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Abstract. A fast denoising algorithm for 3D µCT images is proposed.
The algorithm is based on an efficient implementation of bilateral filter-
ing, in which the filter kernel is decomposed into a series of cosines. This
reduces the evaluation of bilateral filtering to a Gaussian convolutions,
for which very fast recursive algorithms are available. The frequencies
of the cosine terms are optimized in the minimal square error sense and
an analytical expression of the corresponding coefficients is provided. A
detailed computational analysis of the proposed method is presented as
well. The method is validated with images that are encountered in digi-
tal rock applications. Comparison with state of the art existing methods
show the superiority of the proposed algorithm in terms of noise rejection
and computation time.

1 Introduction

Digital rock physics, namely the measurement of several macroscopic physical
properties of a rock from 3D scans of samples, is an applicative area in which
image processing has been increasing its importance in the last decades [1, 2].
A common pipeline consists in segmenting X-ray scans of rock samples and
extract geometrical models of their solid and pore spaces to perform numerical
simulations of several physical phenomena, such as multiphase fluid flow, wave
propagation, electric flow, and many others. These simulations enable to estimate
several petrophysical properties which would be difficult to measure accurately
in a standard experimental setting in which the rock samples may be damaged.
[3, 4].

The initial step of this process is to acquire and segment 3D X-ray scans of
rock samples. However, the quality of the segmentation may be compromised
by the noise that is always present in high resolution µCT scans due to limited
acquisition time [5], with an obvious negative impact on the rest of the pipeline.
Therefore, a preprocessing step aimed at reducing the noise level is mandatory.

Processing the images that are encountered in digital rock applications of-
fers several peculiar challenges. First of all, capturing the geometry of the pore
space of a rock sample with the needed accuracy results in very large images;
specifically, the typical spatial extent of a rock sample is in the order of sev-
eral millimeters in each dimension, and a common resolution is 2µm per voxel,
thus yielding image in the size of 109 − −1011 voxels per sample. This imposes
severe restrictions on the design of a denoising algorithm in terms of amount
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of used memory, number of calculations per voxel, and scalability with respect
to parallelization. In addition, for many digital rock applications the knowledge
of the size of the narrowest throats and corners in the pore space is the most
crucial. Therefore, it is important to have denoising techniques which not only
smooth out noise while keeping edges sharp, but also preserve corners and narrow
elongated elements in the input image.

For these reasons, not every available denoising algorithm is suitable for digi-
tal rock imaging. For example, filters based on variational methods [6] and partial
differential equation [7, 8], which are powerful and versatile, cannot be afforded
in this context because of their iterative nature, which makes the computation
time quite high.

In this paper, a non-iterative denoising algorithm is proposed, which is based
on bilateral filtering (BF) [9, 10]. The output of BF is a weighted average of
the the input graylevels on a neighborhood of each voxel, where the weights
are determined adaptively to minimize the amount of smoothing across edges,
corners, and other elongated elements. A fast implementation of BF is presented,
which consists in expanding the kernel of the filter into a sum of cosines, thus
reducing BF to a few Gaussian convolutions. the frequencies of the cosines are
optimized in a minimum square error (MSE) sense, thus minimizing the number
of terms in the expansion that are needed for convergence.

The proposed method is validated with experimental results related to µCT
scans of rock samples and a comparison with existing nonlinear filters is made
in terms of both denoising performance and computation time.

2 Proposed method

In this section, the proposed denoising algorithm is presented, which is based on
fast BF. A quick overview of the proposed technique is given in Subsection 2.1,
while the fast algorithm for BF is detailed in Subsection 2.2.

2.1 Overview

The proposed filtering method is illustrated in Fig. 1. The first step is histogram
equalization. Specifically, the histogram p(I) of the input image I(r) is estimated
along with the cumulative histogram F (I), which is defined as:

F (I) ,
∫ I

0

p(x)dx (1)

Then, the following image IH(r) is evaluated by means of a zero-memory non-
linear function:

IH(r) , F [I(r)] (2)

It is easy to prove that the image IH(r) has the same morphology of the input
image I(r), but with a uniformly distributed graylevel histogram.
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The second step is BF, for which a fast algorithm is presented in the next sub-
section. Bilateral filtering is the core of the denoising method, as it removes noise
while keeping edges sharp. Finally, the graylevel distortion (2) is compensated
by the application of the inverse function F−1 to UH(r):

U(r) = F−1[UH(r)]. (3)

The reason of this pre and post processing, instead of applying BF directly on
the input image will be clear at the end of the next subsection.

Fig. 1. Overview of the proposed denoising algorithm.

2.2 Fast bilateral filtering

Let I(r) be a luminance profile defined on a discrete n-dimensional domain
Ω ⊆ Zn, with r ∈ Ω. Without loss of generality, it will be assumed through the
whole paper that the values of I(r) range between 0 and 1. The output U(r) of
the BF is defined as follows:

U(r) =
N(r)
D(r)

(4)

with:
N(r) =

∑
ρ∈Ω

I(ρ)gσ1(r− ρ)wσ2 [I(r)− I(ρ)]

D(r) =
∑
ρ∈Ω

gσ1(r− ρ)wσ2 [I(r)− I(ρ)]
(5)

where σ1 > 0 and σ2 > 0 are scale parameters, and the weigthing functions
gσ(u) and wσ(u) are both Gaussian in the great majority of applications.

As we see, the output of BF on point r is a weighted average of graylevels
of the input image on a neighborhood of r, where the weights are decreasing
functions both with the spatial and the range distance from the central point.
The presence of the range terms wσ2 guarantees that whenever r is close to an
edge only those points ρ that are on the same side of the edge give a significant
contribution to the sums (5). Therefore, no significant smoothing is done across
edges. In a similar way, corners and other narrow structure in the images are
preserved as well.

The direct implementation of BF through its definition (4) and (5) is com-
putationally infeasible for 3D images, as its computational complexity is cubic
with the scale parameter σ1. In contrast, a faster algorithm is proposed here.
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Specifically, it is assumed that the range distance wσ2(u − v) admits the
following expansion:

wσ(u− v) =
N∑
k=1

ck(σ)ψk(u)ψk(v), (6)

where the functions ψk(u) are for the moment assumed to be given. By plugging
(6) into (4), we get the following approximation Û(r) of U(r):

Û(r) =
N̂(r)
D̂(r)

(7)

with:

N̂(r) =
N∑
k=1

ck(σ)ψk[I(r)]
∑
ρ∈Ω

gσ1(r− ρ)I(ρ)ψk[I(ρ)]

D̂(r) =
N∑
k=1

ck(σ)ψk[I(r)]
∑
ρ∈Ω

gσ1(r− ρ)ψk[I(ρ)].

(8)

Both sums in ρ are convolution with a Gaussian mask, thus reducing the com-
putation of the bilateral filter to evaluating 2N convolutions. The whole com-
putational flow of this algorithm is illustrated in Fig. 2. This is much faster
than evaluating (6) directly in the spatial domain, due to very fast available
algorithms which compute convolutions [11, 12] with the needed accuracy. In
particular, their computational complexity is linear with the size of the image,
and constant with respect to σ1, instead of cubic.

Fig. 2. Computation scheme of bilateral filtering.

In order to determine the functions ψk(u), we follow the Lie-theoretical ap-
proach described in [13]. Specifically, the following condition is imposed:

ψk(u− v) = ψk(u)φk(v), (9)
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where φk(v) are arbitrary functions. Without loss of generality, the functions
ψk(u) are also assumed to be orthogonal:∫ 1

0

ψk(u)ψs(u)du = 0, k 6= s (10)

It is easy to show that the only functions that satisfy (9) and (10) are ψk(u) =
exp(iωku) and φk(u) = exp(−iωku), as detailed in [13]. This results in the fol-
lowing Fourier expansion of the range term wσ(u), which contains only cosine
terms only:

wσ(u) =
∑
k

ck(σ) cos(ωku) (11)

where the values of ωk are for the moment arbitrary. This yields:

wσ(u− v) =
∑
k

ck(σ) cos(ωku− ωku) =

=
∑
k

ck(σ)[cos(ωku) cos(ωkv) + sin(ωku) sin(ωkv)]
(12)

By comparing (12) with (6) we see that the requested functions ψk(u) are cosines
and sines in u. As to the coefficients ck(σ), they are equal to:

ck(σ) =

∫ 1

0

∫ 1

0

wσ(u− v) cos[ωk(u− v)]dudv∫ 1

0

∫ 1

0

cos[ωk(u− v)]dudv
=

=

∫ 1

0

wσ(u)(1− u) cos(ωku)du∫ 1

0

(1− u) cos2(ωku)du
=

=
4

1 + sinc2(ωk)

∫ 1

0

wσ(u)(1− u) cos(ωku)du

(13)

with sinc(u) , sin(u)
u .

The last integral η(σ, ωk) ,
∫ 1

0
wσ(u)(1 − u) cos(ωku)du can be expressed

analytically for the Gaussian case wσ(u) = exp(− u2

2σ2 ) in terms of complex error
functions. Specifically, a laborious calculation yields:

η(σ, ω) =
σ

4

{√
2πe−

σ2ω2
2 Φ(σ, ω)

− σ
[
4− 4e−

1
2σ2 cos(ω)− 2

√
2πe−

σ2ω2
2 erfi

(
σω√

2

)
+
√

2πe−
σ2ω2

2 Ψ(σ, ω)
]} (14)
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with:

Φ(σ, ω) , erf
(
σ−1 + iσω√

2

)
+ erf

(
σ−1 − iσω√

2

)
Ψ(σ, ω) , erfi

(
σω + iσ−1

√
2

)
+ erfi

(
σω − iσ−1

√
2

) (15)

and erfi(z) , −i erf(iz), where erf(x) is the standard error function erf(x) ,∫ x
0
e−u

2
du. The function η(σ, ω) is plotted vs ω in Fig. 3 for different values of

σ. As we see, the smaller σ is, the more slowly η(σ, ω) goes to zero. This indicates
that the number of non-negligible coefficients increases as σ decreases.

Finally, the values of ωk are computed. By plugging ψk(u) = cos(ωku) into
the orthogonality condition (10), we get:

tan(ωk)
ωk

=
tan(ωs)
ωs

, ∀k, s = 1, 2, ... (16)

This trascendent equation is easy to solve numerically and allows expressing ωk
as a function of ω0, i.e., ωk = ωk(ω0), with ωk ∈

[(
k − 1

2

)
π,
(
k + 1

2

)
π
)
. The

functions ωk(ω0) are plotted in Fig. 4 for ω0 ∈ [0, π/2] for k = 1, ..., 6.
The value of ω0 is obtained by minimizing the following quadratic error

ε2σ(ω0):

ε2σ(ω0) ,
1
2

∫ 1

0

∫ 1

0

{
wσ(u− v)−

N∑
k=1

ck(σ, ω0) cos[ωk(ω0)(u− v)]

}2

dudv =

=
∫ 1

0

{
wσ(u)−

N∑
k=1

ck(σ, ω0) cos[ωk(ω0)u]

}2

(1− u)du,

(17)

where ck(σ, ω0) is the value of (13) with ωk = ωk(ω0).
Summarizing, BF is reduced to 2N convolutions as illustrated in Fig. 2, by

means of the decomposition (6). The functions ψk(u) are cosines and sines,
where the frequencies ωk are determined by minimizing the MSE (17). This
minimization is reduced to a 1D problem by means of the orthogonality relations
(16) and can be precomputed off line. After evaluating the ωk, the coefficients
ck(σ) are also computed off line by evaluating the integral (13).

It is easy to prove that the minimization of the MSE (17) is optimal for
an input image which has a uniformly distributed graylevel histogram, since all
values of u and v contribute with the same weight. Therefore, the input image
is pre-distorted as in (2) so that BF is applied to an image with uniformly
distributed histogram, and the inverse distortion is applied after filtering. This
results in a smaller number of convolutions compared to applying the BF directly
to the input image.

The whole computational complexity of the proposed algorithm is detailed
in Table 1, as can be easily inferred from Fig. 2, where N is the number of
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terms of the expansion (6) and NV is the number of voxels in the input image.
Each convolution is evaluated by means of the algorithm proposed in [11] which
requires, in 3D, 30NV floating point multiplications and additions. Therefore,
the overall computational complexity is roughly 60NNV , which is linear in the
size of the image and constant in σ1. In practice the number of convolutions that
are needed for a good accuracy is less than 10 in the great majority of situations,
thus keeping the number of floating point operations below 600NV .

On the other hand, the direct implementation of (4) and (5) would require
to loop, for each voxel, on a cube of radius 3σ, thus requiring 2 · (7σ1)3NV >
600σ3

1NV floating point multiplications and the same number of additions. For
the relatively small value σ = 3 the number of additions and multiplications per
voxel is around 105, while it is around 102 −−103 for the proposed method.

Fig. 3. Plots of the function η(σ, ω) vs ω for several values of σ.

Table 1. Computational complexity of the proposed BF algorithm

2N Gaussian convolutions
NNV Nonlinear function evaluations

(3N + 1)NV Floating point multiplications and divisions
2(N − 1)NV Floating point additions
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Fig. 4. Plots of the solutions ωk(ω0) of (16) for several values of k.

3 Experimental results

The proposed method has been applied to several 3D µCT scans of sandstone
rocks. The size of each input image is 800 voxels in each dimension and the
resolution is 2µm per voxel. For all test images, the method has been applied
with the same values of the input parameters, which are σ1 = 5 and σ2 = 0.2. The
proposed method has also been compared with the nonlinear diffusion algorithm
proposed in [14], for which the input parameters have been selected as suggested
in [14].

Examples of outputs of the studied techniques are shown in Figs. 5-6, in which
crops of slices on the xy plane are displayed for better visualization purposes. We
observe that in all studied cases the proposed algorithm effectively removes noise
while preserving edges. Conversely, the anisotropic diffusion algorithm removes
less noise.

We also notice that the residual noise of the proposed method has a rather low
spatial correlation. This makes it easy to further reduce the noise level by means
of a second application of the filter, as illustrated in Fig. 7. This is not the case
for anisotropic diffusion. In particular, it has a more highly correlated residual
noise, which is harder to attenuate without introuducing a certain amount of
undesired smoothing.

Finally, a comparison on the computation time is presented. Specifically, in
Table 2 the average computation time is reported along with the standard de-
viation across all test images for the proposed algorithm, the implementation of
BF available in imageJ (susan filter) [15], and the anisotropic diffusion algorithm
presented in [14]. As we see, the proposed algorithm is over ten times faster than
both anisotropic and the implementation of BF provided with ImageJ. Though
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these timings are indicative, since they depend on how well each algorithm has
been optimized, they clearly show the superiority of the proposed approach over
the other considered techniques.

Table 2. Computation time of the studied algorithms.

Algorithm Average time Std. dev.

Proposed algorithm 1427.1s 25.3s
ImageJ BF (susan) 19643s 138.4s
Nonlinear diffuision 19093s 148.6

4 Summary, discussion and conclusions

A fast denoising algorithm for 3D µCT rock images has been presented, which
is based on BF. Specifically, the range term wσ2(u) has been expanded into a
Fourier series, thus reducing BF to the calculation of few Gaussian convolutions.
This is much faster than implementing BF from its definition (4) and (5) directly,
due to very efficient available algorithms for Gaussian filtering [11, 12].

Reducing BF to several convolutions by means of an expansion in the form
(6) had been proposed in earlier work too [16, 17]. However, non-optimal expan-
sions were considered, which converge very slowly resulting in a slower filter.
Specifically, a Taylor expansion of wσ2(u) is considered in [16]. However, it has
a good convergence only for very small values of u and requires the evaluation
of high-order polynomials, leading to numerical instability. An attempt to lessen
this problem has been proposed in [17], in which trigonometric polynomials are
used instead of Taylor series. However, their expansion still favors small values
of u, resulting in a slow convergence. In particular, the number of terms that are
needed for a given accuracy grows quadratically with 1

σ2
.

In contrast, the optimal design proposed in this paper results in a much
faster convergence. More specifically, the values of ωk obtained by minimizing
the MSE (17) are optimal for the case of uniformly distributed histogram of
the input image. Since in many situations this not the case, a pre and post
distortion of the image are performed, so that BF is applied to an image with
uniform histogram. This results in a less number of coefficients, compared to
applying BF directly to the input image without compromising accuracy.

A possible alternative could be to modify the cost function (17) so that the
values of ωk are optimized for the specific image histogram. However, this would
require to recalculate the values of ωk for every new image to filter. In contrast,
in the proposed method the optimization of the ωk is done off line, thus making
the filter faster.

To summarize, the denoising algorithm proposed here is fast and effective
in filtering µCT images that are encountered in digital rock applications. Its
performance are higher compared to existing algorithms, such as anisotropic
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Fig. 5. From top to bottom: 2D slice of the 3D input image on the xy plane (800 ×
400 crop), and outputs of the proposed filter and the anisotropic diffusion algorithm
presented in [14].
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Fig. 6. Same as Fig. 5 for a different input image.
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Fig. 7. Output of a double application of the proposed filter for the input images of
(top) Fig.5 and (bottom) Fig.6.
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diffusion, in terms of amount of noise that can be filtered out while keeping
edges sharp, and in terms of computation time.
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