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Abstract

The main challenge for sketch-based 3D shape retrieval lies with the large domain
gap between 2D sketch and 3D shape. Most existing works attempt to overcome the do-
main gap by learning a joint feature embedding space to align the two domains. In this
work we argue that the large domain gap cannot be effectively bridged in a shared feature
space. Instead, we propose to align them in their common class label space. To this end,
a novel deep cross-domain semantic embedding model is proposed. Extensive experi-
ments are carried out on two large benchmarking datasets, SHREC’13 and SHREC’14.
The results show that the proposed model drastically improves over the state-of-the-art
alternatives.

1 Introduction
Sketch-based 3D shape retrieval has been studied extensively in both computer vision and
computer graphics [3, 4, 7, 8, 13, 14, 18, 34, 38]. Given a sketch image as query, it aims
to retrieve from a gallery set of 3D shapes the ones that belong to the same category as the
query sketch. Compared to using 3D shapes as queries, sketches are not only more intuitive
to humans, but also more convenient and easier to obtain, thanks to the universal availability
of touch screen devices such as smartphones. As a result, sketch-based 3D shape retrieval
has received increasing attention both from the research community and industry.

The main challenge for sketch-based 3D shape retrieval lies with the large domain gap,
which can be broadly factorised into (i) the dimensionality gap: sketches are represented
in 2D, whereas 3D shapes are embodied in a higher dimensional (3D) space, (ii) the view
gap: sketches are selected 2D depictions from specific view points, yet 3D shape models
are entirely view-independent, and (iii) the abstraction gap: sketches are highly abstract and
iconic, however 3D shapes are geometrically realistic. For a sketch based 3D shape retrieval
model to work, these gaps must been narrowed/removed so that corresponding sketches and
3D shapes can be matched. Figure 1 offers a visualisation.

All existing works tackle this domain gap problem by learning a joint feature embedding
space. Both 2D sketches and 3D shapes are projected into the space where the similarity
between a pair of sketch and 3D shape is measured using a feature distance. These methods
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2D Sketch

3D Mesh

Figure 1: Left: 2D sketches and corresponding 3D shapes. Sketches are 2D images, whereas 3D shapes are
represented as 3D meshes. Sketches are highly abstract, while 3D shapes are well defined. Right: a sketch has
an associated view point whilst a 3D shape does not.

[7, 8, 34, 38] mostly start by directly projecting 3D models into 2D contour(s), in an effort
to alleviate the dimensionality gap. After projection the matching is done between two 2D
images, yet large domain discrepancy still remains owning to the abstraction gap. In order
to narrow the view gap, it follows that the best view(s) to project all the 3D shapes in the
gallery set will also have to be determined. This is non-trivial and importantly, useful infor-
mation about the 3D shapes can be lost in the projection process, and picking inappropriate
views will result in considerable performance degradation. To overcome this, recently a
projection-free approach is proposed [3] which directly extracts 3D features from 3D shape
models. They attempt to alleviate the domain gap all together by learning a non-linear trans-
formation to directly map 2D and 3D features into a joint feature space to conduct matching.
Despite achieving decent retrieval performance, it is inferior to recent projection-based ap-
proaches [38] that specifically tackled the aforementioned gaps. Regardless whether a view
projection step is required, the existing joint feature embedding learning based approaches
are ineffective in bridging the large domain gap.

In this paper, a completely different approach is proposed. Specifically, we argue that
no matter how hard we try, it is impossible to learn a joint embedding space where a sketch
and its corresponding 3D shape can be perfectly aligned due to the various gaps mentioned
above. However, since both sketches and 3D shapes belong to the same set of object classes,
their class label space are shared. When such a space is used as joint embedding space,
perfect alignment is intrinsically achievable. Such a space is semantic, a vital difference
from the feature embedding space. To learn such a joint semantic embedding space, we
formulate a deep neural network consisting heterogeneous branches for the sketch and 3D
shape domains respectively. More specifically, Inception-ResNet-v2 [32] is adopted to map
input sketches to the embedding space, while PointNet [23] is employed for the 3D shape
input. To make sure that the learned embedding space is both semantic and discriminative,
classification and triplet ranking losses are imposed as learning objectives.

The contributions of our work are listed as follows: 1) For the first time, we propose
to perform sketch based 3D shape retrieval in a joint semantic embedding space, instead of
the joint feature embedding space adopted by existing methods. 2) A novel heterogeneous
deep network with classification and triplet ranking losses is formulated to learn the joint
semantic embedding space for effective and efficient cross-domain matching. 3) Extensive
experiments are carried out on the two largest benchmark datasets. We show that our model
outperforms existing models by large margins. In addition, we propose a more rigorous
experiment setting, under which the advantage of the proposed method is shown to be even
more pronounced.
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2 Related Work
Since the proposed model aims to project sketch and 3D shape into a shared label space
using a multi-branch deep neural network, each branch is essentially solving a recognition
problem in its corresponding domain. We thus first review some existing sketch and 3D
shape recognition works.
Sketch Recognition Early studies on sketch recognition work with professional CAD or
artistic drawings as input [19, 41]. Free-hand sketch recognition has attracted much attention
since Eitz et al. [6] released the first large-scale TU-Berlin sketch dataset. It has 20,000
free-hand sketches across 250 categories of daily objects. A number of approaches have
since been proposed to recognise freehand sketches. Early works [6, 16, 27] use SVM as
the classifier with hand-crafted features such as HOG and SIFT as representation. More
recently, Convolutional Neural Networks (CNNs) have dominated the top benchmark results
on various visual recognition challenges such as ImageNet ILSVRC [25]. Sketch recognition
is no exception. In [40], Yu et al. propose Sketch-a-Net, a CNN specifically designed for
modelling sketches. In [26], Sarvadevabhatla et al. use two popular CNN architectures pre-
trained on ImageNet and fine-tune on the TU-Berlin sketch dataset. In our work, we use
the Inception-ResNet-v2 [32] as the 2D sketch branch in our heterogeneous cross-domain
matching network to project a 2D sketch to its class label space.
3D Shape Recognition Most recently proposed 3D shape representation models are also
based on deep neural networks. Various volumetric CNNs [22, 36] have been proposed to
model voxel shapes. Each 3D mesh is represented as a binary tensor: 1 indicates that a
voxel is inside the mesh surface, and 0 otherwise. Volumetric representation is constrained
by data sparseness and high computational cost incurred by 3D convolution. In contrast,
in a multi-view CNNs based approach [31], 2D images are rendered from 3D point cloud
or meshes before 2D CNNs are employed to classify them. The current state-of-the-art is
PointNet [23]. Using this model, each point in a 3D point cloud is represented by its three
coordinates (x,y,z) and some point features that encode its statistical properties. A deep net-
work composing of multi-layer perception is then designed to provide a unified architecture
for 3D object classification, part segmentation, and scene semantic tasks. PointNet is used
in our 3D shape branch due to its strong classification performance and low computational
cost.
Sketch-based 3D Shape Retrieval Most earlier sketch-based 3D shape retrieval methods
focus on finding the "best views" for projecting 3D shapes for matching them with sketches
in 2D. [4] proposes a set of uniformly distributed viewpoints for 3D shape projection. Dif-
ferently, [7] learns a view classifier which is used to select the best view for projection given
a query sketch. Both methods use hand-crafted features, whilst later approaches are all deep
learning based. The method in [34] adopts a Siamese network to learn a joint embedding
space for the two modalities. Similarly, [38] uses two deep convolutional neural networks to
extract deep features of sketches and 2D projections of 3D shapes with uniformly sampled
viewpoints first. Then the Wasserstein barycentres of deep features of multiple projections of
3D shape are calculated to form a barycentric representation. In contrast to these projection-
based methods, in [3], features for both sketches and 3D shapes are extracted first, then deep
metric learning is performed to transform the raw features of both domains into a non-linear
joint feature embedding space. All the existing methods aim to learn a joint feature embed-
ding space; they are thus very different from our joint semantic embedding based approach.
We show that our model is much more effective in bridging the domain gap because the
semantic labels are intrinsically shared, making alignment in the space easier.
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Figure 2: A schematic of the proposed network architecture (SEM: Semantic Embedding Space).

Cross-domain Matching Beyond sketch-based 3D shape retrieval, many other vision prob-
lems also require solving cross-domain matching problems. For visual versus near infrared
(VIS-NIR) face recognition [9, 12, 17], faces are matched across two image modalities. Most
models adopt a Siamese network architecture to align NIR and VIS images in a joint deep
feature embedding space. Such a feature embedding space is also learned in sketch-based im-
age retrieval (SBIR) [5, 11, 24, 29, 39] and person re-identification (re-id) [2, 10, 15, 30, 37].
In summary, existing approaches to various cross-domain matching problems are also domi-
nated by joint feature embedding learning based approaches. Such an approach seems to be
more effective for these tasks because the domain gap is narrower: all domains feature 2D
images. It is worth noting that the re-id work in [35] also explores a label space for cross-
domain alignment. However, instead of using a shallow model as in [35], our model learns a
joint semantic embedding space by end-to-end training a deep neural network.

3 Methodology

3.1 Network Architecture

Overview The overall network architecture of the proposed sketch-based 3D model re-
trieval method is illustrated in Figure 2. It consists of two subnets: (1) a sketch subnet that
aims to map an input sketch into a shared label embedding space whose dimension is the
same as the number of object classes modelled, and (2) a Siamese 3D shape subnet, where
each branch has the same base network architecture and they share parameters; this subnet
aims to map input 3D shapes into the joint semantic embedding space. In the space, the
learned two projections are subject to a triplet ranking loss, a sketch classification loss and a
3D shape classification loss to ensure that the space is both semantic (i.e., each object class
is represented as a one-shot vector and the projection of sketches/3D shapes of that class
should be close to the vector) and cross-domain discriminative (i.e., a pair of sketch and 3D
sketch that belong to the same class should be close whilst those of different classes should
be farther apart).
2D Sketch Branch The sketch classification architecture is based on that of Inception-
ResNet-v2 [32], which combines the Inception architecture with residual connections. To
regularise the network, we use label smoothing both in training and testing process [21].
3D Shape Branch The 3D classification architecture is based on PointNet [23], which
directly takes the 3D coordinates of points in a 3D shape point cloud as input. Specifically,
n points are used as input to feed into the network; they go through feature transformations
layers and five fully connected layers before being aggregated into a shape feature vector by
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max pooling. Label smoothing is also used to regularise the network.

3.2 Model Learning
Optimisation Objective Suppose the sketch subnet and the 3D shape subnet learn map-
ping functions ΦS and ΦD, parameterised by ΘS and ΘD respectively. The model takes a
triplet as input consisting of a query sketch, a positive 3D shape of the same class and a
negative 3D shape from a different class. Given N triplets χ = {xi

s,xi
d+ ,xi

d−}N
i=1, where xi

s

denotes the anchor query sketch, xi
d+ a positive 3D shape and xi

d− a negative 3D shape. Our
learning objective is:

argmin
ΘS,ΘD

L = argmin
ΘS,ΘD

(LS +λDLD +λT LT ) (1)

where LS, LD are the cross-entropy loss for sketch and 3D classification weighted by λD, that
is,

LS =−
N

∑
i=1

(pi
s log(p̂s

i )) (2)

LD =−
N

∑
i=1

(
pi

d+ log(p̂d+
i )+ pi

d− log(p̂d−
i )

)
, (3)

and LT is the triplet ranking loss with a soft-margin weighted by λT [10] defined as:

LT =
N

∑
i=1

ln
(

1+ exp(‖ΦS(xi
s)−ΦD(xi

d+)‖2−‖ΦS(xi
s)−ΦD(xi

d−)‖2)
)

(4)

This ranking loss considers the differences in the joint semantic embedding space measured
using Euclidean distance. The goal is to learn a discriminative semantic embedding space
where the positive 3D shape xi

d+ is ranked above the negative 3D xi
d− in terms of its distance

to the query sketch s, and to help the two classification losses to align the two domains in the
space.
Hard Training Sample Mining The hard training sample mining strategy in [10] is adapted
here for our problem. Concretely, we form batches by randomly sampling N sketches from
N different classes (i.e., one sketch per class) and then randomly sampling K 3D shapes for
each class, resulting in a mini-batch size of (NK +N). For each sample xs in the sketch
classes, we select the hardest positive and the hardest negative 3D samples within the mini-
batch when forming the triplets for computing the loss. In order to capture the semantic
relationship, we select hard negative samples according to the word vector distance [20]
among different classes. Specifically, for each sketch xs, we first choose the hardest negative
3D class based on the word vector distance so that the two classes are semantically as similar
as possible. Then from that class the hardest negative 3D sample is chosen from the K 3D
shape instances.

4 Experiments

4.1 Datasets and Settings
Three datasets are used for evaluation, which are summarised in Table 1.
SHREC’13 SHREC’13 is a large-scale benchmark for sketch-based 3D shape retrieval.
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Dataset
Number of

Classes
Number of
Sketches

Number of
3D Shapes

Train/Test Split
for 3D Shapes

SHREC’13 90 7,200 1,258 No
SHREC’14 171 13,680 8,987 No
PART-SHREC’14 48 4,320 7,238 Yes

Table 1: A summary of the three benchmark datasets.

The dataset is created by collecting common classes from both the Princeton Shape Bench-
mark [28] and the TU-Berlin sketch dataset [6]. There are 1,258 3D shapes and 7,200
sketches from 90 classes. The 80 sketches in each class is split in two sets: 50 for train-
ing and 30 for testing, whilst all the 3D shapes in the dataset are used in both training and
testing. It is noteworthy to mention that the number of 3D shapes varies among different
classes. For example, the largest class has 184 instances but there are 23 classes containing
no more than 5 shapes.
SHREC’14 SHREC’14 [14] is a more challenging dataset compared to SHREC’13. In
particular, the number of 3D shapes is increased to 8,987, and the number of classes to 171.
The number of sketches per class remains unchanged with the same training/test split.
PART-SHREC’14 SHREC’13 and SHREC’14 are the largest and most widely used dataset
for sketch-based 3D shape retrieval. However, it is noted that all existing works use all the 3D
shapes for both training and testing. This setting is clearly not rigorous and unable to evalu-
ate how well a model can generalise to unseen 3D shapes. In contrast, for other cross-domain
matching problems such as VIS-NIR face recognition and person re-id, all benchmarks are
organised different to make sure that the testing data and training data have no overlap. Fol-
lowing this practice, we propose a new benchmark, PART-SHREC’14, which is a subset of
SHREC’14. Specifically, it consists of the classes in SHREC’14 that have more than 50
instances. With this selection criterion, there are 48 classes, 7,238 3D shapes and 3,840
sketches in total. We follow the same 50/30 training/test split for sketches as in SHREC’13
and SHREC’14 [3, 13, 34, 38]. Meanwhile, the 3D shapes are randomly split into a training
set of 5,812 samples and a test set of 1,426.

4.2 Implementation Details

For data augmentation, akin to [40] we randomly perform affine transformations on each
sketch to generate more variations. Fifteen augmentations are generated for each sketch in
the dataset. For 3D shape, we uniformly sample 2,048 points on the mesh faces according to
face area and normalise them into a unit sphere. We also argument the 3D data using rotation
and jitter following [23]. Once trained, Cosine distance is used to compare a query sketch
and a gallery 3D shape in the joint embedding space.

Our model is implemented on Tensorflow with a single NVIDIA GeForce GTX 1080 Ti
GPU with Adam optimiser. We first pre-train the sketch subnet on ImageNet and 3D shape
subnet for the training 3D shape classification task. The whole network is then fine-tuned for
30 epochs. We set the important weights for different subsets to: λD = 1 and λT = 20 (see
Eq. (1)). The learning rate is set as 10−4 with decay rate = 0.9 and decay step = 20000. Each
mini-batch is composed of 8 sketches that belong to different categories and 4 corresponding
3D shapes for each sketch.
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4.3 Evaluation Metrics
The following widely-used evaluation metrics are adopted [8, 28]: 1) Nearest neighbour
(NN) matching accuracy, which is the percentage of the closest matches that belong to the
same class as the query sketch, 2) first/second tier (FT/ST), which is the percentage of 3D
shapes in the query’s class that appear within the top K matches, where K depends on the
size of the query’s class, 3) E-Measure (E), which is a composite measure of the precision
and recall for a fixed number of retrieved results, 4) Discounted cumulated gain (DCG),
which is a statistic that weighs correct results near the front of the list more than correct
results towards the bottom of the ranked list under the assumption that a user is less likely to
consider any results near the bottom of the list and 5) mean Average Precision (mAP).

4.4 Competitors
We compare the proposed method (Ours) to four state-of-the-art alternatives including Shape-
2vec [33], Siamese [34], LWBR [38], DCML [3], and SBR-VC [13]. Shape2vec [33] trains
a CNN to predict labels first, then updates fully connected layers to generate shape descrip-
tors that lie close to the word vector representation of the shape class. Siamese [34] learns
a Siamese Convolutional Neural Network, one for the 3D shapes projected into different
viewpoints and one for the sketches. The loss function is defined on both within-domain and
the cross-domain similarities in the feature space. LWBR [38] uses two deep convolutional
neural networks to extract deep features of sketches and 2D projections of 3D shapes first.
Then the Wasserstein barycentres of deep features of multiple projections of 3D shapes are
calculated to form a barycentric representation. Finally, a discriminative loss is formulated
on the deep feature space for two domains. [3] jointly trains one network for sketch and
another for 3D shape using features from the corresponding domain with a loss designed to
learn two deep non-linear transformations to map features from both domains into a non-
linear feature space. SBR-VC [13] proposes a 3D shape visual complexity metric to decide
the number of representative views of the 3D shapes. Then, a Fuzzy C-Means view clus-
tering is performed on each selected views. Finally, shape context matching [1] is used to
perform online retrieval.

4.5 Results on SHREC’13 and SHREC’14
Table 2 compares our model with the four state-of-the-art alternatives on SHREC’13 and
SHREC’14. We have the following observations: (1) On both datasets and across all met-
rics, our model achieves the best performance. (2) On the more challenging SHREC’2014
dataset, all four compared models’ performance degrades drastically. In contrast, the per-
formance drop of our model is much smaller. As a result, the gaps between our model and
the alternative are much more significant. For example, compared to the nearest competitor
LWBR [38], our model almost doubles the performance measured on all metrics. This sug-
gests that by learning a semantic embedding space instead of a feature embedding space, our
model is much more effective in tackling the domain gap issue. (3) Among the four com-
pared models, as expected, the hand-crafted feature based SBR-VC model is the weakest. (4)
For the three compared deep learning based models, LWBR is clearly better. This is because
it uses the Wasserstein barycentres to synchronously aggregate the information of different
project views for 3D shapes, which has the advantage over the Siamese model which treats
each view independently.
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SHREC’13 SHREC’14
NN FT ST E DCG mAP NN FT ST E DCG mAP

Shape2vec [33] 0.620 0.628 0.684 0.354 0.741 0.650 0.714 0.697 0.748 0.360 0.811 0.720
Siamese [34] 0.405 0.403 0.548 0.287 0.607 0.469 0.239 0.212 0.316 0.140 0.496 0.228
LWBR [38] 0.712 0.725 0.785 0.369 0.814 0.752 0.403 0.378 0.455 0.236 0.581 0.401
DCML [3] 0.650 0.634 0.719 0.348 0.766 0.674 0.272 0.275 0.345 0.171 0.498 0.286
SBR-VC [13] 0.164 0.097 0.149 0.085 0.348 0.116 0.095 0.050 0.081 0.037 0.319 0.050
Ours 0.823 0.828 0.860 0.403 0.884 0.843 0.804 0.749 0.813 0.395 0.870 0.780

Table 2: Retrieval results on the SHREC’13 and SHREC’14 datasets.

rank1rank10 rank1 rank10
OURS SIAMESE

Figure 3: Qualitative results on PART-SHREC’14. The query sketches are listed in the middle column.
The top 10 retrieved shapes of our model are listed on the left of the query and those of Siamese [34] on
the right, based on their ranking orders. The correct retrieval results are rendered in navy blue, whilst
the wrong results are shown in golden.

4.6 Results on PART-SHREC’14

Since only the source code of Siamese [34] is publicly available, we can only compare with
it using this new benchmark. We conduct experiments under two settings: under the Old
Setting (OS), all 3D shapes are used for both training and testing, while under the New
Setting (NS) they are split into non-overlapping training and test sets. The comparative
results are shown in Table 3. It can be seen that the performance of Siamese [34] drops
dramatically when the setting changes from OS to NS – more than halved on metrics such as
NN and mAP. This suggests that the model tends to overfit to the training data. In contrast,
using our model, the performance degrades much more gracefully. We thus conclude that
our model’s advantage over the existing feature embedding based models are even more
pronounced under this more rigorous setting. This is not surprising: our joint semantic space
not only makes it easier to align the two domains, it typically has much lower dimensions
compared to a feature space as well, so it is less likely to suffer from model overfitting.
Figure 3 shows some qualitative retrieval results on PART-SHREC’14 under NS.

NN FT ST E DCG mAP
Siamese [34] OS/ NS 0.267/0.118 0.183/0.076 0.278/0.132 0.104/0.073 0.603/0.400 0.152/0.067
Ours OS/ NS 0.846/0.840 0.832/0.634 0.892/0.745 0.372/0.526 0.931/0.848 0.854/0.676

Table 3: Retrieval results on the PART-SHREC’14 benchmark dataset
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NN FT ST E DCG mAP

SHREC’13
Ours-semantic-space 0.823 0.828 0.860 0.403 0.884 0.843
Ours-feature-space 0.0111 0.0116 0.0231 0.0124 0.2316 0.0226

SHREC’14
Ours-semantic-space 0.804 0.749 0.813 0.395 0.870 0.780
Ours-feature-space 0.0074 0.0057 0.0112 0.0034 0.2525 0.0094

PART-SHREC’14
Ours-semantic-space 0.840 0.634 0.745 0.526 0.848 0.676
Ours-feature-space 0.0229 0.0209 0.0422 0.0202 0.3296 0.0275

Table 4: Comparison on joint feature embedding space and semantic embedding space

airplane
ant
armchair

bench

bicycle
bookshelf

bus
cabinet

bed

(a) (b)

sketch 3D

cellphone

Figure 4: A visualisation of the mapped sketches and 3D shapes using our model in the joint (a) feature
space and (b) semantic label space.

4.7 Ablation Study

We have shown convincingly that the proposed joint semantic embedding based model is far
superior to the existing feature embedding based models. However, it is also noted that dif-
ferent base networks are used in our model, compared to those in existing models [3, 34, 38].
To evaluate how much exactly the change in the learned joint embedding space contributes
to our model’s performance, in this experiment, we compare our full model (Ours-semantic-
space) with a variant termed Ours-feature-space. This variant has exactly the same network
architecture and the only difference is that the triplet loss is added to a 256D feature em-
bedding layer shared by the sketch and 3D shape branches. As shown in Table 4, the per-
formance of this variant is extremely low on all three datasets. These results indicate that
learning the joint semantic space and performing cross-domain matching in that space is in-
deed the main reason why our model works so well. Figure 4 visualises 10 classes of sketches
and 3D shapes in the two joint embedding space. From Figure 4(a), it is clear that each class
of sketches and 3D shapes form two separate clusters with a fair amount of distance between
them, causing the miserable matching accuracy. In contrast, in the joint semantic space (Fig-
ure 4(b)), the two domains are perfectly aligned with sketches and 3D shapes of the same
class forming a single cluster. It is noted that our joint feature space is far worse than those
in the compared existing models [3, 34, 38]. This is expected: our network is heterogeneous
with very different sketch and 3D shape subnets (Inception-ResNet-v2 vs. PointNet). Al-
though each of them can produce state-of-the-art classification results on each modality, thus
being well suited as a mapping function to the shared label space, the feature output of the
two subnets are highly heterogeneous as well. As a result, the two domains are much harder
to align in our feature space than those of the Siamese or similar 2D image subnets employed
by existing models [3, 34, 38].
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5 Conclusion
We have proposed a novel sketch-based 3D shape retrieval model. The key idea is that,
since the sketch domain and 3D shape domain have a large domain gap, rather than focusing
on learning a joint feature embedding space to bridge the gap, we argue that learning a
joint semantic space is much easier. This is because the two domains share the same object
classes thus the same label space which can be learned and re-purposed as a joint semantic
embedding space for sketch to 3D shape matching. Extensive experiments show that our
model drastically improves the state-of-the-art on a number of large-scale benchmarks.
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