
Debugging Object Tracking Results by a
Recommender System with
Correction Propagation

Mingzhong Li and Zhaozheng Yin

Department of Computer Science
Missouri University of Science and Technology, USA

Abstract. Achieving error-free object tracking is almost impossible for
state-of-the-art tracking algorithms in challenging scenarios such as track-
ing a large amount of cells over months in microscopy image sequences.
Meanwhile, manually debugging (verifying and correcting) tracking re-
sults object-by-object and frame-by-frame in thousands of frames is too
tedious. In this paper, we propose a novel scheme to debug automated
object tracking results with humans in the loop. Tracking data that are
highly erroneous are recommended to annotators based on their debug-
ging histories. Since an error found by an annotator may have many
analogous errors in the tracking data and the error can also affect its
nearby data, we propose a correction propagation scheme to propagate
corrections from all human annotators to unchecked data, which effi-
ciently reduces human efforts and accelerates the convergence to high
tracking accuracy. Our proposed approach is evaluated on three chal-
lenging datasets. The quantitative evaluation and comparison validate
that the recommender system with correction propagation is effective
and efficient to help humans debug tracking results.

1 Introduction

Automated visual object tracking is very useful to monitor objects over a long
period and analyze their behavior. Multi-Hypothesis Tracking (MHT) [10] and
Joint Probabilistic Data Association Filters (JPDAF) [4] are two representative
examples for multi-object tracking. To reduce the computational cost, tracklet
stitching [5] is proposed: first reliable tracklets are generated which are frag-
ments of tracks formed by conservative grouping of detection responses, then
the tracklets are connected by the Hungarian algorithm [6]. Bonneau et al. [1]
proposes a tracklet linking method in which a minimal path among tracklets is
obtained by using dynamic programming in order to track quantum dots in a
living cell. Zhang et al. [13] proposes a minimum-cost flow network to resolve
the global data association of multiple objects over time.

In real world applications such as uncovering hidden patterns of a complex
biological process, high quality object tracking algorithms are required to accu-
rately track bio-specimens over a long period. But, due to the numerous chal-
lenges in biomedical data such as appearance similarity, heavy occlusion and

2 Mingzhong Li and Zhaozheng Yin

clutter, it is extremely difficult to achieve perfect tracking performance without
any error. To pursue solid scientific discovery and error-free health diagnosis,
biologists and doctors are willing to exchange a small amount of their human
efforts to check the automated tracking results manually. Hence, it is worth to
consider how to incorporate human efforts to debug (verify and correct) the
tracking results, which leads to the following three questions:

(1) Manually checking each object’s trajectory frame by frame is very costly
for human labors, which we cannot afford. How to find out which tracking data
are error-prone thus they are worth to be checked by human?

(2) Checking tracking data on specimens captured over months with thou-
sands of frames is too tedious for an individual. How can we integrate crowd-
sourcing to check the data collectively?

(3) There might be analogy between different error nodes in the tracking
data, and the error can also affect its nearby data. How can we propagate the
costly human correction to other unchecked data and automatically correct sim-
ilar errors such that human burden is alleviated and the convergence to the best
tracking accuracy is accelerated?

Recommender systems [2, 8, 9, 11, 14] are capable of using historical data of
a user to infer her/his preference on items and then predicting other items that
the user might like. Websites such as Google.com, Amazon.com, Ebay.com, etc.
have widely equipped their search engines with specialized recommender systems
to help their customers find their preferred commodities. Particularly, content-
based recommender systems analyze a set of documents and/or descriptions of
items previously rated by a user, and build a model to predict the user’s interest
based on the features of the object ratings [8, 9]. How to construct a proper
user profile by collecting data representing the user’s preference, is the key of
content-based recommender systems.

In this paper, we assume no object tracking algorithm can achieve perfect
tracking performance in challenging scenarios. Instead of aiming at developing
object detection and tracking algorithms, our focus is to investigate how to debug
existing object tracking results with humans in the loop. The main contributions
of this paper include:

(1) we propose a novel recommender system to assist multiple human anno-
tators to debug tracking data collectively. Tracking data with high error likeli-
hood are recommended to each individual annotator based on their debugging
histories. The verification and correction made by annotators are collected for
subsequent correction propagation and user profile updating procedures;

(2) we propose a correction propagation scheme, which propagates the cor-
rected information to other track data affected by the corrected data, based on
the verification and corrections made by multi-annotators.

The paper is organized as belows. In Section 2, we describe a basic data-
association method for multi-object tracking. In Section 3, we present the rec-
ommender system to debug tracking data with multi-annotators in the loop. In
Section 4, we introduce how to propagate human corrections to other unchecked

Title Suppressed Due to Excessive Length 3

tracking data to accelerate the debugging process. Experimental results are pre-
sented in Section 5.

2 Multi-Object Tracking

We formulate the multi-object tracking problem in the framework of “tracking-
by-detection”. First, detected objects in individual frames are considered as
nodes and they are connected frame-by-frame into short reliable trajectories
(a.k.a, tracklets). Second, these short tracklets are linked into longer and longer
tracklets gradually by a sequential procedure (fine-to-coarse tracklet associa-
tion). Finally, detection-related and tracklet-related features are generated for
every node of every tracklet, which are used in the recommender system and
correction propagation.

2.1 Tracklet Generation

Every detected object candidate in a frame is represented as a node with corre-
sponding features such as color distribution, gradient histogram, object shape,
location, etc. We denote f(nti) = [f1(nti), ..., fK(nti)] as the vector of K features
of node i in frame t. The dissimilarity cost between a pair of nodes in two con-
secutive frames is computed as

c(nti, n
t−1
j) =

{
1
K

∑K
k=1

‖fk(nt
i)−fk(n

t−1
j)‖

∆k
, if
∥∥fk(nti)− fk(nt−1

j)
∥∥ ≤ ∆k, ∀k ∈ [1,K]

∞, otherwise

(1)

where ‖ · ‖ is the L2 norm and ∆k is the normalization factor of the kth feature.
For example, when fk is the location feature, ∆k controls the spatial gating
region (i.e., the size of local neighborhood to search a node’s correspondence
between consecutive frames).

Given I nodes in frame t and J nodes in frame t − 1, a cost matrix C =
[c(nti, n

t−1
j)] with size I-by-J is generated and we apply the Hungarian algorithm

[6] onto it to solve the linear assignment problem (i.e., corresponding nodes
between frames t and t − 1 are connected). After sequentially performing the
Hungarian algorithm between consecutive frames, tracklets are generated for a
given video (e.g., Fig.1(a)). Note that, (1) we use small gating regions in the
frame-by-frame assignment, which generates tracklets with less errors but also
causes short broken tracklets when objects move beyond the gating regions; (2)
the Hungarian algorithm solves the 1-to-1 bipartite assignment problem but it
can not solve the 2-to-1 or 1-to-2 assignment problem when there exists object
merging or division, which causes broken or wrong connections among tracklets;
(3) it is usually difficult to have perfect detection results for every frame, hence
false positives and miss detections will cause broken or wrong connections among
the tracklets. In the following two subsections, we describe how to gradually link
the short tracklets into longer object trajectories.

4 Mingzhong Li and Zhaozheng Yin

Fig. 1. Multi-object tracking.

2.2 Fine-to-Coarse Tracklet Association

We denote the ith tracklet Ti by its node set, Ti = {nsii , n
si+1
i , ..., neii }, where

nsii and neii represent the nodes in the start and end frame si and ei, respectively.
Five types of hypotheses are considered when associating tracklets:

(1) Translation (1-to-1): the head of tracklet Tj is associated with the tail
of tracklet Ti with the cost:

c(Ti → Tj) =

1

K+1

∑K+1
k=1

∥∥∥f+k (n
ei
i)−f+

k
(n

sj
j)

∥∥∥
∆k

,

if
∥∥f+k (neii)− f+k (n

sj
j)
∥∥ ≤ ∆k,∀k ∈ [1,K + 1],

∞, otherwise

(2)

where f+(neii) = [f(neii), θ(neii)] and f+(n
sj
j) = [f(n

sj
j), θ(n

sj
j)] are the augmented

feature vectors for the end and start nodes of tracklets Ti and Tj , respectively.
θ(·) denotes a node’s trajectory orientation in the tracklet.

(2) Division (1-to-2): the tail of a tracklet is associated with the heads of two
tracklets with the cost:

c(Ti → (Tj1 ,Tj2)) = c(Ti → Tj1) + c(Ti → Tj2) + c(n
sj1
j1
, n
sj2
j2

) (3)

(3) Merging (2-to-1): the tails of two tracklets are associated with the head
of a tracklet with the cost:

c((Ti1 ,Ti2)→ Tj) = c(Ti1 → Tj) + c(Ti2 → Tj) + c(n
ei1
i1
, n
ei2
i2

) (4)

(4) Disappearing (1-to-0): the tail of a tracklet is not linked to any other
tracklet with the cost:

c(Ti → φ) =

d(t)(n

ei
i ,e)

∆t , if d(t)(neii , e) ≤ ∆t,
d(s)(n

ei
i)

∆s , if d(s)(neii) ≤ ∆s,
η, otherwise.

(5)

where d(t)(neii , e) denotes the temporal distance from the ending node of Ti to
the last frame. d(s)(neii) denotes the spatial distance from the ending node of
Ti to the image boundary. During object tracking, three scenarios cause the
disappearing cases: (i) objects at the end of a video will disappear; (ii) objects
close to the image boundary may move out of the view field; and (iii) every

Title Suppressed Due to Excessive Length 5

object may be missed by the detection or occluded by other objects/background
so it is associated with a constant cost η (we choose η as the maximum of all
non-infinity c(· → ·)).

(5)Appearing (0-to-1): similar to 1-to-0 case we define the cost for 0-to-1
hypothesis as:

c(φ→ Ti) =

d(t)(n

si
i ,s)

∆t , if d(t)(nsii , s) ≤ ∆t,
d(s)(n

si
i)

∆s , if d(s)(nsii) ≤ ∆s,
η, otherwise.

(6)

Denoting the number of tracklets in a video as N and the number of all
possible hypotheses among the N tracklets as M , we catenate the costs of all
hypotheses into a M -by-1 vector c and define a constraint matrix Q of size M -
by-2N . For example, if the hth hypothesis is Ti → (Tj1 ,Tj2) involving tracklets
i, j1 and j2, then Q(h, i) = 1, Q(h,N + j1) = 1, Q(h,N + j2) = 1 and all other
elements of the hth row of Q are zero. The tracklet association is obtained by
solving the following Linear Integer Programing (LIP) problem:

arg min
x

cTx, s.t. QTx = 1 (7)

where x is an M -by-1 binary vector and xh = 1 indicates that the hth hypothesis
is selected to be true in the optimal solution. The objective function (cTx) aims
to find an optimal x to minimize the total cost of selected hypotheses. The
constraint (QTx = 1) ensures that one tracklet is only associated at most once
on its head and tail.

Rather than solving the global tracklet association only once with a large
gating region which may introduce a significant amount of errors during asso-
ciation, we gradually increase the gating regions (∆k) and iteratively solve the
corresponding LIP problem, thus the short tracklets are linked into longer and
longer ones in a fine-to-coarse manner with less errors (e.g., Fig.1(b)).

2.3 Features for Nodes in Tracklets

In Table 1, we list the features used for nodes in tracklets. Given node ntk of
tracklet Tk in frame t, it has features related to both object detection (f(ntk))
and tracklet association.

cs(n
t
k) the cost of the hypothesis involving ntk

cg(n
t
k) number of times the gating region has been increased

l(ntk) length of the shortest tracklet among {Ti : δ(Tk,Ti) 6= 0, i 6= k}
ct(n

t
k) |{Tj : δ(Tk,Tj) 6= 0, j 6= k}|

ch(ntk) |{Ti : δ(Ti,Tk) 6= 0, i 6= k}|
Table 1. Features for nodes in tracklets.

where | · | denotes the cardinality of a set and δ(Tk,Tj) is an indicator function
(δ(Tk,Tj) = 1 when Tj’s head is within the gating region of the tail of Tk;
δ(Tk,Tj) = 0, otherwise).

6 Mingzhong Li and Zhaozheng Yin

For example, in Fig.2(a), if node a is linked to node x by data association,
cs(a) and cs(a) will be the cost of associate the tracklet of a to the tracklet of x
by Eq.2. If the gating region has been increased twice before a and x are linked,
cg(a) and cg(x) will be 2. l(a) is the length of the shortest tracklet within a’s
gating region, which is the length of the tracklet with starting node y, hence
l(a) = 2. Similarly, l(b) = 3 and l(c) = 3. In the relation graph (Fig.2(b))
of Fig.2(a), ct(·) and ch(·) compute the degrees of corresponding nodes, thus
ct(a) = 2, ct(b) = 2 and ct(c) = 1; ch(x) = 2, ch(y) = 1 and ch(z) = 2.

Fig. 2. (a) Tracklets and gating regions (blue dotted windows); (b) Relation graph.

cs(n
t
k) stores the latest association cost involving the node ntk. The higher

cs(n
t
k) is, the more unreliable the association happened on node ntk is. The

motivation of considering cg(n
t
k) as one of the features of node ntk is that we

want to evaluate at which stage node ntk is associated to the longest possible
trajectory at last. If the stage is high, which means the gating region has been
increased many times, the association on node ntk is more likely to be a mistake.

Very short tracklets near node ntk are highly possible to be false positives
and associating them with node ntk causes errors, thus we consider l(ntk) as one
feature. Similar reasons lead us to consider ct(n

t
k) and ch(ntk): when there are

more association possibilities around node ntk, the association on node ntk may
be more erroneous.

All these features are combined with the object-detection-related features
into a feature vector F(ntk) = [f(ntk), cs(n

t
k), cg(n

t
k), l(ntk), ct(n

t
k), ch(ntk)] to de-

scribe node ntk. The association-related parts (cs(n
t
k), cg(n

t
k), l(ntk), ct(n

t
k), ch(ntk))

are updated only when an association hypothesis involving ntk is within the op-
timal solution of the LIP problem in Eq.7. Details of updating the association-
related node features are summarized in Algorithm 1 below.

Algorithm 1: Node Feature Updating in Fine-to-Coarse Association

Input : Tracklets : {Ti}; gating region increasing rate: α;
Initialization : ∀ntk, cs(n

t
k)← 0,cg(n

t
k)← 0, l(ntk)← 0,ct(n

t
k)← 0,ch(ntk)← 0,

β ← [∆1, ...,∆K+1];
Repeat

Solve the LIP problem in Eq.7;
for any selected association hypothesis linking tracklets Tp with Tq

Title Suppressed Due to Excessive Length 7

cs(n
sq
q)← c(Tp,Tq), cs(n

ep
p)← c(Tp,Tq);//the current hypothesis’ cost

cg(n
ep
p) + +, cg(n

sq
q) + +;//the times of gating regions being increased

compute l(n
ep
p), l(n

sq
q);//the length of the shortest tracklet nearby

ct(n
ep
p)← |{Tj : δ(Tp,Tj) 6= 0, j 6= p}|;

ch(n
sq
q)← |{Ti : δ(Ti,Tq) 6= 0, i 6= q}|;

end for
β ← β + α · β//increase the gating regions
update {Ti} with the optimization result;

Until no change happens to the association.

3 Recommender System

The key idea of content-based recommender system is to estimates the profile
parameters of users, {θ(u), u = 1, ..., U}, using the available feature vectors of
targets {x(i), i = 1, ..., nx}

θ(u) : arg min
θ(u)

∑
i:r(i,u)=1

(
θ(u)

T
x(i) − y(i,u)

)2
+ λ‖θ(u)‖ (8)

where U and nx denote the number of users and targets, respectively. r(i, u) = 1
if user u has recommendation (y(i,u)) on target i. λ is the coefficient for the
regularization term. For any user u, we learn a parameter vector θ(u) representing
the user’s preference. Given any new target j with feature x(j), we predict user

u’s recommendation on target j as θ(u)
T
x(j).

In our system the users are annotators who can verify tracking results and
correct corresponding errors, and the targets are a large pool of nodes from all
linked tracklets with features. Fig.3 shows the workflow of our recommender sys-
tem and correction propagation:

First, each of the U users selects a small portion of nodes from the large node
pool independently and classifies them into positive nodes (nodes with tracking
errors) and negative nodes (nodes without any tracking error). All other nodes
unselected by any user are transferred to the uncertain node pool. Note that this
manual initialization step only needs to be done once.

Second, each user’s profile parameters are learned from the positive and neg-
ative node sets.

Third, the recommendation on every node in the uncertain node pool by
every user is computed by the user’s profile and node’s feature vector.

Fourth, top-ranked recommendations are sent to users for verification and
correction.

Fifth, the corrections made by human are automatically propagated to other
uncertain nodes and their feature vectors are updated accordingly.

Finally, the nodes in uncertain node pool after correction propagation are
either relocated to positive/negative sets of users for updating users’ profiles or
still remain in the uncertain pool if not affected by the correction propagation.
The process is iterated until the uncertain node pool is empty.

8 Mingzhong Li and Zhaozheng Yin

Fig. 3. Workflow of our recommender system.

Different from the least square cost in Eq.3 for recommender learning, we
use a linear SVM to learn the profile parameters of any user u

arg min
wu,bu,λ

{∑
i

λi[y
(i,u)(wu

Tψ(F(i,u)) + bu)− 1] +
1

2
‖wu‖

}
(9)

where F(i,u) is the feature vector of node i in user u’s positve/negative training
node sets. wu and bu define the maximum-margin hyperplane that classifies
F(i,u) according to its class labels y(i,u). ψ(·) is the kernel function (linear in
this paper).

After learning the profile of user u, recommendation on any node j in the
uncertain node pool by user u (i.e., verify the node or not) can be computed by
the linear SVM score:

wu
Tψ(F(j,u)) + bu (10)

A small set of nodes from the uncertain node pool which have suspiciously high
scores (i.e., high probability of tracking errors) are recommended to user u for
verification and correction. For example, top 20 nodes are recommended to a
user in each iteration. The profiles of different users are learnt independently
hence different sets of nodes are recommended for different users to verify and
correct, but their corrections can be collected together for efficient correction
propagation discussed below.

4 Correction Propagation

In tracking data, neighboring nodes affect each other. In order to accelerate the
debugging efficiency, we propose a correction propagation approach to spread
out the correction information of corrected nodes to their neighboring nodes in
the uncertain node pool.

First of all, a graph-based Propagation Set Detection (PSD) algorithm is
proposed. In the graph G, each vertex is a node in the node pool and edge exists
between two nodes if and only if there is an association hypothesis involving both
of the nodes in the data-association step (e.g., the relation graph in Fig.2(b)).

Title Suppressed Due to Excessive Length 9

Given users’ corrections involving nodes R, we detect the propagation set by the
algorithm below:

Algorithm 2: Propagation Set Detection

Input : Graph G, correction set R
Output : node set VPSD;
Initialization : queue Q ← R; node set VPSD ← R;
Repeat

t← Q.dequeue;//get the first element of the queue
for all edges of node t in G, e;

v ← G.adjacentV ertex(t, e);
if v /∈ VPSD, then add v to VPSD, enqueue v onto Q;
end if ;

end for;
Until Q is empty
Return VPSD;

By implementing this PSD algorithm, we find all the nodes influenced by the
current corrections in tracking data. We denote the affected nodes and corrected
nodes as set VPSD. Using the human corrections as hard constraints, we per-
form the LIP problem in Eq.7 on VPSD, which updates the tracklet association
and corresponding node features, i.e., automatically propagates correction infor-
mation to nodes close to corrected nodes. We use the gating regions to control
how far the correction can be propagated in the local neighborhood. While the
recommender system is run iteratively, this correction propagation performs like
the Butterfly Effect and sweeps gradually over the entire node pool.

After correction propagation, data relocation is performed before we move
to the next iteration:

(1) top µ nodes with high scores are recommended for a user to check (e.g.,
µ = 20) . After human verification and correction, the top µ nodes are separated
into two subsets: nodes with errors are assigned to Positive Set and nodes with-
out errors are assigned to Negative Set;

(2) the nodes in VPSD which have low scores after correction propagation are
moved to Negative Set. Those with high scores are moved to Positive Set and
the rest remains in the uncertain node pool;

(3) rated nodes by the recommender system with low scores are assigned to
Negative Set, only if they are not in the propagation set VPSD found by PSD
algorithm.

Our iterative recommender system with correction propagation is summa-
rized in Algorithm 3:

Algorithm 3: Iterative Recommender System with Correction Propagation

Input : node set V of all nodes and their features;

10 Mingzhong Li and Zhaozheng Yin

Initialization : Uncertain Node Pool=V; Temporary Set P=Ø;
Positive Set← Pick µ nodes with errors in tracking data;
Negative Set ← Pick µ nodes without errors in tracking data;
Repeat

Update RecommenderProfiles using Eq.9;
Compute the scores of nodes in the Uncertain Node Pool by Eq.10;
for all node v ∈ V

if node score of v > ω;
if v is one of the top µ nodes, then recommend v for human check;

if v is verified as a node with errors, then add v to Positive Set;
else add v to Negative Set;
end if ;

else add v to P;
end if ;

else if node score of v < ω/2;
add v to Negative Set;

end if ;
Uncertain Node Pool ← Uncertain Node Pool− v;

end for;
Find VPropagation using Algorithm 2;
Implement data-association algorithm within VPropagation where human

corrections are added as additional hard constraints;
Add P−P ∩VPropagation to Uncertain Node Pool;

until Uncertain Node Pool is empty.

5 Experimental Results

5.1 Datasets

To test our proposed recommender system, we perform experiments on three
different biomedical image sequences. Specifications of these datasets are sum-
marized in Table 1, while some sample images are shown in Fig.4. In Datasets
1 and 2 which are downloaded from [15], the main challenges are the frequent
occurring of cell merging and division (causing many tracklets in a small local
neighborhood), false positives in detection (causing distractions and wrong as-
sociations) and miss detections (causing broken tracklets). In dataset 3 obtained
from [7], the main challenges are false positive distractions due to low image
contrast, fast motion blurring and object camouflaging.

#images Object type #Objects per frame Image size

Set1 400 Stem Cells 20-100 1392×1040

Set2 380 Stem Cells 100-400 1392×1040

Set3 10000 Fruit Flies 52 848×480
Table 2. Specifications of datasets.

Title Suppressed Due to Excessive Length 11

Fig. 4. Examples of 3 datasets.

5.2 Quantitative Evaluation
To evaluate how well our recommender system and correction propagation can
assist human annotators on debugging object tracking results, we use two met-
rics:

(1) efficiency: how fast will the number of uncertain nodes reduce so less
human effort is needed to verify and correct nodes?

(2) effectiveness: what percentage of false nodes (nodes with tracking errors)
is detected by the recommender system (i.e., how effective can our system guide
human annotators towards false nodes)?

Fig.5(a) shows the number of nodes remaining in the uncertain node pool at
different iterations for the 3 datasets. We observe that it decreases drastically
when using our recommender system and correction propagation to assist human
annotators, which proves that our system is efficient with less human effort to
debug object tracking results. Fig.5(b) shows “# of undetected false nodes/#
of total false nodes” at different iterations on the 3 datasets. It is noticeable
that the percentage curves drop quickly, and within 20 iterations the number of
undetected false nodes falls below 5 percent out of the total false nodes, which
proves that our recommender system can effectively guide human annotators to
find questionable tracking results for correction.

Fig. 5. (a) Number of nodes in the uncertain node pool; (b): # of undetected false
nodes/# of total false nodes.

12 Mingzhong Li and Zhaozheng Yin

5.3 Quantitative Comparison

In order to demonstrate the effect of our recommender system and correction
propagation, we compare the following four approaches:

(1) Random selection without propagation. Nodes in the uncertain node
pool are randomly selected by humans to verify and correct. Human corrections
are not propagated to neighboring nodes.

(2) Random selection with propagation. Nodes in the uncertain node
pool are randomly selected by humans to verify and correct. Human corrections
are propagated to neighboring nodes.

(3) Recommendation without propagation. Nodes in the uncertain node
pool are recommended by our system for humans to verify and correct. Human
corrections are not propagated to neighboring nodes.

(4) Recommendation with propagation. Nodes in the uncertain node
pool are recommended by our system for humans to verify and correct. Human
corrections are propagated to neighboring nodes.

As shown in Fig.6, Random selection without propagation is very inef-
ficient for human to debug the object tracking results since the human randomly
verifies uncertain nodes without any guidance and no further usage is applied
to human correction in each iteration. With correction propagation applied to
the random selection, Random selection with propagation decreases the
number of uncertain nodes faster, but the human annotators still have no clue
on what nodes should be checked. Recommendation without propagation
adds recommendation to humans for debugging tracking results, which reduces
the number of uncertain nodes further faster. Finally, when Recommendation
with propagation is applied together, the uncertain node pool shrinks the
fastest, which means that it takes much less time and human labeling costs.

Fig. 6. Uncertain node pool shrinking rates of 4 different approaches on 3 datasets.

From Fig.6, we observe that both our recommender system and correction
propagation can efficiently reduce the size of the uncertain node pool. We eval-
uate the effectiveness of the four approaches in terms of “# of undetected false
nodes/# of total false nodes”. In Fig.7, our recommender system with correction
propagation performs beyond the other 3 approaches in helping humans detect
nodes with tracking errors. Another observation from Fig.7 is that random se-
lection has much lower effectiveness than recommender system since it has no
guidance on which nodes should be verified and corrected.

Title Suppressed Due to Excessive Length 13

Fig. 7. (# of undetected false nodes/# of total false nodes) of 4 different approaches.

5.4 Qualitative Examples
In Fig.8 we present some examples to show how our recommender system helps
humans find similar false tracking data. In the left box, a cell is detected as
multiple fragments and similar cases are found by the recommender system. In
the right box, figure shows the wrong ID associations due to nearby distractors.
In our recommender system, all of these tracking errors can be represented by
their nodes’ feature vectors. Initially, human selects some false nodes and makes
corresponding corrections, then the recommender system search similar false
nodes in the uncertain node pool and let human to verify and correct them.

Fig. 8. Examples of recommended nodes for human verification and correction.

14 Mingzhong Li and Zhaozheng Yin

6 Conclusion
In this paper, a novel iterative recommender system is proposed to help humans
debug tracking errors in data generated by various tracking algorithms. Instead
of object-by-object or frame-by-frame checking, human annotators only need to
debug a sparse set of nodes recommended by the recommender system in each
iteration. Multiple human debuggers work on the tracking data independently
and their debugging results are collected together. Since every correction made
on one node will result in a chain reaction involving other neighboring nodes, we
propagate all the corrections in the neighborhood, which ensures the tracking
consistency and speeds up the debugging process. Each annotator’s profile pa-
rameters on the recommender system is updated based on their new debugged
nodes. The process is iterated until the uncertain node pool is empty. We tested
our approach on three sets of biomedical image sequences. The results show
that our recommender system with correction propagation can efficiently and
effectively guide human annotators to debug tracking data.

Acknowledgement
This research was supported by NSF EPSCoR grant IIA-1355406 and NSF
CAREER award IIS-1351049, University of Missouri Research Board, ISC and
CBSE centers at Missouri University of Science and Technology.

References
1. Bonneau, S., et al.: Single quantum dot tracking based on perceptual grouping

using minimal paths in a spatiotemporal volume. IEEE Trans on Image Processing,
(2005), 14(9): 1384-1395.

2. Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and
Information Systems, (2000), 69(Supplement 32): 175-186.

3. Cortes, C., et al.: Support-vector networks. Machine Learning, (1995), Springer.
4. Fortmann, T., et al.: Sonar tracking of multiple targets using joint probabilistic

data association. IEEE J. Oceanic Engineering, (1983), 8(3): 173-184.
5. Huang, C., et al.: Robust Object Tracking by Hierarchical Association of Detection

Responses. ECCV, (2008).
6. Kuhn, H.: The Hungarian Method for the assignment problem. Naval Research

Logistics Quarterly, (1955).
7. Li, M., et al.: Track fast-moving tiny flies by adaptive LBP feature and cascaded

data association. ICIP, (2013).
8. Lops, P., et al: Content-based recommender systems: State of the art and trends.

Recommender Systems Handbook. Springer US, (2011).
9. Park, D., et al: A literature review and classification of recommender systems

research. Expert Systems with Applications, (2012).
10. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans on Automatic

Control, (1979), 24(6): 843-854.
11. Resnick, P., et al.: Recommender systems. Communications of the ACM, (1997).
12. Yilmaz, A., et al.: Object tracking: A survey. ACM Computing Surveys, (2006),

Vol. 38, No. 4, Article 13.
13. Zhang, L., et al.: Global data association for multi-object tracking using network

flows. CVPR, (2008).
14. Zhang, T. and Iyengar, Y.: Recommender systems using linear classifiers. The

Journal of Machine Learning Research, (2002), 2: 313-334.
15. http://www.celltracking.ri.cmu.edu/downloads.html

