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Abstract. 3D gesture recognition and tracking are highly desired fea-
tures of interaction design in future mobile and smart environments.
Specifically, in virtual/augmented reality applications, intuitive interac-
tion with the physical space seems unavoidable and 3D gestural interac-
tion might be the most effective alternative for the current input facilities
such as touchscreens. In this paper, we introduce a novel solution for real-
time 3D gesture-based interaction by finding the best match from an ex-
tremely large gesture database. This database includes the images of vari-
ous articulated hand gestures with the annotated 3D position/orientation
parameters of the hand joints. Our unique matching algorithm is based
on the hierarchical scoring of the low-level edge-orientation features be-
tween the query frames and database and retrieving the best match.
Once the best match is found from the database in each moment, the
pre-recorded 3D motion parameters can instantly be used for natural
interaction. The proposed bare-hand interaction technology performs in
real-time with high accuracy using an ordinary camera.

1 Introduction

Currently, people interact with the digital devices through the track pads and
touchscreen displays. The latest technology offers single or multi-touch gestu-
ral interaction on 2D touchscreens. Although this technology has solved many
limitations in human mobile device interaction, the recent trend reveals that
people always prefer to have intuitive experiences with their digital devices. For
instance, popularity of the Microsoft Kinect can demonstrate the idea that peo-
ple enjoy experiences that give them the freedom to act like they would in the
real world. However, when we discuss the next generation of digital devices such
as AR glasses and smart watches we should also consider the next generation of
interaction facilities. The important point is to select a suitable space and de-
velop a technology for effective and intuitive interaction. An effective solution for
natural interaction is to extend the interaction space from 2D surface to real 3D
space [1,2]. For this reason, vision-based 3D gestural interaction might be hired
to facilitate a wide range of applications where using physical hand gestures are
unavoidable. Specifically, in future wearable devices such as Google Glass, 3D
gestural interaction with augmented environments might be extremely useful.
Therefore, developing an efficient and robust interaction technology seems to be
a need for the near future. From technical perspective, due to the complexity,
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Fig. 1: System overview of the real-time gesture retrieval system. For each query
image, the best corresponding match with the tagged motion information will
be retrieved through the gesture search engine.

diversity and flexibility of the hand poses and movements, recognition, tracking
and 3D motion analysis are challenging tasks to perform on hand gestures. In or-
der to handle these difficulties, we decided to shift the complexity from classical
pattern recognition problem to large-scale gesture retrieval system. Due to the
possibility of forming a large-scale image database, the new problem is to find the
best match for the query among the whole database. In fact, for a query image or
video, representing a unique hand gesture with specific position and orientation
of the joints, the challenging task is to retrieve the most similar image from the
database that represent the same gesture with maximum similarity in position
and orientation. Our matching method is based on the scoring of the database
images with respect to the similarity of the low-level edge-orientation features
to the query frame. By forming an advanced indexing system in an extremely
large lookup table, the scoring system performs the search step and the best out-
put result will be retrieved efficiently. Since in the offline step we annotate the
database images with the corresponding global and local position/orientation of
the joints, after the retrieval step, the motion parameters might be immediately
used to facilitate the interaction between user and device in various applications
(see Fig. 1).

2 Related Work

Designing a robust gesture detection system, using a single camera, independent
of lighting conditions or camera quality is still a challenging issue in the field of
computer vision. A common method for gesture detection is marker-based ap-
proach. Most of the augmented reality applications are based on marked gloves
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for accurate and reliable fingertip tracking, [3,4]. However, in marker-based meth-
ods users have to wear special inconvenient markers. Moreover, some strategies
rely on object segmentation by means of shape or temperature, [5,6,7]. Robust
finger detection and tracking could be gained by using a simple threshold on the
infrared images. Despite the robustness, thermal-based approaches require ex-
pensive infrared cameras which are not provided to most devices. Many gesture
tracking systems are based on new depth sensors such as Kinect, but due to the
size and power limitations they are only available for stationary systems [8].In
addition, feature-based algorithms for gesture tracking have been employed in
various applications, [7,9]. Model-based approaches are also being used in this
area, [10,11].
Generally, all these techniques are computationally expensive, which is not suit-
able for our purposes. Another set of methods for hand tracking are based on
color segmentation in appropriate color space, [5,12]. Color-based techniques are
always sensitive to lighting conditions that degrades the quality of recognition
and tracking. Other approaches such as template matching and contour-based
methods often work for specific hand gestures, [13]. In new smartphones and
tablets, accelerometer-based approaches recognize hand gesture motions by us-
ing the device’s acceleration sensor, [14,15]. [16], use visual color markers for
detecting the fingertips to facilitate the gesture-based interaction in augmented
reality applications on mobile phones. [17,18], perform marker-less visual finger-
tip detection, based on the color analysis and computer vision techniques for
manipulating the applications in human device interaction. [19], perform HMM
to recognize different dynamic hand gesture motions. [20], use visual marker or
shape recognition to augment and track the virtual objects and graphical models
in augmented reality environments.
Unfortunately, most of the computer vision algorithms perform quite complex
computations for detection and recognition of objects or patterns. For this rea-
son we should find a totally innovative way to integrate the existing solutions
with the minimum level of complexity and maximum efficiency. Another impor-
tant point to mention is that the current technology is mostly limited to gesture
detection and global motion tracking not real 3D motion analysis, while in many
cases 3D parameters such as position and orientation of the hand joints might
be used for manipulation in different applications. Therefore, besides the ges-
ture recognition system we need to retrieve the 3D motion parameters of the
hand joints (27 degrees of freedom for one hand). In our innovative solution we
treat this issue as a large-scale retrieval problem. In fact, this is the main rea-
son behind choosing very low-level features for efficient detection and tracking
system. During the recent years, interesting works have been done on the large-
scale image search topic. [21,22], perform the sketch-based image search based on
the indexed oriented chamfer matching and bag-of-features descriptors, respec-
tively. [23], introduces the matching based on distribution of oriented patches.
The major problem with image search systems is that although you might re-
ceive interesting results in the first top matches but you also might find irrelevant
results. Since our plan is to use the retrieval system for designing a real-time



4 Shahrouz Yousefi and Haibo Li

interaction scenario, we expect to achieve around 100% correct detection and
accurate 3D motion retrieval. In this work, we demonstrate that how our con-
tribution leads to the effective and efficient 3D gesture recognition and tracking
that can be applied to various applications.

3 System Description

As briefly explained before, our recognition and tracking system is based on the
low-level edge-orientation features that can be achieved by hierarchical scoring
of the similarity between the query and database images. Since hand gestures do
not provide complex textured patterns, they are not suitable enough for detecting
stable features such as SIFT or SURF. On the other hand, for robustness and
efficiency of the detection and tracking, we cannot rely on color-based or shape-
based approaches. These are the main reasons behind the selection of edge-based
scoring system. As a result, the proposed method works independent of lighting
conditions, variety of users, and different environments.

3.1 Pre-processing on the Database

Our database contains a large set of different hand gestures with all the poten-
tial variations in rotation, positioning, scaling, and deformations. Besides the
matching between the query input and database, one important feature that we
aim to achieve is to retrieve the 3D motion parameters from the query image.
Since query inputs do not contain any pose information, the best solution is
to associate the motion parameters of the query to the best retrieved match
from the database. For this reason, we need to annotate the database images
with their ground-truth motion parameters, PDi , and ODi . In the following we
explain how the pre-processing on the database is performed.

Annotation of Global Position/Orientation to the Database: During
the process of providing the database, one way to measure the corresponding
motion parameters of the hand gesture is to attach the motion sensor to the
user’s hand and synchronize the image frames with the measured parameters.
Another approach is to use computer vision techniques and estimate the pa-
rameters from the database itself. Since we could capture extremely clear hand
gestures with a uniform background in the database, we could apply the sec-
ond approach to estimate the global position of the gestures in each frame. As
sample hand gestures are shown in Fig. 3, by using the common methods such
as computing the area, bounding box, ellipse fitting, etc., we can estimate the
position and scale of the user’s gesture. On the other hand, to estimate the
orientation of the user’s gesture in x, y, and z directions, we apply Active Mo-
tion Capture technique [24,25]. In active motion capture, during the process
of making database, we mount the vision sensor on the user’s hand to accu-
rately measure and report the motion parameters in each captured frame. The
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vision sensor captures and tracks the stable SIFT features from the environ-
ment. Next, we find feature point correspondences by matching feature points
between consecutive frames. Then the fundamental matrix for each image pair
is computed using robust iterative RANSAC algorithm. Due to the fact that the
matching part might be degraded by noise, the RANSAC algorithm is used to
detect and remove the wrong matches(outliers) and improve the performance.
Running RANSAC algorithm, the candidate fundamental matrix is computed
based on the 8-point algorithm. The fundamental matrix F is the 3× 3 matrix
that satisfies the epipolar constraint:

x
′T
i Fxi = 0 (1)

where xi and x
′

i are a set of image point correspondences. Each point correspon-
dence provides one linear equation in the entries of F . Since F is defined up to
a scale factor, it can be computed from 8 point correspondences. If the intrinsic
parameters of the cameras are known, as they are in our case, the cameras are
said to be calibrated. In this case a new matrix E can be introduced by equation:

E = K
′TFK (2)

where the matrix E is called the essential matrix, K
′

and K are 3× 3 upper tri-
angular calibration matrices holding intrinsic parameters of the cameras for two
views. Once the essential matrix is known, the relative translation and rotation
matrices, t and R can be recovered. Let the singular value decomposition of the
essential matrix be:

E ∼ Udiag(1, 1, 0)V T (3)

where U and V are chosen such that det (U) > 0 and det (V ) > 0 (∼ denotes
equality up to scale). If we define the matrix D as:

D ≡

 0 1 0
−1 0 0

0 0 1

 (4)

Then t ∼ tu ≡
[
u13 u23 u33

]T
and R is equal to Ra ≡ UDV T or Rb ≡ UDTV T .

If we assume that the first camera matrix is [I | 0] and t ∈ [0, 1], there are then
4 possible configurations for second camera matrix: P1 ≡ [Ra | tu], P2 ≡ [Ra |
−tu], P3 ≡ [Rb | tu] and P4 ≡ [Rb | −tu]. One of these solutions corresponds to
the right configuration. In order to determine the true solution, one point is re-
constructed using one of four possible configurations. If the reconstructed point
is in front of both cameras, the solution corresponds to the right configuration.
Once the right configuration is obtained, the relative rotation between two con-
secutive frames are computed and can be tagged to the corresponding captured
database image.

Annotation of Local Joint Motions to the Database: In order to annotate
the local motion of the hand joints to the database we have used a semi-automatic
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Fig. 2: Active motion capture setup for tagging the rotation parameters to the
database images. The hand-mounted camera captures the global 3D rotation
parameters and the static camera records the database frames. Both cameras
are synchronized to automatically assign the real-time motion parameters to
database frames.

Fig. 3: Left: Real-time measurement of the global orientation of the hand ges-
tures in the database images using Active Motion Capture system. Rx, Ry, Rz
represent the rotation of the hand gesture around 3D axes in degrees. Right: semi-
automatic annotation of the joint positions and skeletal model to the database
images.

system. In this system we manually mark the fingertips and all the hand joints
including the finger joints and wrist in each and every frame of the database.
Afterwards, our system automatically stores the exact position of the marked
points according to the image coordinates and generates the connection between
the joints in form of a skeletal model. The joints information and hand model
can be used after the retrieval step (see Fig. 3, right).

Defining and Filling the Edge-Orientation Table: Suppose that all the
database images, D1−k, are normalized and resized to mxn pixels and their
corresponding edge images, ED1−k, are computed by common edge detection
methods such as Canny edge detection algorithm. Therefore, in each binary edge
image, any single edge pixel can be represented by its row and column position.
Moreover, it is possible to compute the orientation of the edge pixels, αe, from
the gradient of the image in x and y directions: αe = atan(dy/dx). In order to
simplify the problem, as it is demonstrated in Fig. 4 (top left), we divide the
space to eight angular intervals, where the direction of each edge pixel belongs
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Fig. 4: Top-left: Associated angle intervals for edge pixels; Top-right: sample
database edge image. The corresponding positions-orientation block to each sin-
gle edge pixel will be marked with the index of the database image in the edge-
orientation table.

to the one of these intervals. As a result, each single edge pixel will be repre-
sented by its position and angle: (xe, ye, αe). In order to make a global structure
for edge-orientation features we need to form a large table to represent all the
possible cases that each edge-orientation pixel might happen. If we consider the
whole edge database with respect to the position and orientation of the edges,
(xe, ye, αe), a large vector with size mxnxnα, can define all the possibilities,
where m and n are number of rows and columns in normalized database images
and nα is the number of angle intervals. For instance, for 320x240 images and 8
angle intervals we will have a vector with length, 614400. After we formed this
structure, each (xi, yj , αl) block should be filled with the indices of all database
images that have edge at the same row, i, and column, j, with similar orientation
interval, l. Fig. 4 shows how the edge-orientation table is filled with database
images.

3.2 Query Processing and Matching:

The first step in the retrieval and matching process is edge detection. This pro-
cess is the same as edge detection in the database processing but the result will
be totally different, because for the query gesture we expect to have large num-
ber of edges from the background and other irrelevant objects. In the following
we explain how the scoring system works.

Direct Scoring: Assume that each query edge image, QEi, contains a set of
edge points that can be represented by the row-column positions and specific
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Fig. 5: The scoring process for a single edge pixel is depicted. Red and green pat-
terns represent the database and query, respectively. Here, for the pixel marked
with black, the associated scores for the red pattern with respect to the neighbor
scoring are shown. The scores will be accumulated for the index of the corre-
sponding database image. The same process will be done for all the edge pixels
in the query pattern in comparison with all the database images.

directions. Basically, during the first step of scoring process, for all single query
edge pixels, QEi |(xu,yv), similarity function to the database images at that
specific position is computed as:

Sim(QEi, DEj) |(xu,yv)=


1 if

{
QEi |(xu,yv) 6= 0

}
∧
{
DEj |(xu,yv) 6= 0

}
∧
{

(αi ∼= αj) |(xu,yv)

}
0 otherwise

(5)

If this condition is satisfied for the edge pixel in the query image and the corre-
sponding database images, the first level of scoring starts and all the database
images that have an edge with similar direction at that specific coordinate re-
ceive +3 points in the scoring table. Similarly, for all the edge pixels in the
query image the same process is performed and corresponding database images
receive their +3 points. Here, we need to clarify an important issue that might
be considered during the scoring system. The first step of scoring system satisfies
our need where two edge patterns from the query and database images exactly
cover each other, whereas in most real cases two similar patterns are extremely
close to each other in position but there is not a large overlap between them
(as demonstrated in Fig. 5). For these cases that regularly happen, we introduce
the first and second level neighbor scoring. A very probable case is when two
extremely similar patterns do not overlap but fall on the neighboring pixels of
each other. In order to consider these cases, besides the first step scoring, for
any single pixel we also check the first level 8 neighboring and second level 16
neighboring pixels in the database images. All the database images that have
edge with similar direction in the first level and second level neighbors receive +2
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Fig. 6: Gesture search engine blocks in detail.

and +1 points respectively. In short, scoring system is performed for all the edge
pixels in the query with respect to the similarity to the database images in three
levels with different weights. Finally, the accumulated scores of each database
image is calculated and normalized and the maximum scores are selected as first
level top matches. The process of scoring for a single edge pixel is depicted in
Fig. 5.

Reverse Scoring: In order to find the closest matches among the first level
top matches, the reverse comparison system is required. Reverse scoring means
that besides finding the similarity of the query gesture to the database images
(Sim(Qi, D)), the reverse similarity of the selected top database images to the
query gesture should be computed. In fact, direct scoring system only retrieves
the best matches based on the similarity of the query to them. This similarity
might have happened due to the noisy parts of the query gestures. For instance,
edge-orientation features of the background of the query image might be similar
to a gesture database image. This similarity might cause the wrong detection.
Therefore, similarity of the selected top database images to the query should
be analyzed as well. Since database images are noise-free (plain background),
similarity of the selected top matches to the query is a more accurate criterion.
Combination of the direct and reverse similarity functions will result in a much
higher accuracy in finding the closest match from the database. The final scoring
function will be computed as: S = [Sim(Qi, D) × Sim(D,Qi)]

0.5. The highest
values of this function returns the best top matches from the database images
for the given query gesture. In this work best top ten matches are selected in
direct similarity. In reverse similarity analysis, best four database images of the
previous step are selected. Afterwards, the smoothness process is performed to
estimate the closest motion parameters for the query gesture image (see Fig. 6).
Another additional step in a sequence of gestural interaction is the smoothness of
the gesture search. Smoothness means that the retrieved best matches in a video
sequence should represent a smooth motion. Basically, this process is performed
in the following steps.
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Weighting the Second Level Top Matches: In order to increase the ac-
curacy of the 3D motion estimation, after the reverse scoring, we retrieve the
tagged parameters from the four top matches and estimate the query motion
parameters based on the weighted sum of them as follows:

PQ = aPDm1
+ bPDm2

+ cPDm3
+ dPDm4

(6)

OQ = aODm1
+ bODm2

+ cODm3
+ dODm4

(7)

Note that P and O represent the x-y-z tagged position and orientation, respec-
tively. Q and Dmi represent the query and i− th best database match. Mostly,
in the experiments, a, b, c, and d are set to 0.4, 0.3, 0.2, and 0.1. At this step the
best motion parameters can be estimated for the first query in a video sequence.

Dimensionality Reduction for Motion Path Analysis: In order to perform
a smooth retrieval, we analyze the database images in high dimensional space to
detect the motion paths. Motion paths indicate that which gestures are closer to
each other and fall in the same neighborhood in high dimension. The algorithm
searches the motion paths to check which of these top matches is closer to the
best found match for the previous frame. Therefore, if some of the selected top
matches are not in the neighborhood area of the previous match, they should
not affect the final selection and consequently the estimated 3D motion. For this
reason, from the second query frame, the neighborhood analysis is performed
and the irrelevant matches will be out from weighting the motion parameters.
For dimensionality reduction and gesture mapping different algorithms have been
tested. The best achieved results that properly mapped the database images to
visually distinguishable patterns are performed by Laplacian method. As demon-
strated in Fig. 7, database images are automatically mapped to four branches.
The direction of each branch shows the position of the hand gestures towards
the four corners of the image frame. Clearly higher density of the points in the
central part is due to the availability of the database images around the center
area of the image frames. By using this pattern, from the second query matching,
we can remove the noisy results. For instance, if one of the top four matches is
out of the neighborhood of the previous match, it will be removed and weighing
will be applied on the rest of the selected matches (see Fig. 7-left).
Another important point to mention is that if for any reason, the final top
matches for the query frame are wrong (mainly due to the direct scoring), for the
next frame the neighborhood analysis should not be considered. Otherwise the
wrong detections significantly affect the estimated motion parameters. There-
fore, if majority of the top four matches of the current frame are not from the
neighborhood area of the previous match, they should be considered as a refer-
ence for estimating the 3D motion parameters and minority should be ignored
from the computations (see Fig. 7-right).

Motion Averaging: Suppose that for the query images Qk−n-Qk (k > n),
best database matches are selected. In order to smooth the retrieved motion in
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Fig. 7: Left: 3D motion estimation based on the top matches and neighborhood
analysis. Red square indicates the best match from the previous frame. Num-
bered circles show the location of the top four matches for the current query
frame. Based on the proposed algorithm, number 3 from the left plot and num-
ber 2 from the right plot should be ignored in the computations.

a sequence, the averaging method is considered. Thus, for the k + 1th query
image, position and orientation can be computed based on the estimated posi-
tion/orientation of the n previous frames as follows:

PQk+1
=

1

n

k∑
i=k−n+1

PQi
(8)

OQk+1
=

1

n

k∑
i=k−n+1

OQi (9)

Here, PQ and OQ represent the estimated position and orientation for the query
images, respectively. Position/orientation include all 3D information (transla-
tion and rotation parameters with respect to x, y, and z axes). Therefore, mo-
tion parameters of each query image will be estimated by averaging the motion
parameters of the certain number of previous image frames. According to the
experiments, for 3 ≤ n ≤ 5, averaging can be performed properly. For instance,
if n = 3, motion averaging starts from the 4th query frame. 3D position and ori-
entation of the 4th query frame will be estimated by the three previous frames
and so on.

4 Experimental Results

The process of making database images and tagging the corresponding rota-
tion parameters are implemented in C++. We synchronized two web-cams, one
mounted on the user’s hand to capture the hand motion and a static one to record
the images for the database. Since the whole process is performed in real-time,
the 3D hand motion parameters will be immediately tagged, as a separate text
file, to each frame captured by the static camera. In order to provide extremely
clear images for database, we covered user’s arm and camera with similar paper
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Fig. 8: Left: experimental results on a sample query video sequence of Grab ges-
ture. The retrieved top four matches are shown on the samples. Right: different
hand gestures and the corresponding best matches from the database.

Fig. 9: First row: sample query frames from real-time video. Second row: detected
edge from the query frames. Third row: corresponding best matches from the
database with the annotated joint information.

to the background color. With some adjustments in the color intensity we could
finally provide clear database images containing the user’s gesture with a plain
black or green background.
The matching experiments are conducted on different gesture databases. First,
we provided the database with the specific hand gesture from a single user in-
cluding all the variations in positioning, orientation and scaling (about 1500
images). During the second step, we extended the database to more than 3000
images of different dynamic hand gestures using one to five fingers and similarly
including all the position/orientation variations. Finally, we added extra images
to the database including the indoor and outdoor scenes, objects, etc. to test
the robustness of the algorithm (totally more than 6000 images).

Our early experiments were conducted on a 2.93 GHz Core2Due PC. During
the test step we used query gesture images from totally different environments
with different backgrounds and lighting conditions. All the database images were
organized in different scales for the experiments (320x240, 160x120, 80x60 and



3D Interaction through a Real-time Gesture Search Engine 13

few tests on 40x30). Obviously, the processing time is the feature that changes
over the tests on different scales. We could reach reasonable processing time on
the largest gesture database with size 320x240. The performance seems to satisfy
the image-based retrieval at this level. Other important criteria to consider are
the robustness in gesture recognition and accuracy in retrieving the 3D parame-
ters. Our algorithm works with around 100% accuracy rate in recognition of the
same gesture as the query even in the low-resolution case where we reduced the
size of the database images to 80x60. We could achieve quite promising results in
retrieving the 3D motion parameters up to the database images of size 160x120.
In general the optimal point to achieve the best performance with respect to
accuracy and efficiency is the test on gesture database with about 3000 entries
with the image size of 320x240. We implemented the latest version of our system
in Xcode environment on a Macbook Pro using the embedded camera. With this
system we could easily achieve the real-time processing. The details about the
performance of the system are depicted in Table. 1.
As discussed before, direct scoring, reverse scoring, weighting the top matches,
and finally the motion averaging are the main four steps in estimation of the
best motion information for the query image. During the direct scoring step top
ten matches will be selected. Although many of these ten matches might be close
enough to the query frame, but for accuracy reasons the best matches should
represent the closest entries of the database to the query frame. Therefore, re-
verse scoring refines the top four from the previous step. Extending the reverse
scoring to more entries can improve the final results but due to the efficiency
reasons (reverse scoring substantially increases the processing time), this step
is limited to ten top matches. Afterwards, we retrieve the annotated parame-
ters from the first four top matches and estimate the query motion parameters
based on the weighted sum of them. In cases that some entries are ignored due
to the neighborhood analysis, weights will be allocated to the rest of the top
matches. In general, reverse scoring and weighting system significantly improve

Table 1: Performance of the system with respect to the database size, image size,
efficiency and accuracy.

Database size Image size Proc. time Sec. Reco. rate 3D accuracy 1-5

6000(ges.+ oth.) 320x240 ≈ 0.064 ≈ 100% 4

6000(ges.+ oth.) 160x120 ≈ 0.049 ≈ 100% 3

6000(ges.+ oth.) 80x60 ≈ 0.029 ≈ 100% 3

3000(ges.) 320x240 ≈ 0.048 ≈ 100% 4

3000(ges.) 160x120 ≈ 0.036 ≈ 100% 4

3000(ges.) 80x60 ≈ 0.027 ≈ 100% 3

1500(grabges.) 320x240 ≈ 0.033 ≈ 100% 4

1500(grabges.) 160x120 ≈ 0.025 ≈ 100% 4

1500(grabges.) 80x60 ≈ 0.016 ≈ 100% 3
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the smoothness of the motion in a video sequence and remove the noisy results.
In the final step, motion averaging is applied to enhance the fluctuations in the
sequence of retrieved motion. Since the idea behind this work is to facilitate the
future human device interaction in various applications, we should concentrate
on effective hand gestures that might be useful in a wide range of applications.
Based on the related works, the most effective hand gestures in 3D application
scenarios are the family of Grab gesture [1,2] (including all dynamic deformations
and variations) which is widely used in 3D manipulation, pick and place, and
controlling in augmented/virtual reality environments. For this reason, these
gestures are considered in most of our experiments while other hand gestures
show the similar performance in the tests.

5 Conclusion and Future Work

In this work we proposed a novel solution for high degrees of freedom gesture
recognition, tracking and 3D motion retrieval based on the gesture search engine.
The proposed algorithm has successfully passed the inventive step and has been
filed as a patent application (US Patent pending) in Jan. 2014. This method
might be used in real-time gestural interaction with stationary or hand-held
devices in a wide range of applications where gesture tracking and 3D manipula-
tion are useful. Currently, we are implementing this technology on mobile devices
to improve the quality of interaction in future applications. Here, an important
point to mention is how to choose a reasonable size for the gesture database. Ob-
viously, diversity and spatial resolution of the hand gestures are two main factors
that directly affect the database size. In general, as discussed in [10], the hand
motion has 27 degrees of freedom. Due to the correlation of the joint angles the
dimension might significantly be reduced by applying dimensionality reduction
techniques. In the current implementation, the vocabulary table can represent
all possible indexable features that might occur (length of the search table is
fixed). This indicates that the complexity of the processing does not depend on
the size of the database and the current defined structures can handle substan-
tially larger databases. Another important point is how to store the database.
In fact, we do not need to store the database images. Instead, we only store
the corresponding motion parameters and the search table. Size of the search
table for database images of 320x240 is 614,400. According to our estimation
each word in the search table will be marked with less than 100 entries of the
database. Therefore, considering 2 bytes for storing each index of the database
images in the search table we need around 100 MB of memory to store the whole
search table. Obviously this amount of memory can be handled on any device.
However, capturing, organizing and annotation of an extremely large database
require substantial efforts which will be considered in the future work. Clearly,
if we only target the gesture recognition and tracking, several thousand images
are enough, but if we seek for high resolution 3D motion estimation we should
increase the database size.
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