. Nevertheless, these
methods using mean-shift are not only time-consuming (takes O(n2), where n is
the number of feature matches), but also can only recover at most four degree-
of-freedom approximation of the object pose (position, scale and orientation).
This is not enough for applications requiring more accurate object pose such as
robotic vision. Therefore, we propose a fast 4D bin search method (takes O(n))
to first locate objects in the Hough space and then apply maximum likelihood
estimation directly on feature matches to recover affine or higher order poses (6
degree-of-freedom or more) of the object.

In order to find the possible feature matches of objects, we divide Hough space
into 4D bins, namely, for object centers (xobj , yobj), scale sobj and orientation
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θobj . Then we select bins that have scores larger than a threshold. Here, the
scores of bins are defined by the following equation,

S(O, k) =
∑

xm∈V (k)

p(O, xm) =
∑

xm∈V (k)

∑
j

p(O, xm|fj , lj) (11)

where, S(O, k) means the score of the k-th bin for object O. Simply put, the
score for each bin is the summation of Hough votes falling into it (xm ∈ V (k)).

In practice, we found that it is inefficient to use 4D array to store bin votes
when carrying out Hough voting. Because 4D array contains large number of
bins (e.g. typically containing several million bins), it takes a lot of time in
the final step to search for the candidate bins that are above the threshold.
But in fact, there is only limited number of matches producing Hough votes
compared to the large number of bins, thus most bins are empty. Using this
property, we employ map structure (associative array) to store only non-empty
bins. Specifically, when a 4D Hough vote is computed from a feature match, it is
quantized and converted to a unique key representing the index of the bin. Then
the probabilistic votes associated with the key is incremented if the entry for the
key exists in the associative array, otherwise the entry for the key is created with
an initial vote. Finally, our method iterates through all the entries and those bins
with votes above threshold are selected. This implementation performs much
faster than using 4D array since it does not search through empty bins.

In the experiment, bins for object centers (in pixel), orientation (in radians)
and scale (ratio in logarithmic scale) are equally partitioned. Furthermore, in
order to reduce the influence caused by quantization errors, we allow those bins
to be overlapped (e.g. 50%).

3.4 Object pose estimation

Once candidate bins are selected based on the bin scores, we estimate the
6 degree-of-freedom (or more) object pose by maximum likelihood estimation
(MLE).

Our method uses the local feature coordinates of feature matches belonging
to selected bins. We denote the coordinate of a feature match of query and
database by t = [xt, yt, 1] and q = [xq, yq, 1]. Then their relationship, given an
affine model A ∈ R3×3 can be expressed as:

t = Aq + ξ . (12)

Here ξ is the error term due to the image noise. We assume that ξ has
the form of Gaussian distribution with zero mean and variance of σ2, that is,
ξ ∼ N(0, σ2), we can then write the likelihood term for t given q and A,

p(t|q, A, σ) ∼ N(Aq, σ2) (13)
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which is also a Gaussian distribution with the mean Aq and variance σ2.
Given all the match pairs (tn, qn)n=1,2,3,... in a bin, we can apply maximum

likelihood estimation to find out the affine pose for the objects.

A = arg max
A

∏
n

p(tn|qn, A, σ2) (14)

In order to solve Eq. (14), we can take the logarithm of the likelihood function
and reformulate it to an equivalent form:

A = arg min
A

∑
n

‖tn −Aqn‖2 (15)

Then Eq. (15) can be easily solved using least square solver.
In practice, we found that when the threshold for the bin score is set low, the

bin may contain votes from false matches. Therefore, the estimated results are
not the correct object poses. In order to solve this problem, we apply additional
verification method for bins containing few Hough votes.

Assume affine pose A are estimated, it can be decomposed intoA = TrR2SR1

using SVD [16], where Tr,Ri and S are translation, rotation and scale matrix.
We then compare the product of scale and rotation matrix (Q = R2SR1) from
affine model with the value of sobjR(θobj), in which sobj and θobj are average
scale and orientation of Hough votes in each grid and R(·) is the rotation matrix.
When the elements of two matrix are not agreed to an extent, we re-set the score
of S(O, k) to 0. The mathematical explanation of this process is to add a prior
term to A (i.e. p(A)) in MLE according to the evidence from Hough votes.

3.5 Post processing

Finally, we annotate detected objects by projecting bounding boxes using es-
timated affine model. Since nearby bins for the same object produce overlap-
ping bounding box, we keep the one with the maximum bin score if they are
overlapped. In order to compute the overlapped area, we employ Sutherland-
Hodgman algorithm [17] to find out corresponding vertices of the overlapping
polygons and then apply cross product to compute corresponding areas.

4 Experiment

In order to evaluate the proposed method, we reproduced experiment from re-
lated papers [1, 3, 5] and added real world datasets taken from supermarket and
convenience stores.

The first dataset (shown in Fig.5) simulates pick-and-place applications for
industrial automation. We evaluated our method for repeated instance detection
tasks similar to [3], where repeated instances have different rotation and scale.
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(a)High texture objects (b)Medium texture objects (c)Low texture objects

Fig. 5. Examples of objects used in repeated instance dataset (dataset 1).

Fig. 6. Examples of cluttered environment dataset (dataset 2).

Furthermore, the datasets also contain partial occlusions. In order to test the
performance to the objects with various texture levels, we divided objects into
three sets according to the texture level they have (high texture, medium texture,
and low texture). In this experiment, we collected 87 query images (512 × 384
pixels) with 556 instances in all. In such tasks (e.g. industrial automation), false
positive (i.e. over detection or false detection) rate must be kept low. Therefore,
we evaluated the detection rate (recall) under the condition that the precision
is 100% (by chosing proper threhold during Hough voting), and compared with
conventional methods.

In the second dataset (shown in Fig.6), we reproduced the task of [1, 5],
in which multiple objects (include repreated instances) are to be detected in
a cluttered environment. The dataset also includes a collection of challenging
real world images taken from the super market (see Fig.6). In order to test the
robustness to the perspective changes for our proposed method, we took query
images at different perspectives. We also included occlusions in the query images.
The database contains 221 objects. For the query images, there are 28 images in
total, which the width and height are ranging from 2000 to 3000 pixels, and the
task is to identify total of 502 objects (targets) from over a thousand of objects
(irrelevent objects).
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4.1 Experiment settings

In all experiments, we compared the proposed method with conventional meth-
ods using mean-shift (denoted as 2D mean-shift) [1, 3] and grid voting (denoted
as 2D gridvoting+RANSAC) [5] on object centers. Moreover, in order to show
that our method is independent to local descriptors used, we implemented and
tested our method using SIFT and BRIGHT [18], which is a binary local descrip-
tor used in [5]. In order to count the true positive, we applied 50% overlapping
criterion, that is, for correct detection (true positive), its bounding box should be
at least 50% overlapped with that of ground truth. In addition, we also pose con-
straints when counting true positives, that is, scale and rotation of the bounding
box should be consistent with ground truth.

The experiment has been conducted on Windows7 PC with Core i7-2700K
CPU@3.50GHz.

4.2 Experiment Results

Figure 7 shows detection results for the repeated instance detection tasks (dataset
1). It shows that the proposed method outperforms object center based methods
for all three types of objects (high texture, medium texture and low texture).
The result also shows that our method in overall achieves better performance
both for SIFT and BRIGHT. Especially, our method outperformed object cen-
ter based methods by 30% for low texture objects. This is because while objects
with low texture generate only few correct feature matches, they are easily con-
taminated by the false matches and resulted in detection failures when applying
conventional methods.

Figure 8 shows results on the cluttered environment dataset (dataset 2). In
order to compare our method with conventional methods, we compute the recall
and precision rate for all three methods (proposed, 2D mean-shift and 2D grid
voting+RANSAC). It shows that our method has the best performance among
all three methods. At 95% precision rate, our methods is 5% better in recall
rates compared to 2D grid voting methods both for SIFT and BRIGHT as local
descriptor.

Figure 9 shows the average processing time (matching with one database
image) between the proposed method and the conventional methods using ob-
ject centers with mean-shift and grid voting [5] on the cluttered environment
dataset (dataset 2). It shows that proposed method in total works twice as fast
as that of conventional methods, and six to senven times faster for the process
after feature matching. This is because our 4D Hough voting is robust to false
matches so we apply non-iterative affine estimation combined with a geometric
consistency check in the final step, while methods such as [5] have to iteratively
apply RANSAC to remove outliers.

5 CONCLUSION

We proposed a Scale and Rotation Invariant Implicit Shape Model (SRIISM),
and developed a local feature matching based system using the model to ac-
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(a)SIFT (b)BRIGHT

Fig. 7. Results on the repeated instance detection (dataset 1).

(a)SIFT (b)BRIGHT

Fig. 8. Results on the cluttered environment dataset (dataset 2).

curately locate and identify large numbers of object instances in an image. In
the proposed SRIISM, we model the joint distribution of object centers, scale,
and orientation computed from local feature matches in Hough voting, which
is not only invariant to scale changes and rotation of objects, but also robust
to false feature matches. For the multiple object instance identification system
using SRIISM, we apply a fast 4D bin search method in Hough space with com-
plexity O(n), where n is the number of feature matches, in order to segment
and locate each instance. Futhermore, we apply maximum likelihood estimation
(MLE) for accurate object pose detection. In the evaluation, we created datasets
simulating various industrial applications such as pick-and-place and inventory
management. Experiment results on the datasets showed that our method out-
performs conventional methods in both accuracy (5%-30% gain) and speed (2x
speed up). In the future works, we will extend our research to the non-rigid
object identification by considering more flexible local transformation models.
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