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Abstract. In this paper we propose a novel character representation for
scene text recognition. In order to recognize each individual character,
we first adopt a bag-of-words approach, in which the rotation-invariant
circular Fourier-HOG features are densely extracted from an individual
character and compressed into middle level features. Then we train a
set of two-class linear Support Vector Machines in a one-vs-all schema
to rank the compressed features by their contributions to the classifica-
tion. Based on the ranking result we further select and keep those top
rated features to build a compact and discriminative codebook. By using
densely extracted features that are rotation-invariant and efficient, our
method is capable of recognizing perspective texts of arbitrary orienta-
tions, and can be combined with the existing word recognition methods.
Experimental results demonstrates that our method is highly efficient
and achieves state-of-the-art performance on several benchmark datasets.

1 Introduction

Nowadays with the widespread availability of low cost devices equipped with
cameras, lots of natural scene images that contain text information are generated.
Texts in images contain much semantic information, which could be used to
build useful applications such as street sign interpretation, content based image
retrieval and product recognition.

Unlike traditional document optical character recognition (OCR)[1], which
has achieved sufficient accuracy for practical application, recognizing text in un-
controlled environments is still a challenge. This is because texts in uncontrolled
environments often suffer from low resolution, blur, non-uniform illumination
and cluttered background. Especially, many images captured by handheld de-
vices may suffer from perspective distortion, which is still an open problem in
the computer vision community.

Many text detection methods, such as [2–5] already provides character level
segmentations. Thus, we are mainly concerned with segmented scene text. Most
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existing scene text recognition methods are focused on recognizing frontal scene
text, while the task of recognizing perspective text of arbitrary orientations is still
not well addressed. Some methods use text rectification to deal with perspective
distortion with the assumption that the shape of the text can be extracted with
high accuracy and the text is in a straight line [6, 7]. This approach however,
might not work well because of the aforementioned interference factors. Besides,
methods that rely on rigid features, e.g., histogram of oriented gradient(HOG)
[8], achieved satisfying performance on frontal text recognition datasets. How-
ever it cannot be used for recognizing perspective text directly[9, 10]. To solve
this problem, one can train a classifier with character examples of all possible
poses. However, this approach is not realistic since it is expensive to collect and
label examples. Also, to describe texts in such a way would make a model too
complex and computationally inefficient. Therefore, it is important to develop
new methods to effectively represent and recognize characters in natural scene
images.

Usually, to discriminate among a fairly large number of classes (e.g., 62 char-
acter classes), low level features have to be extracted densely to provide enough
information. These low level features can be directly used in a bag-of-words ap-
proach [11, 12].However non-text regions often introduce strong noise that are
not helpful. These features have to be processed equally when searching the vi-
sual word codebook, and this can be very costly. Besides, since there are only a
few distinctive prototypes for each character class, considering all of these low
level features individually is inappropriate. To address the above problem, we
observe that characters can be reduced to a few reoccurring shape prototypes.
For example, intuitively, from a rotation-invariant point of view “o” is made
entirely of curve strokes, and “N” is made of straight strokes and two identical
turns. These patterns are obvious and prevalent regardless of languages. Also, it
can be expected that the features of non-symmetrical characters such as “R” and
“G” will have more variation than those of symmetrical ones. If these patterns
can be discovered we can build a more compact and discriminative middle level
representation with them. Although, a rotation-invariant representation would
cause some confusions in individual character recognition (e.g., between “N” and
“Z”), language models can be designed to effectively correct these confusions by
incorporating lexicons.

Therefore, in this paper, we propose to extract rotation-invariant features
densely and compressing them into compact and discriminative middle level fea-
tures. These features are automatically learned and independent to language. We
first extract circular Fourier-HOG (CHOG) [13] densely from character images,
which serves as the underlying low level rotation invariant feature. Due to the
nature of scene text, it is the rotation that causes the most signification variance
when the viewpoint changes. Although CHOG is only invariant to in-plane rota-
tion, when trained with a multi-scale bag of words scheme on sufficient samples
from different viewpoints, it can tolerate perspective distortion to some extent.
Next, to compress the CHOG features we use k -means to partition them into a
number of prototypes depending on the variation. Then, we rank these proto-
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types and use the top rated features to build a compact visual word codebook.
Finally we retrain a character classifier with the new codebook. In this way the
size of our codebook and the computational workload of our method is signif-
icantly decreased. To evaluate the effectiveness of our method, we incorporate
our method into the classic PLEX word recognition pipeline [14] and compare
our method to the state-of-the-art methods on scene character recognition and
scene word recognition. Our method outperforms the state-of-the-art methods
on perspective text recognition while being orders of magnitude faster, and its
performance is competitive on frontal text recognition.

The remaining of this paper is organized as follows: in Section 2 we discuss
related work. We describe our method in detail in Section 3, followed by the
implementation details and the experimental results of our method. Finally we
conclude our paper in Section 6.

2 Related Work

A variety of methods have been developed for scene text detection and recog-
nition. Maximally stable extremal region[6, 1, 15], stroke width transform[3] and
HOG[14] have been successfully applied in scene text detection. The outputs
of the detection algorithm are usually the bounding boxes of either characters
or words. HOG templates have also been used to match character instances in
test images with training examples[16]. Shi et al. [17] proposed to use manually
designed deformable part-based model to represent characters. Most of these
methods are mainly concerned with only frontal text.

Using rotation invariant feature such as scale invariant feature transform
(SIFT) to describe characters has been proved successful. Phan [12] proposed to
use dense SIFT instead of normal SIFT to describe individual characters. With
the original SIFT, the descriptors are only extracted at sparse interest points.
Since scene characters suffer from deformations such as blurring and uneven
illumination, the number of detected interest points is not sufficient. The dense
SIFT defined in the literature was designed for scene classification, which does
not require rotation invariance [18]. An extraction scheme that fixes the position
and size but allows the orientation of the interest points to vary was devised in
their work, which provides rotation invariance. The work of Phan et al. provides
helpful insights into perspective scene text recognition, and it also introduces
two datasets that are used to benchmark perspective recognition performance.

SIFT aligns a local coordinate system to the dominant gradient direction at
each detected interest point, which relies on the assumption that such a dominant
gradient orientation is available. SIFT does not work well for arbitrary positions
or dense feature computation, and it is a main source of error in dense image
alignment[19]. Most recent text recognition approaches skip this step and use
the non-invariant dense HOG features with a sliding window classifier.

CHOG, on the other hand, offers a well defined rotation behavior by rep-
resenting circular HOG on Fourier domain. The window function of CHOG is
isotropic, unlike rectangle spatial window, the descriptor rotates with respect to
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rotation of its underlying data without leading to any discrete binning artifacts
in the histogram. Also, there is no need for interpolation. CHOG can be com-
puted both densely and efficiently, while still being highly discriminative like
HOG with rectangle spatial window. Therefore, we use CHOG as the low level
building block of our method.

Input Image
Feature 

Compression

Descriptor 
Computation

Character 
Recognition

Fig. 1. Flow diagram of our method

3 Proposed Method

An overview of our method is shown in Figure 2. The flow diagram of our method
is illustrated in Figure 1. In the following section we describe the procedure for
each step.

Input Image

. . .

CHOG
Features

Features
Clustering

. . .
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Features
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Fig. 2. Overview of our method. For a single character, the densely extracted rotation-
invariant features are compressed and ranked by their discriminativeness, which are
used to retrain the final character classifier.
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3.1 Character Representation

In order to sufficiently describe character images, local descriptor of the images
has to be computed densely. First, for both training and testing we resize all
character images to 48 × 48. Next, to capture the multi-scale structure in a
pixel’s surrounding, Gaussian window functions of different sizes are used. The

radial profile of the circles is nested and Gaussian smoothed (e
−(r−d)2

2σ2 , σ ∈ R),
to ensure that the corresponding CHOG descriptors are neither suffering from
discretization effects nor from small deformations. A local CHOG at position
x ∈ R2 is computed by collecting all magnitudes of gradients within the win-
dow function w contributing to orientation n ∈ R2, ‖n‖ = 1 according to the
continuous distribution function

CHOG{f}w(x,n) =

∫
r∈R2

‖g(r)‖δn(ĝ(r))w(x− r)dr (1)

where g : R2 → R2, g = ∇f is the gradient field of the image f , S1 denotes
the unit-circle. ĝ = g/‖g‖, ĝ := R2 → S1 the gradient orientation field and
n ∈ S1 is the current direction histogram entry taken into account. δn : S1 → R
denotes the Dirac delta function on the circle that selects those gradients out of
g with orientation n. Next, the CHOG features are represented in terms of the
orthogonal (periodic) circular Fourier basis functions. Thanks to the rotation
preserving characteristic, CHOG features rotates smoothly with respect to the
underlying image data. We refer the interested readers to [13].

In our experiments specifically, we use more nested circles for larger scale
structure, and less nested circles for smaller scale structure. Using more nested
circles will result in longer and more detailed descriptors and vice versa. The
rationale behind this is that structures of different scales are supposed to carry
different amount of information, thus it would make sense to use descriptors of
different detail to describe structures of different scale. From our understanding
of the description in [12], the standard SIFT implementation was used. The
length of the SIFT feature vector is 128 for all key points of different sizes.
Using long feature vector to describe small scale image will inevitable introduce
more noise and unnecessarily slow down the recognition. Therefore, the features
we extracted are supposed to have the advantage of reduced complexity and
higher quality [20].

3.2 Feature Compression

The final descriptor of a single character is a histogram computed by assigning
its visual words to their nearest visual codes. The variation of the low level
features of any particular character is different but limited. Most of the densely
extracted low level features vary from their neighbors slightly, except for those
around sharp gradient adjustment. Non-text regions and smooth regions often
do not contribute to the classification. Yet to find the most similar visual word in
the codebook the distance has to be computed for all these features nonetheless,
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which is a huge waste of computation time. The image resolution of the character
segmented from the scene image is generally very small. Therefore, as suggested
in [12], keypoint detection methods fail to produce enough high quality keypoints
for meaningful classification. Moreover, although the cost of clustering is non-
trivial, we can compress the densely extracted features to a compact subset, in
which all the features are distinctive from one another. We can both benefit
from the discriminative power of densely extracted features and compute the
descriptor (histogram) faster. As a result, the combined computational workload
is still significantly smaller than directly using densely extracted feature.

Of course, if somehow we could use only the discriminative and distinctive
features to build the histogram, we could avoid the unnecessary computation.
We propose to densely extract CHOG features on every pixel, then use k -means
to compress these features while explaining a sufficient percentage of variation
necessary for effective recognition. Here we denote the “percentage explained”
as the ratio of the sum of the standard deviation of each clusters to the stan-
dard deviation of the whole image. Although the sum of the variation of the
features is readily available, we cannot directly determine how many clusters to
use. Through empirical analysis on the training samples, we learn the boundary
of the number of clusters that is needed to explain a required percentage. We
also learn the relationship between the number of clusters and the percentage of
variation explained with linear regression. At runtime, we start with the number
of clusters predicted by the linear regression model and run k -means for a few
iterations, then increase the number of clusters and restart until the required
percentage of variation is explained or the number of clusters reaches the up-
per boundary. The resulting centroids of the clusters are compressed, stable and
more importantly distinctive from one another. The computation overhead of k -
means clustering is easily compensated because the computation workload using
the compressed features instead of the original densely computed raw features is
significantly reduced. The outline is outlined in Procedure 1. Finally, to exploit
the spatial characteristic for each compressed feature vector, we add another
dimension by appending the distance between the centroid corresponding to the
compressed feature and the center of the character to the end. This is before
the global vocabulary construction. In a rotation invariant setting it is diffi-
cult to differentiate between characters like “U”,“C”. Doing so has virtually no
cost, we can both keep the rotation invariance and build a more discriminative
vocabulary, since in general “U” are more slender than “C”.

3.3 Feature Selection

To build a compact and discriminative codebook, we need to rank and filter out
those visual words that contribute weakly to the classification. First we perform
k -means clustering on the compressed features of all the training samples to
generate an initial codebook. We then use this codebook to compute the ini-
tial histograms of each training samples. These histograms are used to train a
set of two-class linear support vector machines (SVMs) in a one-vs-all schema,
whose weights are used to rank the visual words by their relevance. We keep
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Procedure 1 Feature Compression

Input: Raw features, required percentage, variation predictor
Output: Compressed features, percentage explained
1: Variation Computation: Compute the standard deviation of the raw features.
2: Cluster Initialization: Predict the number of clusters needed to explain the

required percentage of variation.
3: Feature Clustering: Start clustering and compute percentage of variation ex-

plained when it converges.
4: Reiteration: Increase the number of clusters and restart until required percentage

is explained or the number of clusters exceeds the upper boundary, then repeat step
3.

the top rated ones of each character class and build a new codebook. We then
compute new histograms while discarding features that are not found in the
new codebook. Finally we train a multi-class radial basis function (RBF) ker-
nel SVM with the new histograms as our character classifier. Multi-class SVM
has a well defined probabilistic output, which can be useful for further natural
language processing. Ranking the feature by their relevance helps us to focus on
discriminative features and discard unnecessary features.

The one-vs-all schema is used to rank the features. SVMs classify data via
finding a separating hyperplane with the maximal margin between two classes.
Given a set of the visual word histograms xi ∈ R, i = 1, . . . , l and charac-
ter classes yi ∈ {1, . . . , 62}, i = 1, . . . , l, we use a one-vs-all schema for each
individual character class to train a set linear SVMs that solve the following
unconstrained optimization problem:

min
w,b

1

2
wTw + C

l∑
1

ξ(w, b; xi, yi) (2)

where ξ(w, b; xi, yi) is a loss function, and C ≥ 0 is a penalty parameter on the
training error. In this paper specifically we use L2-loss linear SVMs. For testing
instance x, the decision function is

f(x) = sgn(wTφ(x) + b) (3)

where the mapping function is φ(x) = x. After the set of linear SVMs are
obtained for each character class, the weights w ∈ R in eq.2 can be used to decide
the relevance of each feature [21]. Because the absolute value of the weights w
in linear SVMs indicates the importance of a particular feature in the decision
function Equation3. The features can be ranked by sorting the corresponding
weights [22]. We only keep the top K ranked features. This procedure is outlined
in Procedure 2. Some of the top ranked features sorted by character class is shown
in Figure 3, note that the nested window functions are not displayed because they
are hard to visualize, thus the bounding box contains merely the center positions
of the CHOG features, which capture the underlying surrounding structures.
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Fig. 3. Top rated compressed feature examples from several character classes

4 Implementation Detail

In our implementation we densely extract CHOG features of three different scales
on every pixels. By nesting window functions of different sizes we extracted
feature vectors of different lengths, which describe the surrounding area with
different radius and detail. The window functions are given by w1 := {d =
0, σ = 4}, w1 := {d = 0, σ = 4};w2 := {d = 4, σ = 6} and w1 := {d = 0, σ =
4};w2 := {d = 4, σ = 6};w3 := {d = 10, σ = 12}, where σ indicates the outer
radius and d indicates the inner radius. To compare the computational cost, we
used the average dimension of the feature vectors. The average length of the
extracted CHOG feature vectors is 60. On average the extraction procedure for
each image takes 200ms.

In terms of feature compression we obtain the best result in experiments when
roughly 95% of the variation of individual character image is explained. A linear
regression model is trained to describe the relationship between the percentage of
variation explained and the number of clusters used in k -means. At runtime this
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Procedure 2 Feature Ranking

Input: Training samples, visual word codebook
Output: Top ranked features and retrained classifier
1: Intial Train: Train a set of two-class L2-loss linear SVMs for each individual

character class using one-vs-all schema, using grid search to find best penalty pa-
rameters C on the visual word codebook.

2: Feature Ranking: Rank the visual words according to the absolute values of
weights in the set of SVMs for each individual character class.

3: Feature Selection: Truncate the visual word codebook, keeping only the top K
ones in each individual character class.

4: Model Retrain: Retrain a multi-class SVM to obtain the final classifier.

model is used to determine the initial number of clusters we use on the testing
images. After a few initial iterations we increase the number of clusters and
restart until the number of clusters reaches the upper boundary or the required
percentage of variation is explained. In our implementation on average, this
procedure needs 10 iterations with 20 clusters on 48× 48 feature vectors whose
average length is 60. Supposing on a visual word codebook of size N the workload
for finding the most similar K prototype with M dimension is N×M×K, this
procedure is equivalent to a workload of 10 × 20 × 60 × (48 × 48) = 6912000,
which takes 100ms on average.

For feature ranking, the relationship between the number of features and
the accuracy of the classification is illustrated in Figure 4. Take the visual word
codebook used for SVT-Perspective for example. As illustrated in Figure 4, the
best performance was achieved when the size of the vocabulary learned from
compressed CHOG features is 250. The computation workload defined above
equals to 1 × 250 × 60 × 20 = 300000. The combined computation workload of
our method is only 13.0% of the state-of-the-art perspective character recognition
method described in [12], which is equivalent to 1 × 3000 × 128 × (12 × 12) =
55296000. Consequently, on SVT-Perspective (with the original lexicons), the
average processing time of our method is 3.5 seconds while the method in [12]
is 38.6 seconds.

5 Experimental Results

Proposed method has been evaluated on several benchmark datasets. Results
on these datasets are compared to the state-of-the-art methods. For charac-
ter recognition our method was evaluated and compared to other methods on
ICDAR-Char and SVT-Char. ICDAR-Word and SVT-Word are used for frontal
word recognition, while SVT-Perspective-Word and MSRA-TD-500 are used for
the recognition of perspective word.

The PLEX framework[14] requires a lexicon for each word image, which is
not provided in ICDAR-Word by default. For fairness we used the same lexicons
and lexicon construction method in [14]. Following previous work [17, 23, 10, 12]
on this dataset we skipped the words with less than 3 characters, and those with
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Fig. 4. Recognition accuracy of our method with different vocabulary size

non-alphanumeric characters, and then constructed additional lexicons denoted
as Full which contain all the combined ground truth words.

5.1 Classifier Training

Our classifier was trained only on frontal examples. To train the character clas-
sifier we harvested labeled character images from ICDAR-Char, SVT-Char, IIIT
5K-Word and Chars74K. ICDAR-Char is a character level subset of the ICDAR
2003 Robust Word Recognition Competition [24] dataset. Similar to ICDAR,
the SVT dataset [14, 25] also contains both word level annotations on full im-
ages and character level annotations. IIIT 5K-Word [23] contains word level and
character level annotation of cropped word images only. Chars74K [26] contains
only cropped characters. Our character detector in the PLEX framework was
also trained on these datasets. Leave-one-out cross validation was performed on
these four datasets.

Theoretically, the performance of our method on perspective scene text datasets
would not degrade as much as those methods that only focused on frontal text
recognition, because CHOG is inherently more suited for dense computation
compared with SIFT and our representation is more robust. The experiments in
Section 5.4 demonstrated the effectiveness of our method.

5.2 Character Recognition

We evaluated the character recognition performance of our method on both
ICDAR-Char and SVT-Char. Table 1 lists the performance on these two datasets.
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Some characters in SVT suffer from perspective distortion, which makes SVT dif-
ferent from ICDAR in that the characters in ICDAR are mainly frontal. This dif-
ference is reflected by the recognition accuracy difference between two datasets.
Our method achieved the best result on SVT-Char. Without context, it is hard
to tell the difference between some characters such as “W” and “M”, “q” and
“b”, etc. Nevertheless, the performance of our method on ICDAR-Char is bet-
ter than that of [12] and is only slightly worse than that of [27]. Although the
performance gap can be partially explained by the aforementioned reason, it
suggests that neural network based methods are still better suited for frontal
character recognition tasks accuracy-wise. These were the two main causes for
the performance gap between our methods and [27] on frontal word recognition.

Table 1. Character recognition accuracy (in%). Only our method and [12] aims to solve
perspective character recognition, others focus only on frontal character recognition.

Method ICDAR-Char SVT-Char

Proposed 80.5 71.5
FineReader 9.0 [28] 21.0 11.7
K. Wang (PLEX) [14] 64.0 N.A
Mishra [9] N.A 61.9
Coates [29] 81.7 N.A
T. Wang [27] 83.9 N.A
Yi [30] 76.0 N.A
Phan [12] 75.6 67.0

5.3 Frontal Word Recognition

Although we focused on perspective scene text recognition, for a comprehensive
comparison we still evaluated the word recognition performance of our method
on frontal text datasets. The word level ICDAR-Word subset of ICDAR was
used to evaluate a variety of scene text recognition methods in cropped images.
Most of the word images in ICDAR-Word are frontal, whereas the SVT-Word
dataset contains more perspectively distorted words. The word level SVT-Word
subset of SVT was also used in the evaluation. Table 2 lists the word recognition
results. Some recognition examples are shown in Figure 5. We achieved the state-
of-the-art performance on SVT-Word and outperformed several other methods
on ICDAR-Word. This result accords with our analysis in Section 5.2. ,

5.4 Perspective Word Recognition

We used the words with English characters and digits in SVT-Perspective-Word
and MSRA-500 to evaluate our method on perspective word recognition. The
recognition accuracy is listed in Table 3. The performance degradation between
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Table 2. Frontal word recognition accuracy (in%).

Method ICDAR-Word SVT-Word

Proposed 84.1 77.3
FineReader 9.0 [28] 56.0 36.0
K. Wang et al. [14] 76.0 57.0
Mishra et al. [9] 81.8 73.3
Mishra et al. [23] 80.3 73.6
T. Wang et al. [27] 90.0 70.0
Phan et al. [12] 82.2 73.3

frontal and perspective text is also measured in Table 4. The smaller gap between
the performance on SVT-Word and SVT-Perspective-Word indicates that our
method is more robust against rotation and perspective distortion.

In addition to leave-one-out cross validation, we also excluded SVT-Char
from the training set when SVT-Perspective-Word is being tested. In this way
we eliminated the possibility of rigged result because the samples in SVT are
very similar to those in SVT-Perspective. The fact that our method suffered the
least from the perspective distortion revealed that even it was only trained on
frontal examples it generalizes well on perspective texts of arbitrary orientations.
Some example recognition results are shown in Figure 6.

Table 3. Recognition accuracy on perspective text (in%).

Method
SVT-Perspective

Word
SVT-Perspective

Word (Full)
MSRA-TD500-Word

(Full)

Proposed 67.0 45.7 65.4
FineReader 9.0 [28] 16.9 9.7 23.2
K. Wang et al. [14] 40.5 26.1 44.5
Mishra et al. [9] 45.7 25.7 27.8
T. Wang et al. [27] 40.2 32.4 20.8
Phan et al. [12] 62.3 42.2 58.4

6 Conclusion

In this paper, we adopt a bag-of-words approach to recognize scene character.
We propose to use CHOG as the building block, which has desirable proper-
ties such as rotation invariance and efficient dense computation. We compress
the densely extracted features to summarize the over-complete raw features to
essential subsets, which greatly reduced the computation workload. Finally, we
rank the compressed features to build a compact and discriminative visual word
codebook. Our method achieves the state-of-the-art performance on perspective
scene text recognition, and its performance on frontal scene text recognition is
competitive with many state-of-the-art methods. Moreover, for perspective scene
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Table 4. Degradation in performance between frontal texts and perspective texts taken
from [12] (in%).

Method
SVT-
Word

SVT-Perspective
Word

%
Change

Proposed 77.3 67.0 -13.3%
FineReader 9.0 [28] 35.0 16.9 -51.7
K. Wang et al. [14] 57.0 40.5 -28.9
Mishra et al. [9] 73.3 45.7 -37.7
T. Wang et al. [27] 70.0 40.2 -42.6
Phan et al. [12] 73.7 62.3 -15.5

square garage icebox stuff
casbah

systems engin fca food
push

Fig. 5. Example recognition results on frontal text

text recognition our method is many times faster than [12], which previously was
state-of-the-art method.
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