
A Machine Learning Approach to Hypothesis
Decoding in Scene Text Recognition

Jindřich Libovický1, Lukáš Neumann2, Pavel Pecina1, Jǐŕı Matas2

1 Charles University in Prague,
Institute of Formal and Applied Linguistics, Czech Republic

2 Centre for Machine Perception,
Czech Technical University in Prague, Czech Republic

Abstract. Scene Text Recognition (STR) is a task of localizing and
transcribing textual information captured in real-word images. With its
increasing accuracy, it becomes a new source of textual data for standard
Natural Language Processing tasks and poses new problems because of
the specific nature of Scene Text. In this paper, we learn a string hypothe-
ses decoding procedure in an STR pipeline using structured prediction
methods that proved to be useful in automatic Speech Recognition and
Machine Translation. The model allow to employ a wide range of typo-
graphical and language features into the decoding process. The proposed
method is evaluated on a standard dataset and improves both character
and word recognition performance over the baseline.

1 Introduction

Scene Text Recognition (STR) is a computer vision task which aims to automati-
cally localize all text areas in an image and to recognize (transcribe) their textual
content. The problem has been receiving significant attention of the scientific
community since the textual information is heavily present in real-world images
with a large application potential. However, only manually assigned metadata is
commonly available for image retrieval or content analysis. Manual annotation
is costly or infeasible given the steadily rising data volumes.

STR also poses new problems for Natural Language Processing (NLP) as text
in real-world images often consists of very few words or snippets without other
textual context (see Figure 1a). Even a plain transcription can be quite difficult
and the current state-of-the-art STR methods achieve character accuracy of only
about 70% on standard datasets [1]. Additionally, interpretation of Scene Text
can heavily depend on visual clues not present in the textual information itself
(e.g., a meaning of the stand-alone word “visa” is completely different when
written on a direction sign at an embassy and when written on a credit card),
so novel joint techniques integrating computer vision and NLP are appropriate
for such situations.

In this work, we integrate typographical and language features into the state-
of-the-art end-to-end STR pipeline [2] and improve its accuracy by using struc-
tured machine learning approach inspired by hypotheses decoding in automatic

2 Jindřich Libovický, Lukáš Neumann, Pavel Pecina, Jǐŕı Matas

speech recognition [3, 4] and machine translation [5, 6]. The proposed method is
evaluated on the ICDAR 2013 dataset, a standard benchmark for STR evalua-
tion [1].

The rest of this paper is structured as follows. Section 2 summarizes previous
work in this field with focus on the hypotheses decoding algorithms. In Section 3,
we describe and formalize the decoding problem we aim to solve in this paper.
Section 4 presents the features we use in the models and methods we use for
training the models. Section 5 describes the process of preparing the training
data. The method is evaluated in Section 6 and the results discussed in Section 7.
Section 8 concludes the work.

2 Related Work

For a comprehensive survey of text detection and localization in STR we refer
the reader to work of Zhang et al. [7].

One criterion for categorization of STR methods is the requirement for prior
manual text localization. The methods of Mishra et al. [8] and Novikova et al.
[9] omit the localization phase and require a human annotator to first “cut out”
all words and then recognize (transcribe) text of each of the manually cropped
word images. The requirement for manual text localization makes the methods
impractical for processing of larger datasets.

Another criterion is the requirement to know the set words that may appear
in an image. The method of Wang et al. [10] is given a lexicon (a list of 50 to 500
words) for each processed image and aims at localizing one or more of the lexicon
words in the image. The method achieves high precision in text recognition, but
its applicability is limited by the requirement of having a fixed lexicon for each
image prior to the recognition and therefore it cannot be used to acquire new
textual data.

TextSpotter [11, 2] is to our knowledge the only lexicon-free method for STR
which operates in an end-to-end setup, i.e., it implements both text localization
and recognition and requires no manual annotation or lexicon to transcribe text
in images. It first detects image regions corresponding to individual characters,
joins them into text line hypotheses, and then recognizes the characters using
an Optical Character Recognition (OCR) classifier.

The final stage of STR is usually string decoding, which disambiguates char-
acter recognition in the context of the entire strings. The hypotheses typically
form a graph with vertices representing the chracter regions (there may be either
one vertex with distribution over multiple characters or one vertex per charac-
ter) and edges between the regions which follow each other in the transcription.
The decoding itself can be approached in various ways.

Mishra et al. [8] use the Conditional Random Fields (CRFs) to decide be-
tween different segmentations. Each bounding box is represented only by its
first-best character recognition and is assigned a unary feature – its classifica-
tion score. Potentially neighboring character hypotheses are connected by binary

A Machine Learning Approach to Decoding in Scene Text Recognition 3

factors encoding language model score. The feature weights are estimated em-
pirically.

Roy et al. [12] first detect a line on which characters lie. Then a Hidden
Markov Model (HMM) is used to decode the string from a set observed by
sliding windows. This approach allows both multiple segmentation and multi-
ple hypotheses per window, however by having most of the windows emitting
empty output they loose possibility to use a language model score for adjacent
characters.

A similar approach to the one presented in this paper is used by Shi et
al. [13]. After a text area is detected, it is segmented into character bounding
boxes. For each bounding box, a classifier produces several hypotheses which are
then decoded (disambiguated) using a linear chain CRF. However, in this case
the character segmentation is decided beforehand, and multiple transcription
hypotheses a segment hypotheses are allowed.

An end-to-end STR pipeline, PhotoOCR [14], uses a machine-translation-like
beam search to explore all possible paths with pruning over the least proba-
ble. This approach is able to deal with both multiple hypotheses and multiple
segmentations. In another end-to-end pipeline [15], similarly to our work, the
structured perceptron is used for optimization of the weights in a dynamic pro-
gramming decoding.

In case of recognition of words from a prior lexicon, the decoding can be
constructed such that it could only produce the words listed in the lexicon.
Novikova et al. [9] employs a trie-shaped weighted finite state automaton, Wang
et al. [10] use dynamic programing for searching areas that may correspond to
words from a dictionary. This produces a list of candidate locations which are
filtered using a binary classifier.

Feild [16] recently came with two different approaches. One approach is string
decoding realized as a parse of a probabilistic context free grammar for English
syllables. In the second approach, she first identifies identical characters which
necessarily must have the same transcription. The string is decoded using a
HMM with a character bigram model for transition probabilities. The inference
is done by integer linear programming which allows to ensures the previously
detected character’ identities.

3 Problem Description

In TextSpotter, each character appearing in an image may be detected several
times (each detection corresponds to a different image segmentation) and each
such detection may be assigned one or more character labels (transcription hy-
potheses) by the OCR module. Such an approach is beneficial, because it allows
to keep multiple hypotheses for character segmentation and its labels for a later
stage of the pipeline, where the final decision can be made by exploiting con-
text of the character in the word (we define a word simply as a sequence of
characters).

4 Jindřich Libovický, Lukáš Neumann, Pavel Pecina, Jǐŕı Matas

C A

4

M

N

1

l

i

Ic

L

P

F
B

b

E

L

L

W

w

L

8

(a) (b)

Fig. 1. Scene text in a real-world image (a). Graph representing transcription hypothe-
ses for the word “CAMPBELL” (the path representing the ground truth transcription
is bolded) (b)

In this paper, the space of all word transcription hypotheses is modelled as
a directed acyclic graph, where each vertex corresponds to a character segmen-
tation with a character label (assigned by the OCR module). Two vertices are
connected by an oriented edge iff the character associated with the first vertex
can immediately follow the character associated with the second vertex (see Fig-
ure 1b). Therefore, each path unambiguously induces one possible transcription
of the whole word. Finding the final word transcription can then be formalized
as finding the maximum weighted path where each edge is assigned a weight
indicating how likely the two characters follow each other in the character se-
quence of the word, i.e., we globally optimize values of local cost functions. For
solving this problem we need to learn a function that estimates edge weights
given a set of features that are assigned to each edge.

Formally, we define a transcription hypotheses graph G = (V,E, s, t, l, φ)
where (V,E) is a Directed Acyclic Graph (DAG), s ∈ V is the start node with no
incoming edges, t ∈ V is the target node with no outgoing edges, l : V \ {s, t} →
[a− zA− Z] is label assignment for the vertices, and φ : E → Rm is a feature
function that assigns an m-dimensional real-valued feature vector to each edge.
We denote the set of all the hypotheses graphs as X .

We want find a path y = (y1 = s, y2, . . . , yk−1, yk = t) from the start node
to the target node such that concatenation of labels of the vertices on the path,
l(y2), . . . , l(yk−1), form the gound truth string. For that purpose we want to
learn a function f : Rm → R assigning each edge a number based on its feature
vector such that the ground truth string will be the maximum weighted path y
from s to t.

For each transcription hypothesis graph, we also define a second-order tran-
scription hypothesis graph whose vertices represent edges in the original graphs
(i.e., character bigrams) and edges between are pairs of adjacent edges in the
original graph (i.e., represent character trigrams). This enable us to use features

A Machine Learning Approach to Decoding in Scene Text Recognition 5

that describe properties of triplets of potentially adjacent characters. The size
of such graphs is quadratic in size of the orignal graphs.

4 Proposed Method

The proposed method extends TextSpotter1 by using additional features and
employing machine learning for parameter training and decoding.

4.1 Features

Ab
top line

centroid line

bottom line

top l. and centroid
 l. angle

bottom l. and
 centroid l. angle

Ab
top lines angle

ccentroid lines angle

bottom lines angle

(a) (b)

Fig. 2. Typographical features used in the first-order model (a) and the second-order
(b) model.

TextSpotter employs a linear combination of four feature functions to infer
edge weights (segmentation threshold compatibility, OCR confidence of the sec-
ond character, confidence of the second character fitting the inferred text line
and a heuristic language model score – character bigram probability modified
by hand-crafted rules).

Our first-order (bigram) model extends the method by adding the following
20 typographical and language features:

– ratios of width, height, and area of the character on the edge,
– mutual angles of the top line, bottom line, and centroid line (see Figure 2a),
– conditional character bigram probability, and
– binary features coding character patterns (two digits, lower case + uppercase

letter, both the same case, lower to upper case).

The second-order (trigram) model then employs the following 9 additional fea-
tures capturing trigram properties:

– adjacent top lines, bottom lines, and centroid lines angles (see Figure 2b),
– adjacent spaces ratio,

1 We used the current version of TextSpotter available at http://www.textspotter.org.

6 Jindřich Libovický, Lukáš Neumann, Pavel Pecina, Jǐŕı Matas

– conditional character trigram probability, and
– 4 binary features coding character patterns (digits only, Xxx, xxx|XXX,

xXX|xXx|xxX|XxX, where X stand for an upper-case charecter and x for a
lower-case letter).

All the ratios were computed as absolute values of the difference of logarithms.
All features are standardized to have a zero mean and unit variance on the
training data.

4.2 Model

In TextSpotter, the model parameters (linear combination coefficients) are tuned
by a simple grid search. An alternative is to treat the problem as standard clas-
sification and train a classifier to predict for each edge how likely it is to lie on
the ground truth path. Such classification is called local – the edges are scored
independently from each other – those lying on the ground truth paths are used
as positive training examples and the others as negative ones (we resampled
the training data to have the same proportion of positive and negative exam-
ples). We examined several standard machine-learning algorithms implemented
in WEKA [17]: Logistic Regression, Support Vector Machine (SVM) with vari-
ous kernels, Random Forest, and multilayer Perceptron with various hidden layer
configurations.

In local classification, the information about the final output is ignored during
training. The constraints for the output structure (a graph path) apply in de-
coding (testing) phase only. A more appropriate solution is structured prediction
where the same decoding algorithm is used during training, but the classifica-
tion is global and allows the parameters to be optimized also with respect to the
inference algorithm. To employ the structured prediction we need to formulate
the problem as finding a structutre (in this case a path) which is maximal with
respect to a function that is a dot product of a weight vector and a feature func-
tion of the structure, here the sum of the feature values along the path. This
means:

ŷ = argmax
y∈Yx

wTΨ(x,y) = wT
∑
e∈y

φ(e)

where w is a learned m-dimensional weight vector. While training a prediction
model we want to estimate the weight vector w where w is an m-dimensional
weight vector optimized to maximize the number of training instances correctly
classified.

We examined two state-of-the-art techniques for the weights optimization:
the structured perceptron [18] and structured SVM approximated by the cutting
plane algorithm [19].

The sructured perceptron [18] is a simple modification of the standard per-
ceptron algorithm. The weight vector is iteratively updated by the difference
of the feature vector of the currently estimated solution and the ground truth
solution.

A Machine Learning Approach to Decoding in Scene Text Recognition 7

The structured SVM algorithm aims to optimize the weight vector such that
the dot product is an upper bound estimate of a loss function, i.e., unlike the
perceptron, it only distinguishes between partially and entirely incorrect solu-
tions. A quadratic programming formulation capturing this requirement would
demand exponentially many conditions for each of the training instances and its
computation would be intractable. For this reason, we use an iterative approx-
imate algorithm which finds the most violated conditions in each iteration and
add them as constraints to the quadratic programming problem.

Based on the results of our preliminary experiments, we also added score
from the best performing (the Random Forest) local edge classifier to the to
feature vector for the structured learning. It aims to combine an advantage of
capturing non-linear relations between the features in the local classifier and the
knowledge of the inference algorithm during the learning procedure.

5 Data

The ICDAR 2013 dataset [1] was used to generate the training data for our
experiments. The training set consists of 229 real-world images with 849 words
in total. For each word, the ground truth annotation is given in the form of a
bounding box coordinates and a reference transcription. For our purposes, we
ignored all punctuation marks because its annotation is inconsistent across the
dataset. The training data was generated by running the initial stages of the
TextSpotter pipeline on each image to generate word transcription hypotheses
graphs and then in each graph, the ground truth path representing the correct
transcription is selected (if it exists) by matching graph vertices to the ground
truth annotation of the word. A path is matched with the ground truth anno-
tation iff

– the sequence of the character labels along the path corresponds to the ref-
erence transcription or its prefix of a length at least four, and

– all character centroids lie in the bounding box.

This process produced a total of 1607 graphs (including multiple graphs for
the same word because the TextSpotter pipeline processes the same image several
times using different visual transformations of the original image). We were able
to match a subset of 812 graphs with the ground truth, out of which a random
sample of 568 graphs was used to train the model and the remaining 244 graphs
were used for intrinsic evaluation (see Section 6).

6 Evaluation

In the first experiment, we evaluate how well the model learns to find the ground
truth path. A straightforward measure for the correctness of finding the longest
path in a graph could be the Hamming loss (number of incorrectly used edges),
or precision and recall of correctly selected edges. However, this measures cannot

8 Jindřich Libovický, Lukáš Neumann, Pavel Pecina, Jǐŕı Matas

TextSpotter proposed method

copy ceritre copy centre

CA lBOT PLACF CA BOT PLACE

TAKPOROS TANFORDS

Fig. 3. Samples from the ICDAR 2013 dataset. Note the improvements of the proposed
method over TextSpotter [2].

be compared between the graphs with bigram and trigram edges. Therefore, we
only use the string based metrics, which were averaged over all graphs in the
test set:

– Levenshtein (edit) distance d̄ of the output string and the ground truth
string;

– relative Levenshtein distance d̄r of the output and ground truth strings, i.e.,
the edit distance divided by the length of the ground truth string, saying
how likely is a character to be incorrect; and

– full string accuracy ā – proportion of correctly selected paths.

.

The results of the intrinsic evaluation is provided in Table 1. The evaluated
methods brought substantial improvement over the baseline method. The best
results were achieved by the Random Forest classifier [20] trained locally on the

A Machine Learning Approach to Decoding in Scene Text Recognition 9

model order d̄ d̄r ā

TextSpotter – .647 .134 .685

Logistic Regression 1st .701 .127 .561
SVM , Gauss. kernel 1st .480 .094 .737
Multilayer Perceptron 1st .471 .100 .754
Random Forest 1st .332 .068 .807

Structured Perceptron 1st .463 .092 .738
Structured SVM 1st .439 .082 .750
Str. Perc + Rand. for. 1st .377 .080 .816
Str. SVM + Rand. for. 1st .377 .080 .816

Logistic Regression 2nd .660 .121 .631

SVM , Gauss. kernel 2nd .599 .118 .657

Multilayer Perceptron 2nd .598 .115 .676

Random Forest 2nd .398 .075 .779

Structured Perceptron 2nd .488 .104 .701

Structured SVM 2nd .402 .077 .775
Str. Perc + Rand. for. 2st .504 .101 .725
Str. SVM + Rand. for. 2st .398 .077 .779

Table 1. Results of the intrinsic evaluation (Levenshtein distance d̄, relative Leven-
shtein distance d̄r, full string accuracy ā).

edges and with a structurally trained model that used the Random Forest out-
put as a feature. Bringing more information to the model by using higher order
graphs improved only the performance of the local linear regression and struc-
tured SVM classifier. The second-order graphs contain quadratically more edges
which adds complexity to the learning algorithm, which may be a reason why it
lead to a better result with large margin training but worse with Perceptron.

In the second experiment, we used the standard metrics (see Table 2) on the
ICDAR 2013 dataset to evaluate the effect of replacing the hypothesis decoding
method on the performance of the STR pipeline.

The ICDAR dataset is commonly used to evaluate performance of STR meth-
ods, but to our knowledge the only method to report performance in the end-
to-end setup is TextSpotter [2] as other methods either focus solely on text
localization or on cropped word recognition. The recent ICDAR 2013 Robust
Reading competition [1] also only listed participants in these two limited setups.

The text localization measures how well the method is able to localize text
areas in an image, the character and word retrieval measure the proportion
of correctly transcribed characters (respectively words) in the dataset, when a
character (a word) is considered to be correctly transcribed when it is localized
correctly and the textual content is identical (using case-sensitive comparison)
with the ground truth label. Most of the models substantially improved the
recognition precision (the best result was achieved by the structured SVM),
while the recall is only marginally worse. The combined model achieved very
good results in the character recognition both in precision and recall, however it
lowered the whole word recognition performance.

10 Jindřich Libovický, Lukáš Neumann, Pavel Pecina, Jǐŕı Matas

text localization character retrieval word retrieval
model order P R F1 P R F1 P R F1

TextSpotter – .828 .629 .715 .786 .625 .696 .421 .368 .392

Logistic Regression 1st .831 .600 .697 .769 .593 .670 .340 .340 .316
SVM , Gauss. kernel 1st .822 .605 .697 .780 .601 .679 .387 .387 .359
Multilayer Perceptron 1st .814 .574 .673 .797 .596 .682 .394 .394 .330
Random Forest 1st .809 .577 .673 .810 .606 .693 .414 .345 .376

Structured Perceptron 1st .842 .617 .710 .800 .626 .703 .424 .360 .389
Structured SVM 1st .794 .585 .673 .821 .614 .703 .425 .364 .393
Str. Perc + Rand. for. 1st .833 .605 .701 .885 .689 .775 .404 .344 .372
Str. SVM + Rand. for. 1st .833 .605 .701 .885 .689 .775 .404 .344 .372

Logistic Regression 2nd .843 .606 .705 .784 .604 .682 .387 .329 .356

SVM , Gauss. kernel 2nd .808 .589 .681 .788 .604 .684 .403 .347 .373

Multilayer Perceptron 2nd .829 .578 .681 .798 .590 .679 .387 .327 .355

Random Forest 2nd .804 .570 .667 .808 .602 .690 .425 .353 .386

Structured Perceptron 2nd .836 . 613 .707 .808 .624 .704 .425 .359 .389

Structured SVM 2nd .802 .590 .680 .812 .617 .701 .418 .357 .385

Str. Perc + Rand. for. 2nd .810 .605 .694 .808 .625 .705 .410 .359 .383

Str. SVM + Rand. for. 2nd .820 .599 .692 .818 .626 .709 .404 .360 .381
Table 2. Results of the pipeline evaluation (precision P , recall R, and F1 measure).

7 Discussion

The intrinsic evaluation showed a significant improvement over the baseline
method, however the biggest effect on the whole STR pipeline is in improv-
ing precision of character recognition (8 percentage points improvement for the
combined model). This can be attributed to a better language modelling where
knowledge of character bigram (trigram) statistics can help to distinguish be-
tween similar characters, as seen in Figure 3. The character case pattern features
also prevented the differently cased letters to appear within words. Neverthelss,
the precision of the word recognition is improved only slightly, because of the
relative strictness of the evaluation protocol (a word is considered as correctly
recognized only when all its characters match the ground truth, using case-
sensitive comparison).

The recall in all three STR metrics (localization, character and word retrieval)
remains virtually unchanged compared to the baseline method, which is desired
because an improved hypotheses decoding method cannot contribute to detect
more characters in the earlier stages of the pipeline but it could incorrectly reject
true characters.

The results of classifiers trained on the edges locally show that the classifiers
with non-linear decision boundaries performed much better than the linear ones.
The gain from the non-linearity is comparable from the gain of using the inference
algorithm during the learning. This suggests that even better results could be
achieved using a structured prediction method utilizing a non-linear decision
boundary.

A Machine Learning Approach to Decoding in Scene Text Recognition 11

Using the trigram edges did not lead to any significant improvement in the
decoding accuracy. We hypothesize that the additional information from the
trigram features did not outweigh the added complexity of finding a path in
quadratically bigger graph. However, choosing more informative character tri-
gram features can lead to a different trade-off between the decoding complexity
and the informativeness of the features.

8 Conclusions

We proposed a method for hypothesis decoding in a Scene Text Recognition
pipeline. Our approach is based on structured prediction and allows to exploit
a larger number of features. When plugged-in to an end-to-end STR system
together with additional typographical and language features proposed in this
work, it achieves a state-of-the-art precision for character and word recognition
on the standard ICDAR 2013 dataset and brings a substantial improvement on
the character level.

Except the already mentioned non-linear structured prediction methods, an-
other improvements in the word decoding could be achieved by using some global
features evaluating the produced words. Additional rescoring of a list word of hy-
potheses using a syllable based language model or a corpus based spell checking
may be a way how to increase also the whole word recognition scores.

A natural follow-up is connecting the recognized words into longer logical
segments and thus enabling to use the STR output as an input to Machine
Translation and Information Retrieval. The knowledge of which words belong
together and how they follow each other can provide more informative input for
further processing than just bags of words and moreover it can provide further
accuracy improvements to STR methods.

9 Acknowledgements

This research has been funded by the Czech Science Foundation (grant number
P103/12/G084). Lukáš would also like to acknowledge the Google PhD Fellow-
ship in Computer Vision and the Google Research Award.

References

1. Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., Mestre, S.R., Mas, J., Mota,
D.F., Almazan, J.A., de las Heras, L.P., et al.: Icdar 2013 robust reading compe-
tition. In: Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, IEEE (2013) 1484–1493

2. Neumann, L., Matas, J.: On combining multiple segmentations in scene text recog-
nition. In: Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, IEEE (2013) 523–527

3. Ghoshal, A., Jansche, M., Khudanpur, S., Riley, M., Ulinski, M.: Web-derived
pronunciations. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on, IEEE (2009) 4289–4292

12 Jindřich Libovický, Lukáš Neumann, Pavel Pecina, Jǐŕı Matas

4. Bilmes, J.A.: Graphical models and automatic speech recognition. In: Mathemat-
ical foundations of speech and language processing. Springer (2004) 191–245

5. Daumé Iii, H., Langford, J., Marcu, D.: Search-based structured prediction. Ma-
chine learning 75 (2009) 297–325

6. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: Open source toolkit
for statistical machine translation. In: Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstration Sessions, Association for
Computational Linguistics (2007) 177–180

7. Zhang, H., Zhao, K., Song, Y.Z., Guo, J.: Text extraction from natural scene
image: A survey. Neurocomputing 122 (2013) 310–323

8. Mishra, A., Alahari, K., Jawahar, C.: Top-down and bottom-up cues for scene text
recognition. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, IEEE (2012) 2687–2694

9. Novikova, T., Barinova, O., Kohli, P., Lempitsky, V.: Large-lexicon attribute-
consistent text recognition in natural images. In: Computer Vision–ECCV 2012.
Springer (2012) 752–765

10. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: Com-
puter Vision (ICCV), 2011 IEEE International Conference on, IEEE (2011) 1457–
1464

11. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In:
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
California, US, IEEE (2012) 3538–3545

12. Roy, S., Roy, P.P., Shivakumara, P., Louloudis, G., Tan, C.L., Pal, U.: Hmm-based
multi oriented text recognition in natural scene image. In: Pattern Recognition
(ACPR), 2013 2nd IAPR Asian Conference on, IEEE (2013) 288–292

13. Shi, C., Wang, C., Xiao, B., Zhang, Y., Gao, S., Zhang, Z.: Scene text recognition
using part-based tree-structured character detection. In: Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on, IEEE (2013) 2961–2968

14. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: Photoocr: Reading text in
uncontrolled conditions. In: Computer Vision (ICCV), 2013 IEEE International
Conference on, IEEE (2013) 785–792

15. Weinman, J., Butler, Z., Knoll, D., Feild, J.: Toward integrated scene text reading.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 36 (2014) 375–
387

16. Field, J.: Improving Text Recognition in Images of Natural Scenes. PhD thesis,
University Massachusetts Amherst (2014)

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter 11
(2009) 10–18

18. Collins, M.: Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the ACL-02 confer-
ence on Empirical methods in natural language processing-Volume 10, Association
for Computational Linguistics (2002) 1–8

19. Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural svms.
Machine Learning 77 (2009) 27–59

20. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.:
Random forest: a classification and regression tool for compound classification and
qsar modeling. Journal of chemical information and computer sciences 43 (2003)
1947–1958

