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Abstract. The correspondence problem (finding matching regions in
images) is a fundamental task in computer vision. While the concept is
simple, the complexity of feature detectors and descriptors has increased
as they provide more efficient and higher quality correspondences. This
complexity is a barrier to developers or system designers who wish to use
computer vision correspondence techniques within their applications. We
have designed a novel abstraction layer which uses a task-based descrip-
tion (covering the conditions of the problem) to allow a user to commu-
nicate their requirements for the correspondence search. This is mainly
based on the idea of variances which describe how sets of images vary
in blur, intensity, angle, etc. Our framework interprets the description
and chooses from a set of algorithms those that satisfy the description.
Our proof-of-concept implementation demonstrates the link between the
description set by the user and the result returned. The abstraction is
also at a high enough level to hide implementation and device details,
allowing the simple use of hardware acceleration.

1 Introduction

Computer vision has recently seen a rise in production of real-world applica-
tions, such as on mobile device’s cameras (for stitching and face detection) and
real-time pose estimation for games and other gesture-based interfaces. However
most of these are developed by experts in computer vision, in dedicated teams
designing reliable units of software to perform these tasks. The application of
these techniques could be increased if they were easier to use and deploy, how-
ever there has not been much work published on how to provide access to these
sophisticated techniques to developers; effective use of these methods requires
extensive knowledge of how the algorithms work and how their parameters af-
fect the results, expertise beyond the scope of mainstream developers or system
designers (termed users for the rest of the paper).

The contribution of this paper is a task-based description applied as an ab-
straction to the correspondence problem in computer vision, to hide the details
of specific methods and their configuration. The abstraction may be employed
by users to describe the type of vision problem they are trying to solve, and our
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novel interpreter uses the description to select an appropriate algorithm (with
parameters derived from the user’s description).

There are numerous benefits of a higher-level abstraction for computer vi-
sion: users can focus on their application/system’s main task, without focussing
on algorithms and parameter tuning; subsequent improvements in techniques for
particular problems can be incorporated later with re-implementation; various
back-ends can be supported, allowing specific methods to be employed for dif-
ferent requirements e.g. low power for mobile or high speed and accuracy using
servers; hardware-acceleration can be used seamlessly, optionally in coordination
with CPU; and finally, computer vision expertise can be more readily adopted
by researchers in other disciplines, such as HCI and graphics.

If any abstraction is used to access vision methods, hardware and software
developers of the underlying mechanisms are free to continually optimise and add
new algorithms. This idea has been applied successfully in many other fields, no-
tably graphics with OpenGL, and is the main goal of OpenVL[1] for computer
vision. OpenVL is an abstraction framework which hides algorithmic detail and
provides developers with access to sophisticated vision methods, such as seg-
mentation[2], human body pose estimation[3] and face detection[4]. The work
presented here applies a similar methodology to construct a task-based descrip-
tion of correspondence search at a low enough level to maintain flexibility but
high enough for mainstream developers to apply successfully, within the OpenVL
framework.

Various technology companies have also recognised the need for a solution
to this problem, although most have focussed on hardware acceleration and not
higher-level abstraction. A working group at Khronos (a standards body) are
developing a low-level hardware abstraction layer called OpenVX to accelerate
vision methods1; this layer would sit beneath libraries such as OpenCV [5] in or-
der to accelerate existing library calls (much like projects such as OpenVIDIA2).
Unfortunately OpenCV presents algorithms directly to the developer which re-
quires that they have significant expertise in computer vision - otherwise they
are not able to take full advantage of the library. Our proposed abstraction would
act as an additional higher-level layer to hide the details of correspondence al-
gorithms and hardware acceleration from developers and allow them to focus on
developing applications.

The correspondence problem is a fundamental challenge in computer vision
with many robust solutions for a given set of narrow conditions. It is important
in many real-world applications such as image stitching, super-resolution, image
stabilisation, camera calibration, object detection and 3D reconstruction. To
provide flexible approaches to these applications to non-expert users, we must
first abstract the complexity to a higher, more intuitive level.

1 http://www.khronos.org/vision
2 http://openvidia.sourceforge.net
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2 Related Work

Previous attempts on simpler access have generally been in the development
of vision or image processing frameworks which present lists of algorithms; the
contributions in general have been how the algorithms are presented. Develop-
ments in artificial intelligence were used in an attempt to automate the vision
pipeline [6–8]. Others provided higher-level access to vision algorithms through
object-oriented methodologies for accessibility and reusability reasons, such as in
the Image Understanding Environment project (IUE) [9]. Some have attempted
to solve specific problems, such as the OpenTL framework [10] which tries to
unify efforts on tracking in real-world scenarios In general, the algorithm cat-
egorisation and direct access of these approaches requires users to have expert
knowledge of vision methods.

Vision applications can be created by using a data flow structure to connect
components, using visual programming interfaces such as the Khoros software
development environment [11] and Apple’s Quartz Composer3. These contain
components such as colour conversion, feature extraction, spatial filtering, statis-
tics and signal generation, among others. Declarative programming languages
have also been used to provide vision functionality in small, usable units, e.g.
ShapeLogic4 or FVision [12], although they are limited in scope due to the dif-
ficulty of combining logic systems with computer vision. While these methods
provide a simpler method to access and apply methods, there is no abstraction
above the algorithmic level, and so users of these frameworks must have a so-
phisticated knowledge of vision to apply them effectively. As a more graphically
intuitive method to overcome the computer vision usability problems, the RA-
DIUS project [13] employed user-manipulated geometric scene models to help
guide the choice of algorithm. The level of abstraction provides good usability
although power, breadth and flexibility are reduced.

There are many open vision libraries that provide common vision function-
ality, such as OpenCV [5], Mathworks Vision Toolbox5 and Gandalf6. These li-
braries often provide utilities such as camera capture or image conversion as well
as suites of algorithms, which has previously been shown to lessen the effective-
ness on application [14]. All of these software frameworks and libraries provide
vision components and algorithms without any context of how and when they
should be applied, and so often require expert vision knowledge for effective use.
For example, many feature detectors/descriptors are provided by OpenCV but
with no indication of under what conditions each works most effectively. Our
goal with this paper is to outline a higher-level abstraction for access to these
methods through an intuitive task-based interface.

3 https://developer.apple.com/technologies/mac/graphics-and-animation.html
4 http://www.shapelogic.org
5 http://www.mathworks.com/products/computer-vision
6 http://gandalf-library.sourceforge.net



4 Gregor Miller and Sidney Fels

3 Task-Based Correspondence

The primary aim of our contribution is to provide non-experts in computer vision
with intuitive access to sophisticated feature matching techniques. We define a
description model for users to specify what the problem is they wish to solve,
instead of the current method of defining how to solve it. The description is
used by our framework to select appropriate feature descriptors, configure their
parameters and execute them to return the required result.

3.1 Abstraction through Description

We are using a simple definition of the correspondence problem: among a set
of images, find regions whose structure is similar, based on a required strength
threshold. The central idea of the abstraction for correspondence is variances.
Assuming two regions R1 ∈ I1, R2 ∈ I2 have identical structure (where I1, I2
are images, not necessarily different), the variances describe how the two regions
differ. There are many possible variances which generally indicate a difference
in appearance (such as intensity) or a distortion of the structure (such as blur
or tilt).

Note that our definition covers regions, and not points, despite the result
often being a central point in the region. The result from our framework is in the
form of regions or central points, as decided by the requirements of the user. Note
also that our definition does not define variances as between images, but regions.
This is due to the fact that there may be matches occurring within a single image,
or the set of images may have variations in the property e.g. selective focus. In
the future, we will be introducing variances also as requirements, to allow users
to specify that matches which have a particular variance (e.g. blur) are not
needed.

Each variance is associated with an expected quantity of how much it varies.
Currently it is challenging to be highly specific with these, as the descriptors have
not been evaluated to this level of detail. Therefore we employ a simple scale
from None to High to allow the user to indicate the level of variance expected.

Each variance is intended to be orthogonal to the others within their descrip-
tion space, to avoid overlap in the description and to encourage completeness.
Our eventual goal is to create a unified space for vision descriptions, to apply
to all problems, which can be interpreted into algorithms and parameters to
provide the user with a solution. The descriptions should be kept as small as
possible while maintaining the largest possible coverage of the description space,
to help minimise the complexity as the description language is extended.

The other main component of the description from the variances is the con-
straints. These essentially control the execution of the methods and the search
space for correspondences. The search space can be defined as Set or as Image.
In Set, the search for matches occurs over ‘the set’ of all regions taken from all
images, and each region gets N matches from the required quantity. For Im-
age, the search occurs across images only i.e. a region in one image can only be
matched to regions in other images, and N matches will be returned per image.
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The search operation can be augmented with a qualifier of where to search: All,
the default, uses all regions or images; Source overrides the default search and
instructs the framework to only return matches from regions in the same image
as the to-be-matched region; Exact allows the images to be used to be specified,
or a number to be specified to constrain the number of best matches to a subset
of images. The final constraints for the correspondence problem are Quantity
(how many matches to return per region, either within the Set or from the Im-
ages) and Strength, the main (simple) threshold to control the reliability of the
returned match.

3.2 Algorithm Selection

The interpreter is the second layer in our framework, and receives the descrip-
tion from the user passed through the interface (e.g. API). It is responsible for
choosing the appropriate feature matching algorithms based on the described
variances, defining the parameters of each algorithm based on the input descrip-
tion, and post-processing constraints which can’t be defined as a parameter (e.g.
finding the top N matches in K images).

The addition of an algorithm to the framework is accomplished through a
‘plug-in’ system, defined using an internal interface. Each algorithm must im-
plement this interface; the interpreter then uses it to provide the algorithm with
the input images and the full user-defined description. The algorithm returns
matches in the interface-defined representation, so that all algorithms return the
same type to the user.

The process of adding a new algorithm to the framework is as follows:

– The problem conditions (for correspondence, this is the variances) under
which the algorithm is designed to return reliable results, defined using ex-
pected tolerance to variances (i.e. how invariant the method is). The set of
conditions defines a larges dimensional volume in which algorithms occupy
sub-volumes.

– The input must be converted to the format used by the algorithm.
– After execution the results must be checked for compliance with the con-

straints, and flagged for processing in the interpreter if needed.
– The match results must be converted into the global framework’s format for

presentation to the user (as regions or points).

It is extremely challenging to define the conditions for the algorithm based
on a higher-level description: there may be many ranges under which it works
well; it may perform best under certain optimal circumstances, but perform well
enough under other conditions; it may not work as well as other algorithms when
condition volumes intersect, and so a ranking system may be needed.

There is also the problem of how to define the operating conditions: the
creator of the algorithm could define them (or an expert in the area), or we
could use a standardised dataset within an evaluation framework to generate
them. We could also use machine learning techniques to automatically determine
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the conditions based on the description. In our framework, we have defined
the conditions (as ‘experts’) using evaluations of feature descriptors from the
literature; our resources for the condition definitions are presented in Section 4.2.

The correspondence interpreter in our framework will select all algorithms
which match the user-defined description and constraints, to provide as many
matches as possible. The interface allows the user to specify the efficiency re-
quired, which can tune the number of methods chosen down. This is also based
on the level of parallel processing available on the host machine and allowed by
the user.

4 Evaluation of the Task Description

Our framework is implemented in C++, with three separate layers to allow for
simple replacement of any one layer. The description layer sits on top and acts as
the interface between the user and the lower layers. It is through this that the user
provides a description of the correspondence problem. The description is passed
to the second layer, the interpreter, a thin layer which chooses which algorithms
are appropriate given the description, and then configures each algorithm’s pa-
rameters. The interpreter can also define any necessary pre- or post-processing
operations (such as noise removal or image scaling). The lowest layer of the three
is where the algorithms sit. For this work we have defined a condition set for
five feature descriptor algorithms for matching image regions. Each algorithm is
registered with the interpretation layer along with its optimal operating problem
conditions (defined in Table 1). The conditions are defined using the variance
components of the description. Given a lack of available specific evidence for the
performance of each feature descriptor, their capabilities are approximated using
a four-scale None, Low, Medium and High.

4.1 Parameters

The correspondence description provides the following set of variances: position,
size, orientation, blur, intensity and tilt distortion. All are measured on the scale
mentioned previously. Unfortunately the use of such a scale is not consistent
across all variances, and so each must be documented individually.

– Position: Indicates the expected level of variation in the region’s position in
image coordinates. This can encode problem conditions such as the quantity
of expected overlap among images. This is usually used purely to reduce the
search space, and is not used in algorithm selection.

– Size: None indicates identical size, High means changes of 100% or more.
Sizes are measured in units of image width (based on source region).

– Orientation: 2D rotation up to 180◦ (either direction)
– Blur: It is challenging to determine a scale of blur which is easily understood,

and to avoid measurements based on pixels (since they are not directly rel-
evant to the vision/matching problem). In future we will need a more so-
phisticated description for blur, taking into account multiple blur kernels
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and parameters. For now, since this type of variation is not accounted for
within feature descriptors, a simpler description will do. The scale we use
starts from zero blur (None, i.e. circle of confusion has a radius lower than
the current sampling density); Low blur is defined as a gaussian blur with
σ = 1.0 and a kernel size of 0.5% image width; High blur uses the same
definition but with a kernel size of 2% image width.

– Intensity: This is also challenging - we treat it as an absolute measurement,
so Low is approximately 10% difference, Medium is 30% and High is above
50%.

– Tilt Distortion: This represents the central viewing angle difference between
views (and could also account partly for lens distortions). The variance is
measured on a scale from 0◦ to 45◦ (None to High).

Table 1. The mapping from description to algorithm within our interpreter, using the
variances between images. The methods satisfy any permutation of their conditions.

Algorithm Size Orientation Blur Intensity Tilt Distortion

SIFT [15] High High High Medium Medium
SURF [16] Medium Low High High Low
ORB [17] Low High Low Low None

MSER [18] None None None Low Medium
FREAK [19] Medium None High High Medium

4.2 Feature Matching Algorithms

The algorithms chosen to sit in the lowest layer of our framework are shown in
Table 1. Each algorithm registers itself with the interpreter using the variance
capabilities indicated in the table. The set of mappings from description to al-
gorithm (defined in the Table) are quite expansive, and could be more specific
with a more direct evaluation of capabilities. In the cases where a user supplies
a description which is not represented by our interpreter’s algorithms, we can
perform a ‘best effort’ and provide the closest match, or provide an informative
error.

The mapping from variances to algorithms were inferred using multiple sources:
size, orientation, blur and intensity for SIFT, SURF and ORB7; ORB compar-
ison to SIFT and SURF for orientation [17]; size, orientation, intensity and tilt
distortion for SIFT and SURF [20]; orientation, blur, intensity and affine trans-
forms for SIFT and SURF [21]; size and tilt distortion for SIFT and MSER [22];

7 http://computer-vision-talks.com/articles/2011-08-19-feature-

descriptor-comparison-report/
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orientation, blur and tilt distortion for SIFT and MSER [23]; size, blur, inten-
sity and tilt distortion for MSER [24]; and finally, size, blur, intensity and tilt
distortion for SIFT, SURF and FREAK [19].

The conditions chosen for each algorithm are examples, and not meant to
be definitive. Choosing the conditions is a difficult problem, and perhaps the
best solution is an evaluation of each algorithm under all known conditions on
a ground-truth dataset. We can then assign the conditions from this evaluation
or use a learning-based approach to bypass the literal conditions completely -
although this would require a differently designed interpreter.

By default, the interpreter executes as many of the algorithms as it can,
based on how well they match the user’s description. This will provide the high-
est number of matches, but is also slower or uses more resources. The user can
override this behaviour by prioritising efficiency over quantity. The user may
also choose to switch implementations from the CPU-based to the GPU-based
algorithms (which use SIFT and SURF only): this is seamless and the actual
algorithms included are not exposed to the user. This allows the user to take ad-
vantage of the parallel hardware and provide a faster computation. The interface
does not change for multiple implementations, ensuring that the code written
for one device type will work on any other device type.

The strength constraint does not use the variances, even though some al-
gorithms may have a higher strength than others. Instead it is used to modify
the parameters of the algorithms, such as the number of nearest neighbours to
require for a match or the minimum distance between feature vectors.

4.3 Results

In Figures 1 and 2 we illustrate four different descriptions (using variances)
which describe their pair of images. For each example three results are provided,
at High, Medium and Low Strengths. Figure 3 shows results for the four previ-
ous examples but without providing any description. The images used for this
demonstration were taken from a feature detection evaluation site8 and a feature
evaluation paper [21].

The first example in Figure 1 is of two images containing a lot of detail (church
exterior). The variances defined lead to SIFT being chosen by the interpreter to
find the correspondences. The results are generally good at all strengths (likely
due to the high detail), with some errors apparent at Low strength. The second
example in Figure 1 has images with a significant level of structure, with the two
images showing the same building at two focal lengths. The description supplied
here invoked SIFT, SURF and FREAK and provided excellent correspondences,
with some errors at Low strength.

The first example in Figure 2(a) contains two images with a large size vari-
ation and low-to-medium in all other variances. The interpreter executed SIFT
to accommodate the size and tilt variation. At a High strength the results are
sparse but accurate, and as the strength is lowered more matches are provided

8 http://lear.inrialpes.fr/people/mikolajczyk/Database/det_eval.html
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but many noticeable errors occur. This is due to the more extreme difference in
images. The second example illustrates a single image matched with a blurred
version of itself. The description translated to the execution of SIFT, SURF and
FREAK, providing a few correspondences. The results seem to be as good when
the strength is lowered, which may indicate we should provide more control over
these cases to the user (to allow for a variation of strength or method when blur
is a significant variation).

To see how well the framework performs in the absence of any information,
we tested on all previous examples and gave the interpreter a description with
all variances set to None. All methods are executed in this case. The results are
generally acceptable for High Strengths, with only a few mistakes on the more
extreme examples. There are significantly more errors in the medium case, along
with a higher number of returned correspondences. The time taken was much
longer in all cases due to executing all algorithms.

5 Conclusion

We have presented a novel abstraction for the correspondence problem which
provides users with the ability to target specific conditions for the correspondence
problem. This allows them to find the most efficient and accurate algorithm(s)
without requiring a high level of expertise in feature detectors and descriptors.
We demonstrated the results produced when providing our framework with a
description of variances, and illustrated how the matches were of higher quality
than not providing any information.

We intend to expand the variances, possibly to multiple levels of description
satisfaction: for example, SURF can do well enough on tilt distortion but might
need to be controlled via strength by the user; alternatively ORB is generally
faster than the others, but not as accurate in certain conditions - this could be
an override control for the user.
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Example (a) - Variances:
Position(Medium); Size(None); Orientation(Low);

Blur(None); Intensity(Low); Tilt Distortion(Medium).

Original images Strength: High

Strength: Medium Strength: Low

Example (b) - Variances:
Position(Medium); Size(Medium); Orientation(None);
Blur(None); Intensity(None); Tilt Distortion(Low).

Original images Strength: High

Strength: Medium Strength: Low

Fig. 1. The original images for each example are shown along with the results at
three strength levels, with the stated variances above each set of images. Example (a)
illustrates when almost all variances are set, and the returned matches at all three
strengths with good results. Example (b) also demonstrate good results, but with
noticeable mismatches at lower strengths.
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Example (a) - Variances:
Position(Medium); Size(High); Orientation(Low);
Blur(Low); Intensity(Low); Tilt Distortion(Low).

Original images Strength: High

Strength: Medium Strength: Low

Example (b) - Variances:
Position(None); Size(None); Orientation(None);

Blur(High); Intensity(None); Tilt Distortion(None).

Original images Strength: High

Strength: Medium Strength: Low

Fig. 2. The original images for each example are shown along with the results at three
strength levels, with the stated variances above each set of images. It is noticeable in
Example (a) that in more extreme cases like this, the strength can have a noticeable
effect on quality of returned match. This is also seen in Figure 1(a), indicating that
perhaps strength plays a more important role in size differentials. In Example (b), the
level of blur is so high that it inhibits feature extraction, even at the lowest strength
(although the results obtained at a low strength are quite accurate). This may indicate
that we should provide a finer level of control over the strength for the user.
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Examples with all variances set to None

Strength: High Strength: Medium

Strength: High Strength: Medium

Strength: High Strength: Medium

Strength: High Strength: Medium

Fig. 3. The examples here demonstrate the result when you set all variances to None,
and so all feature algorithms are executed. At a high strength, this provides reason-
able results, with only the occasional error (such as in the book example). At medium
strength it is clear that there are many more errors (and many more matches) than in
the case where the specific problem was described. In all cases, this took significantly
longer to compute, since all algorithms were used. Given the higher quality of corre-
spondence and the decrease in time taken, this demonstrates the improvement which
can be made with knowledge of the problem conditions in addition to the reduced level
of expertise required to use our framework.
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