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Abstract. Dark channel prior has been used widely in single image
haze removal because of its simple implementation and satisfactory per-
formance. However, it often suffers from halo artifacts or noise amplifi-
cation, over-dark and over-saturation looking in some images containing
heavy fog or large sky patches where dark channel prior is not estab-
lished. To resolve these problems, this paper proposes a robust single
dehazing algorithm via adaptive transmission compensation based on
human visual system. The key contributions of this paper are made as
follows: firstly, two boundary constraints on transmission map are de-
duced for the minimum intensity preservation and halo artifacts or noise
suppression. Secondly, an improved HVS segmentation algorithm is em-
ployed to detect saturation areas in the input image. Finally, an adaptive
transmission compensation method is present to remove fog in non- satu-
ration areas and suppress the halo artifacts or noise in saturation areas.
Experimental results indicate that this proposed method can robustly
improve the visibility of the foggy image in the changeling condition.

1 Introduction

In the past decades, restoration of images taken in hazy weather conditions has
caught much attention due to the increasing outdoor applications, such as video
surveillance, remote sensing, intelligent vehicles and object recognition and so on.
In hazy weather conditions, the reflected light from these objects is attenuated
in the air and further blended with the atmospheric light scattered by some
aerosols (e.g., dust and water-droplets) before it reaches the camera, and for
this reason, the colors of these objects fades and becomes much similar to the
haze, which severely degrades the visibility of the captured scene.

In general, the haze is highly related to the scene depth and it is hard to
estimate the scene depth from a single image, early haze removal methods usu-
ally rely on additional depth information or multiple images of the same scene.
Schechner et al. [1] discover that the airlight scattered by atmospheric particles
is partially polarized. Based on this observation, they develop a quick method
to reduce hazes by using two images taken through a polarizer at different an-
gles. Narasimhan et al. propose a physics-based scattering model [2] [3]. By this
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model, the scene structure can be recovered from two or more weather images.
Kopf et al. [4] propose to dehaze an image by using the scene depth information
directly accessible in the georeferenced digital terrain or city models. Howev-
er, additional depth information or multiple images are not available in many
situations.

Recently, single image dehazing algorithms based on strong assumptions
or constraints have been developed to overcome the limitation of the above-
mentioned approaches. For example, Fattal[5] propose a refined image formation
model to account for the surface shading and the scene transmission. Under the
assumption that the two functions are locally statistically uncorrelated, a haze
image can be decomposed into the albedo and the shading, and then the scene
radiance is estimated via independent component analysis (ICA), from which
the scene transmission can be inferred. It can remove haze locally but cannot
restore densely hazy images. Tan[6] assumes that a haze-free image has a higher
contrast ratio than the hazy image and maximizes the local contrast of a hazy
image to remove haze from the input image, this method can generate quite sat-
isfying results, especially in regions with dense haze. Meng et al. [7] model the
boundary constraint and contextual regularization into an optimization problem
to estimate the unknown scene transmission. However, the restored image often
suffers from distorted colors and halos artifacts. He et al.[8] discover a interesting
dark channel prior that at least one color channel of each pixel should have a
small intensity value in a haze-free image, and estimate transmission for a hazy
image based on this prior for haze removal. Due to the simply implementation
and satisfactory performance of the dark channel prior, it has been widely used
for different application[9][10][11][12]. For example, Zhang et al.[12] estimated
an initial depth map for each frame of a video sequence using the dark channel
prior, and then refined the depth map by exploiting spatial and temporal simi-
larities for video dehazing. Tripathi et al.[13] use anisotropic diffusion for refining
airlight map from dark channel prior to recover scene contrast. However, dark
channel prior is often unavailable in the saturation regions, such as the sky or
heavy haze patches. As a result, these methods based on dark channel priors
suffer from the following problems: Firstly, the halo artifacts or image noise will
be introduced in the saturation regions or distant sky patches where transmis-
sions are very small, which will severely degraded image quality. Secondly, due
to dark channel prior assumes that at least one color channel has a small pixel
value in a haze-free image, the restored image often has a dark looking, which
results in that some details cannot be discriminated.

To resolve two aforementioned problems, this paper proposes a robust single
image dehazing method via transmission compensation based on human vision
system (HVS), which firstly detects the saturated areas in the input images via
human visual system. In order to suppress the halo artifacts and noise, this
paper introduces the just-noticeable distortion (JND) of human visual system
to decide the adaptive transmission compensation. Meanwhile, the brightness
boundary constraint on transmission is employed to avoid producing the too dark
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images. The experimental results show that the proposed algorithm efficiently
and robustly both remove haze and suppress halo artifacts and noise.

2 Related works

Due to the absorption and scattering, the radiance from the objects through
the atmosphere is attenuated and dispersed. In the hazed weather, dust, smoke,
water droplets and other dry particles in the atmosphere greatly scatter, absorb
the radiance from the objects in the scene and blend with the airlight and only
a percentage of the reflected light reaches the observer causing poor visibility in
such degraded scenes, which often yields low contrast and obscure the clarity of
the sky[14]. According to the Koschmieder’s law[15], the radiance that reaches
the observer is composed of two main additive components: direct attenuation
and veiling light[2]:

I(x) = L(x)e−βd(x) +A(1− e−βd(x)) (1)

where L is the scene radiance, I is the observed radiance, x is the pixel position in
the observed image, A is the global airlight constant. The first component, direct
attenuation D = L(x)t(x), represents how the scene radiance is attenuated due
to medium properties. The veiling light component is the main cause of the color
shifting and can be expressed as:

V = A(1− e−βd(x)) = A(1− t(x)) (2)

where t(x) = e−βd(x) ≤ 1 is the transmission along the cone of vision and β
is the homogeneous medium attenuation coefficient due to the scattering, while
d(x) represents the distance between the observer and the considered scene. The
value of t(x) depicts the amount of light that has been transmitted between
the observer and the scene surface. The image hazing method aims to recover
t, L and A for each pixel x in the hazy image. Practically, while no additional
information about depth and airlight are given, haze removal is an ill-posed
problem.

He et al.[8] discover an interesting dark channel prior: in most of the non-sky
patches of the haze-free image, at least one color channel has very low intensity
at some pixels and defined the dark channel Ldark of image L as follows

Ldark = min
y∈Ω(x)

( min
c∈r,g,b

(Lc(y))) (3)

where Lc is a color channel of L and Ω(x) is a local patch centered at x. The
dark channel operation is taken to the degraded model described in Eq.(1)

min
y∈Ω(x)

( min
c∈r,g,b

(
Ic(y)

Ac
) = min

y∈Ω(x)
( min
c∈r,g,b

(
Lc(y)

Ac
)t(x) + (1− t(x)) (4)

Then, the estimated transmission map t(x) can be described as
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t(x) =
1−miny∈Ω(x)(minc∈r,g,b(

Ic(y)
Ac

)

1−miny∈Ω(x)(minc∈r,g,b(
Lc(y)
Ac

)
(5)

According to dark channel prior, for an outdoor haze-free image L, its dark
channel should tend to be zero and Ac is positive constant, thus the estimated
transmission can be simply determined by:

t0(x) = 1− min
y∈Ω(x)

( min
c∈r,g,b

(
Ic(y)

Ac
)) (6)

Lastly, He et al. [8] used the soft matting to refine the estimated transmission
and recover the clean image. However, this method cannot effectively suppress
noise and halo artifacts. Based on the degraded model, the gradient magnitude
of the hazy image and restored image has the following relationship [16].

∇Ic(x) = ∇Lc(x)t(x) +∇Ac(1− t(x)) = ∇Lc(x)t(x) (7)

where ∇ denotes the gradient magnitude operator. Eq. (7) illustrates that the
gradient magnitude in the restored image is related to the transmission. Due to
the refraction or reflection of the water droplets in the atmosphere, the captured
images often more or less suffer from the halo artifacts or noise, especially in the
sky regions. In the foggy images, these halo artifacts or noises almost cannot be
found because these gray differences cannot be perceived by human eyes. But,
these imperceptible gray differences in the hazy image will be greatly boosted
after the fog removal because the transmission is close to zero, and then halo
artifacts are introduced into the restored images after the haze removal. As shown
in Fig.1(b), some halo artifacts are introduced in the sky regions. Similarly, image
noise is also extremely magnified, all this severely degrade the restored images.
Moreover, dark channel prior assumes that at least one color channel of the
haze-free image L should tend to be zero, which will darken the restored images.
To deal with the aforementioned problems, in this paper, we propose a robust
single image dehazing method via adaptive transmission compensation. Fig.1
illustrates an example of our dehazing result.

3 The proposed method

3.1 Boundary constraint on transmission

Geometrically, according to Eq.(1), a pixel I(x) contaminated by haze will be
”pushed” towards the global atmospheric light A [7]. As a result, the clean pixel
L(x) can be recovered by a linear extrapolation from A to Ic(x). Consider that
the scene radiance of a given image is always bounded, that is,

L(x) ≥ L0(x) (8)

where L0(x) is a lower bound vector that is relevant to the given image. Conse-
quently, for any pixel x, a natural requirement is that the extrapolation of L(x)
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Fig. 1. Comparison with the method of He’s work, (a) input image Street, (b) the
result of He’s work, (c) the transmission estimated by He’s work, (d) the result of our
method, (e) the transmission estimated by our method.

must be larger than the lowest intensity bounded by L0. In turn, given the global
atmospheric light A and the lower bound vector L0(x), a boundary constraint
on t(x) by the lowest intensity can be determined as

t(x) ≥ tb(x) =
1−miny∈Ω(x)(minc∈r,g,b(

Ic(y)
Ac

)

1−miny∈Ω(x)(minc∈r,g,b(
L0

c(y)
Ac

)
≥ t0(x) (9)

where tb(x) is the lower bound of t(x) bounded by by L0.
According to Formula (8), the halo artifacts in the sky patches originate

from the enlarged gray difference between neighboring pixels in the hazy image.
Therefore, another constraint for the halo artifacts and image noise suppression
should be imposed on transmission so that no local luminance variation is also
perceived in the restored image if no local luminance variation is perceived in
the hazy image. This paper introduces the just-noticeable difference or distor-
tion (JND) model of the human visual system (HVS) to adaptively decide the
boundary constraint on transmission.

JND model is a quantitative measure for distinguishing the luminance change
perceived by the HVS[17][18]. That is to say, JND gives the maximum difference
of the luminance values that cannot be perceived by human eyes and the per-
ceptual function for evaluating the visibility threshold of the JND model can be
described by the following equation:

JND(k) =

{
T0

[
1− (k/127)0.5

]
+ 3 k < 127

γ(k − 127) + 3 otherwise
(10)

where k is the background luminance within [0, 255] and the parameters T0

and γ depend on the viewing distance between the objects and the observer.
T0 denotes the visibility threshold when the background gray level is 0, and γ
denotes the slope of the line that models the JND visibility threshold function
at higher background luminance. In this work, T0 and γ are set to be 17 and
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3/128 based on the subjective experiments conducted by Chou and Li[17]. It
is easy to verify that the HVS perceives the luminance variation best in the
situation where the background luminance is 127. In other words, if the HVS
cannot perceive the luminance variation where the background luminance is
127, it cannot perceive the luminance variation in the other situations either.
Moreover, the background luminance is approximately linear to the luminance
variation since the pixel luminance is linear to the background luminance.

Due to the scene radiance of a given image is always bounded, luminance
variation is also bounded. Therefore, based on the HVS, the luminance variation
and the corresponding background intensity of the recovered image often meet
the following condition:

∆L(x)

L(x)
=

∆I(x)/t(x)

(I(x)−A)/t(x) +Ac
=

∆I(x)

I(x)−A+At(x)
≤ V

127
(11)

where V is the sensing threshold and ∆L(x) is luminance variation computed
by the difference between the luminance L(x) and the corresponding low-pass
filtered value, the intensity value 127 is used as the ideal background luminance
to detect the maximum amount of details. In turn, Formula (13) imposes this
constraint on t(x) as follows:

t(x) ≥ t0(x) +
127∆I(x)

VA
≥ 1− I(x)

A
+

127∆I(x)

VA
(12)

Thus, transmission compensation to the estimated transmission t0(x) is given
by:

∆t(x) =
127

V
max

y∈Ω(x)
max

c=r,g,b

(
∆Ic(y)

Ac

)
=

127

V
Gbright(x) (13)

where Gbright(x) is the bright channel of the normalized variation and defined
as follows:

Gbright(x) = max
y∈Ω(x)

max
c=r,g,b

(
∆Ic(y)

Ac

)
(14)

Obviously, supposing the threshold V is given, in order to retain halo artifact-
s,the larger the luminance variation value is, the more compensation is needed.
But in the non-saturation regions, image dehazing aims to remove haze as clean-
ly as possible so that the recovered image has high contrast and the details can
be clearly discriminated, and no transmission compensation is needed.In other
word, the threshold V should keep large value so that ∆t(x) should be approxi-
mates to zero and no transmission compensation is needed. On the contrary, as
for the distant sky region, the threshold V cannot be larger than the visibility
threshold defined by JND model. Due to different transmission compensation s-
trategies are taken in different regions to both suppress halo artifacts and remove
haze. Therefore, it is a key problem to segment saturation and non-saturation
regions. In the Section 3.2, this paper will introduce the saturation regions de-
tection method based on the HVS.
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3.2 Saturation areas detection based on HVS

In fact, the fog or haze has similar qualities with human visual areas includ-
ing Devries-Rose, Weber, saturation and low contrast areas[21]. Specifically, the
heavy hazy image has high brightness, concentrated gray distribution in the sat-
uration regions and these pixels with thin haze tend to be concentrated in the
Devries-Rose regions and these pixels with moderate haze are concentrated in the
Weber regions. In a word, three areas of the human visual system, Devries-Rose,
Weber and saturation area are corresponding to different thickness of haze: thin,
moderate and heavy haze, respectively. Based on this property, we utilized the
HVS to divide the hazy image into the saturation and non-saturation regions.

According to Ref.[19], HVS image enhancement performs this segmentation
using the background intensity and the rate of change information. The back-
ground intensity is calculated as a weighted local mean, and the rate of change
is calculated as a gradient measurement. The background intensity at each pixel
x is derived by using the following formula,

B(x) = m⊗

m⊗

m

2
⊗

∑
y∈QD(x)

I(y)

⊕ I(x)

 (15)

where B(x) is the background intensity of luminance component at pixel x, I(x)
is the luminance component of input image, Q(x) is the set of the pixels which
are directly up, down, left, and right from the pixel, QD(x) is all of the pixels
diagonally one pixel away, m and n some constant. ⊕ and ⊗ is the PLIP model
operator and can be summarized as follows:

a⊕ b = a+ b− ab

M
(16)

c⊗ a = M −M ∗ (1− a

M
)
c

(17)

where M is the maximum value of the range. Finally, these threshold parame-
ters concerning human eye itself for different regions segmentation are given as
follows:

B1 = α1BT B2 = α2BT B3 = α3BT (18)

where α1, α2 is the lower contrast level, Devries-Rose and Weber level, respec-
tively. α3 is the saturation level and. BT is the maximum difference threshold.

In the saturation regions , the intensity I(x) for each pixel in the hazy image
is close to airlight and also is larger than the threshold B3 as defined in Ref.[19],
and the transmission tends to be close to zeros. Moreover, these halo artifacts
and image noise cannot be perceived in the original images, which means the
corresponding luminance variation is smaller than the visibility threshold defined
in Eq.(12). Therefore, unlike to Ref.[19], this paper defines the condition of
saturation areas or sky patch as follows:
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x ∈

{
S if : t0(x) ≤ Th I(x) ≥ B3 ∆I(x) < Jnd

Other otherwise
(19)

where S denotes the saturation region, Th and Jnd is the transmission, visibility
threshold, respectively. Based on Eq.(22), the hazy image is firstly divided into
two regions of human visual response. Some segmentation results are shown in
Fig. 2, which indicates the improved method can efficiently and robustly segment
saturation regions.

Fig. 2. Image segmentation results by our method for haze images Canon, NewYork,
Sam and Traffic (The original images are shown in Fig.3-Fig.5).

3.3 Adaptive transmission compensation

According to Eq.(15), the threshold V should keep large value for the non-
saturation regions and no transmission compensation is needed so that the haze
can be removed as cleanly as possible. On the contrary, as for these pixels in the
saturation regions, in order to retain halo artifacts, the threshold V cannot be
larger than the visibility threshold defined by JND model. At the same time, in
order to maintain the continuity of the transmission compensation, we set the
transmission compensation intensity variation for a pixel x as

∆t1(x) =
127

V
max

y∈Ω(x)
max

c=r,g,b

(
∆Ic(y)

Av

)
=

127

Vh + (Vl − Vh)
Idark(x)

max(Idark)

Gbright
0 (x)

(20)
where Vl, Vh is the lower and higher bound of the sensing threshold, respective-
ly. Gbright

0 (x) is the modified bright channel of the normalized variation, and
described as

Gbright
0 (x) =

{
Ymax

Adark Gbright(x) > Jmax

Adark ∩ x ∈ S
Ymin

Adark

(
Gbright(x) < Jmin

Adark ∩ x ∈ S
)
∪ (x ̸∈ S)

(21)
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where Jmax, Jmin is the maximum and minimums perceptual threshold, respec-
tively, because the pixels in the hazy image have different intensity variation
Gbright(x) and the over-large or over-small intensity variations are not benefi-
cial to the haze removal and the halo artifacts or noise suppression. Hence, Jmax

and Jmin are used to confine the intensity variation of the pixels so that little
transmission compensation is exerted to the pixels in the non-saturation regions
and much transmission compensation is applied to the pixels in the saturation
regions for halo artifacts or noise suppression

Moreover, the brighter the dark channel is, the more compensation is needed,
vice versa. Thus, we define the transmission compensation based on dark image
for each pixel as follows:

∆t2(x) = w(x)∆T = exp

(
Idark(x)− Imax

σ2

)
∆T (22)

where Imax is the upper bound of the gray value and is set to 255 in this pa-
per and ∆T is the maximum transmission compensation value and given by
∆T = 127 ∗ Jmax/(Vl ∗Adark), σ2 is suggested be 0.2Imax. Thus, by integrate-
ing the above-mentioned two transmission compensations, the final transmission
compensation can be made by the following function:

∆t(x) = max(∆t1(x),∆t2(x)) (23)

At the same time, in order to avoid the transmission value is larger than one,
the compensated transmission is redefined as

t1(x) = t0(x) +min(∆t(x), 1− t0(x)) (24)

Furthermore, in order to avoid to recover the too dark images, transmission
also should meet this condition given by Eq.(10). Therefore, the final estimated
transmission is given by

t(x) = max(tb(x), t1(x)) (25)

Lastly, this paper adopts the guided filter[20] to refine the final estimated
transmission map and restore the clear images.

4 Experimental results

In order to comprehensively demonstrate the effectiveness and robustness of this
proposed algorithm, firstly, this paper qualitatively evaluates the performance
of this proposed algorithm on a group of typical images. Secondly, this study
quantitatively compares this proposed algorithm with several state-of-the-art
methods. All algorithms were performed in Matlab by using a 32bit desktop
with an Intel Pentium dual-core 3.2 GHz CPU and 2G RAM. In saturation
regions detection alogrithm, the parameters m, n, M , α3 and β are set as 0.9,
1.4, 255, 0.9 and 0.2, respectively. The visibility threshold Jnd is set to 3 and
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the boundary constraint map is computed from by setting the radiance bounds
L0 = (30, 30, 30). The sensing threshold Vl, Vh are set as 3, 80 and the perceptual
threshold Jmax and Jmin are set as 3, 1, respectively. The airlight A is estimated
via He’s work.

4.1 Qualitative evaluation

Fig. 3 gives some examples of our dehazing results and the recovered scene trans-
mission maps on the natural hazy images with different size of saturation regions.
Obviously, the results show that proposed algorithm restores hazy images very
well with acceptable visual quality: haze is almost completely removed in im-
age Canon which has no sky patches, and no distinct halo artifacts or noises
are introduced into the sky patches for the image NewYork, Sam and Traffic
when haze is removed, because the proposed method adaptively compensate the
transmission in the sky patches, which can effectively remove haze and suppress
halo artifacts and noises.

Fig. 3. Image dehazing results by our method. Top: input haze images Canon,
NewYork, Sam and Traffic. Middle: the dehazing results. Bottom: the recovered trans-
mission maps.

We also compare our method with several state-of-the-art methods. Fig. 4
and 5 illustrate the comparisons of our method with He’s[8], Tarel’s[21], Fat-
tal’s[5], Tripathi’s[13], Meng’s[7] methods. As for the hazy image shown in Fig.4(a),
Tarel’s method can augment the image details and enhance the image visuali-
ty. However, some white artifacts usually appear around the sharp edges (e.g.,
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trees). Fattal’s method darkens some regions of image(e.g., trees regions). Meng’s
methods produce the excessive saturated color images. The proposed method
produces the similar result to He’s method because it makes a little compensa-
tion to the transmission. Fig.5(a) depicts a forest region against a background
of bright sky. Tarel’s and Tripathi’s method not only introduce white artifacts
around the sharp edges but also generate some halo artifacts in the sky patches.
Fattal’s method over-enhances the sky. He’s and Meng’s produce the saturated
color and low-lighting images, meanwhile, they introduce significant halo arti-
facts in the sky. In comparison, our method not only removes the haze in the hazy
image, but also suppresses the halo artifacts in the sky patches, which improves
the visual quality of image while restoring the faithful colors and preserves the
structure information and appropriate brightness of the original image.

Fig. 4. Comparison with image dehazing results of state-of-the-art algorithms on image
House, (a)input image, (b) He’s result, (c)Tarel’s result, (d) Fattal’s result, (e) Meng’s
result and (f) Our result .

4.2 Quantitative evaluation

Because it is difficult to acquire the corresponding ground truth data for the
input foggy images, this paper uses two quantitative evaluation metrics to quan-
titatively assess this proposed algorithm and compare it with these state-of-the-
art algorithms[11], these evaluation metrics are named as the new visible edges
ratio (e) and structure similarity (Ss). The metric e proposed by Hautiere et
al.[22] evaluates the ability of the method to restore edges which are not visible
in original image but are visible in restored image, the higher metric e indicates
the better performance of the image dehazing algorithm because clean images
have more contrast than images plagued by haze. The structure similarity (Ss)
present by Wang et al.[23] evaluates the structure perseveration of the dehazing
method because the dehazed images should generally maintain the similar struc-
ture information to the original images, and the low structure similarity often
means the over-enhancement and the introduction of halo artifacts or noise,vice
versa.

A comparison between our proposed method and other methods on the
above-mentioned hazy images is made and shown in Table 1. Tripathi’s method



12 Zhigang Ling, Shutao Li, Yaonan Wang, Xiao Lu

Fig. 5. Comparison with image dehazing results of state-of-the-art algorithms on im-
age Canberra. (a)input image, (b) He’s result, (c)Tarel’s result, (d)Fattal’s result, (e)
Tripathi’s result, (f) Meng’s result and (g) Our result

nearly gives the hightest metric e because it has the high brightness value. Tarel’s
and Fattal’s method even degrade the hazy images,e.g.,image Traffic. Compared
with He’s and Meng’s method, the proposed algorithm greatly improves the
image contrast although it has the lowest metric e which is mainly caused by
little distinct halo artifacts introduced in the sky patches. Moreover, the pro-
posed algorithm has the highest structure similarity, which shows it has better
performance of halo artifacts or noise suppression.

Table 1. Quantitative Comparisons in e and Ss

Image Canberra Canon Sam House Traffic Street New York

Method e Ss e Ss e Ss e Ss e Ss e Ss e Ss

He 1.01 0.83 9.83 0.80 0.96 0.77 0.52 0.94 2.27 0.74 0.83 0.86 0.72 0.88
Fattal 0.60 0.59 13.2 0.53 1.16 0.50 1.10 0.66 -0.01 0.77 0.75 0.00 0.92 0.14
Tarel 1.39 0.78 4.27 0.73 1.23 0.74 0.94 0.89 -1.00 0.00 1.04 0.79 0.66 0.82
Tripathi 3.76 0.44 12.5 0.46 1.28 0.56 1.12 0.85 6.28 0.27 2.12 0.57 1.43 0.67
Meng 1.29 0.78 8.80 0.80 0.78 0.76 0.66 0.96 3.32 0.64 1.15 0.84 0.81 0.87
Our 0.76 0.87 7.42 0.81 0.85 0.81 0.40 0.95 1.45 0.79 0.63 0.89 0.60 0.89
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5 Conclusions

This paper develops a robust single-image dehazing algorithm using adaptive
transmission compensation via human visual system. This paper firstly employs
an improve segmentation method based on HVS to decompose the hazy image
into saturation and non-saturation regions. Then, an adaptive transmission com-
pensation method via just-noticeable distortion (JND) of human visual system
is present to suppress the halo artifacts and noise. Meanwhile, the brightness
boundary constraint on transmission is employed to avoid producing too dark
restored images. Experimental results on a variety of haze images demonstrate
the proposed method can robustly produce the high quality images in various
realistic scenes.
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