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Abstract

This paper focuses on unsupervised domain adaptation problem, which aims to learn
a classification model on an unlabelled target domain by referring to a fully-labelled
source domain. Our goal is twofold: bridging the gap between source-target domains,
and deriving a discriminative model for the target domain. We propose a Generative
Adversarial Guided Learning (GAGL) model to tackle the task. To minimize the source-
target domain shift, we adopt the idea of domain adversarial training to build a classifi-
cation network. Next, to derive a target discriminative classifier, we propose to include a
generative network to guide the classifier so as to push its decision boundaries away from
high density area of target domain. The proposed GAGL model is an end-to-end frame-
work and thus can simultaneously learn the classification model and refine its decision
boundary under the guidance of the generator. Our experimental results show that the
proposed GAGL model not only outperforms the baseline domain adversarial model but
also achieves competitive results with state-of-the-art methods on standard benchmarks.

1 Introduction

Although deep neural networks have brought impressive achievements in many tasks, their
success heavily relies on large amounts of labelled data. In many real-world applications,
collecting fully-labelled data for the task of interest is not only costly but also very time-
consuming. Many efforts have been undertaken to alleviate the heavy burden of data la-
belling. One of the promising methods is through domain adaptation, which aims to transfer
knowledge learnt from a fully-labelled source domain into a target domain. For example, we
can synthesize labelled synthetic or semi-synthetic data (source domain) to learn the model,
and then adopt the learnt model to another set of real-world data (target domain). Never-
theless, once the characteristics of source data are different from those of the target data, a
model trained in the source domain can hardly perform well on the target domain. This prob-
lem is often referred to as the domain shift problem. Since the goal of domain adaptation is
to learn a model that can generalize well on the target domain, the domain shift problem is
indeed a key issue in domain adaptation.

Among different settings of domain adaptation, we focus on the most challenging case
- unsupervised domain adaptation (UDA) problem. In the UDA setting, the target data are
unlabelled; in other words, for the target domain data, we are provided with the data them-
selves but have absolutely no information about their ground-truth labels. Therefore, many
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methods have been developed, e.g., to match distributions of the two domains or to learn a
domain-invariant representation.

Several recent methods [8, 18, 31, 35] proposed to combine the feature distribution
matching and the model learning in a unified framework. In particular, in [8], the authors
proposed using domain adversarial training to learn domain-invariant representation; their
results suggested that a successful adaptation tends to occur when both the source general-
ization error and the feature discrepancy distance are small. However, even under the two
conditions, we argue that it is insufficient to guarantee a well-generalized model in the target
domain. According to the theoretical analysis of domain adaptation [2], the expected loss
of the target domain is bounded by three terms: (1) the expected loss in source domain; (2)
the divergence between the source and target distributions; and (3) the expected difference
in labelling functions across the two domains. These methods [8, 18, 31, 35] focused on
minimizing the first and the second terms, while considering the third term of little account
and can be ignored. Unfortunately, this assumption is only valid when the learnt representa-
tion is discriminative in the target domain. Once the representation is indiscriminative in the
target domain, the decision boundary of classification model may locate across high density
area of target-domain data. This undesirable situation usually results in significant loss in
the third term and leads to poor performance in the target domain.

To tackle the above-mentioned problem, we need to ensure that the learnt model is also
target discriminative in addition to domain-invariant. In [24], the authors also focused on
learning a target discriminative model and proposed an asymmetric tri-training to conduct
the task. Unlike [24], which can be seen as replacing the domain adversarial training [8]
with the asymmetric tri-training, we mean to directly control the decision boundary of the
classification model in domain adversarial training. The key idea underlying the proposed
model comes from the cluster assumption [3], which assumes that the data distribution con-
sists of several clusters and that data in the same cluster are likely to originate from the
same class. Therefore, even without the target domain labels, we can still move the decision
boundaries away from high density area and push them toward low density ones. In this
paper, we propose to incorporate the cluster assumption with the GAN-based classification
model [5, 15, 25] to relocate the decision boundaries. Note that, although the idea of moving
decision boundaries is similar to [29], we define a novel loss term to conduct the task and
will show that, through the GAN-based classification model, the generated fake data can
serve as an effective guide to control the decision boundary in the UDA task.

To sum up, we propose an unsupervised Generative Adversarial Guided Learning (GAGL)
model to learn a domain-invariant and target-discriminative classification model. The pro-
posed GAGL has two main objectives. Firstly, we learn a domain-invariant classification
model through domain adversarial training. Secondly, we propose to incorporate an addi-
tional generative model to further push the decision boundary of the classifier toward low
density areas. The proposed GAGL is an end-to-end framework that simultaneously learns
and refines the classification model via generative adversarial guided learning.

Our contributions are summarized as follows:

e We propose to incorporate a generative model to guide the classification model in
domain adversarial training and obtain better classification performance.

o The proposed GAGL drives a classification model that is not only invariant to source-
target domain shift but also generalizes well in the target domain.

e Our experimental results verify that the proposed GAGL model achieves competitive
results to state-of-the-arts on standard UDA benchmarks.
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2 Related Work

Learning a domain-invariant representation is crucial to UDA task. The idea of matching fea-
ture representation of two distributions has been extensively studied and has shown promis-
ing results. For example, the methods in [8, 18, 28, 31, 32, 35] minimized the domain
divergence in terms of either maximum mean discrepancy (MMD) [10, 18, 31], domain dis-
criminator [8, 32], central moment discrepancy (CMD) [35], or Wasserstein distance [28].
However, these distribution-matching-based methods did not explicitly incorporate the target
discriminative issue into the objective functions.

Several methods [12, 23, 26, 34] proposed to incorporate generative adversarial network
(GAN) [9] to tackle the UDA task. [12, 23] proposed using two GAN models to learn the
mapping functions between source and target domains. For each round trip mapping, e.g.,
source — target — source, a cyclic-consistency loss is enforced to ensure a correct mapping.
In [26], a domain-invariant embedding space is learnt by an additional GAN model. In
[34], the authors further proposed to learn the domain-invariant representation by adversarial
feature augmentation. The aforementioned GAN-based UDA methods adopt the generative
model as a mapping function to tackle the domain shift problem. However, as these methods
include no explicit constraint on the discriminative capability of task-specific classifier, the
learnt representation does not necessarily guarantee to be target discriminative.

Meanwhile, [11, 24, 27] proposed to replace distribution matching by either similarity-
based embedding [11], asymmetric tri-training [24], or nearest-neighbor-based classifier
[27]. These methods have shown that both domain-invariant and target discriminative repre-
sentation are crucial to a well-performed classifier in target domain.

Recently, the cluster assumption [3], which indicates that the decision boundaries of
classifier should lie on low density region in data manifold, has led to considerable success
on semi-supervised learning (SSL) [5, 15, 16, 19, 25] and has also been applied to domain
adaptation [6, 7, 29]. In [29], the locally-Lipschitz constrained conditional entropy loss is
proposed to encourage the model to be discriminative on target task. In [6, 7], extensive data
augmentation is applied to learn a more stable decision boundary in classification model.
Instead of relying on conditional entropy loss [29] or applying various data augmentation
[6, 7], we aim to extend the idea from GAN-based SSL [5, 15, 25] into UDA task.

3 Proposed Method

We first define the notations and describe the unsupervised domain adaption problem in
Sec.3.1. Next, in Sec.3.2, we briefly review the idea of domain adversarial training [8]. In
Sec.3.3, we present our proposed method by incorporating a generative network into the
domain adversarial training so as to derive a target discriminative model.

3.1 Problem Statement and Notations

Let X be the input space (e.g. images) and Y be the output space (e.g. image categories) with
K categories. In the unsupervised domain adaption (UDA) scenario, the source distribution
S(x,y) and target distribution T(x,y) on X®Y, where x € X and y € Y, are assumed to be
complex, unknown, and differed with certain domain shift. During the training stage, in
the source domain, a set of n data and their labels (X5,Y5) = {(x},5}), (63, 55), ., (5, 55) }
are given; whereas, in the target domain, only m data X7 = {x,x},...,x},} are given but
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without their ground-truth labels. The goal of UDA is to learn a classification model D that
generalizes well on the target data X7 in the testing phase.

Figure 1 shows the flowchart of the proposed Generative Adversarial Guided Learning
(GAGL) model, where D denotes the classification model and G denotes the generative net-
work that takes a noisy vector z&€ R" as its input and outputs the generated data X©.

Generative Network Classification Network
) \ K > Feature \
Noise vector J representation
(K+1)
E > G XG XT > category
prediction
X5 b

Figure 1: Flowchart of the Generative Adversarial Guided Learning model.

3.2 Review of Domain Adversarial Training

We now give a brief review of domain adversarial training [8]. In [8], the authors built the
classification model D upon a deep feed-forward architecture and decomposed D into three
parts: a feature extractor D, a label predictor Dy, and a domain classifier Dy, as illustrated
in Figure 2 (a). The feature extractor D, parameterized by 6y, maps an input x into a
high-dimensional feature representation f€ R>"*¢ ie. f = Dy(x, 6y). The label predictor
Dy, parameterized by 6,, then maps the feature f into the output category label. The domain
classifier D,, parameterized by 6,, maps f into the domain label d €{0, 1} so as to distinguish
whether the input x is drawn from the the target domain X7 or the source domain X*.

Thus, to learn domain-invariant representation, one needs to optimize the label prediction
loss Ly as well as the domain prediction loss L,. In other words, the label prediction for the
source domain should be as accurate as possible; whereas the domain prediction should try
to match the distributions of the two domains to be as similar as possible. The adversarial
loss is then defined by combining the two loss functions with a hyper-parameter 4, by

Laay(X5,Y5 XT) = Ly(X5, V%) + A Lo (X5, XT). (1)

i, 5 K-catego
> gory
H prediction

* > K true categories

M.”
- -+ > 1 fake category

(b)

Figure 2: (a) The domain adversarial training. Here, the gradient reversal layer R(-) [8] is
omitted for simplicity. (b) The (K+1)-category prediction, with an additional "fake" category,
in the proposed GAGL .
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3.3 Generative Adversarial Guided Learning

As mentioned before, because domain adversarial training [8] includes no explicit formu-
lation for the task-discriminative issue, there is no guarantee that the learnt model can well
generalize to the target domain. In this subsection, we describe how we incorporate a gener-
ative model G to derive a target discriminative model D.

Similar to [8], we also decompose the classification model D into a feature extractor
Dy, alabel predictor Dy, and a domain classifier D,. Let P,(x*) = D, (Ds(x*,6¢), 6,) denote
the function that outputs the K-dimensional softmax prediction for a given input x*, and
Py(x*) = D4(R(Dys(x*,0¢)),0,) denote the function that outputs the domain prediction for
an input x*, where % € {s,¢} and R(-) is the gradient reversal layer [8]. We then define the
label prediction loss Ly and the domain prediction loss L, as follows,

Ly(x%,Y%) = ny, log[P, )

Ly(X5.xT) = { Zlog )]+%ilog[l—Pa(x§)]}. (3)
j=1

Next, we propose to include a generator G to guide the decision boundary of D. The
goal of G is to generate realistic data X© that the discriminator cannot distinguish from
real ones X”. As suggested in [25], we combine the real-fake discriminator into the K-
category classification model D, and have the (K+1)-category classification model D with
an additional "fake" class. Figure 2 (b) illustrates this (K+1)-category classification model.
When given the unlabelled target domain data X7 and the generated data X©, we expect the
classification model D to be able to determine whether an input sample is real or fake. We
thus define the unlabelled guide loss L, between unlabelled target data and the generated
data as

Lu(XT,XG):_{%ilog[PyKH |+ — Zlog — P (], (4)
i=1

where PyK‘H (x*) = Dy(Ds(x*,0¢),0y) is the function that outputs the prediction of x*, * €
{t,g}, on the (K+1)-th category (i.e., the fake class). Minimizing the unlabelled guide loss
L, will consequently enforce X and X7 to be predicted as the first K categories (i.e., the
true classes) to be low and high, respectively. Therefore, inclusion of L, encourages the
decision boundary of classification model to lie between X¢ and X7 in data manifold and
to be away from X”. During the GAN-based learning process, the randomly generated data
X6 keep guiding the classification model to refine its decision boundary. The classification
model, whose decision boundary becomes smoother and is gradually pushed away from the
high density area of target data, finally leads to a target discriminative model. Note that,
because the (K+1) form of classifier is over-parameterized [25], we thus set the (K+1)-th
output before soft-max operation to be a zero vector and lead back to a K-category classifi-
cation model. With two hyper-parameters A, and A,, we formulate the loss function of the
classification model D by

Lp(X3, Y5 X7 XO) = L,(X5,Y5) + AuLo(X5, XT) + 2L (XT, X ). (5)

As to the loss function Lg of the generator G, instead of directly maximizing L,, we use
a more stable optimization method introduced in [25] to define L. Let ¢ (x*) be the output
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feature representation before the last dense layer of D for a given input x*, x € {t,g}. The
loss function L is defined as

Lg(z) = Dist(9(X"), (X)), ©)

where Dist(-,-) is a distribution matching criterion. In this paper, we use CMD [35] to
calculate Dist(-,-).

To train the network, we alternatively update the classifier D and the generator G by
optimizing Eq.5 and Eq.6. Note that, our experiments show that the domain adversarial
training of D using gradient reversal layer [8] is unstable and hyper-parameter sensitive.
Hence, we follow [9, 29] to update Dy and D, alternatively instead.

4 Experiments
4.1 Domain adaptation benchmarks

We evaluate and compare with existing methods on the following benchmarks, under differ-
ent settings, where source — target indicates that we use the dataset source as the source
domain for training and use the dataset target as the target domain for testing.

SVHN <+ MNIST. The street view house number (SVHN) dataset [21] consists of 73257
training images and 26032 testing images. We use the variant Format 2, where each image,
though cropped, still contains multiple digits. MNIST [17] contains 55000 training images
and 10000 testing images. Because MNIST images are all in grey scale, we extend the
MNIST images to three color channels by simply replicating the gray-scale values to three
channels to match color images in other datasets. We conduct the domain adaptation on
both directions (i.e., SVHN — MNIST and MNIST — SVHN). Note that, because images
in SVHN are more diverse, the task of using MNIST as the source domain (i.e., MNIST
— SVHN) is far more challenging than using SVHN as the source domain (i.e., SVHN —
MNIST).

MNIST — MNIST-M. In this task, we use MNIST [17] as the source data for training and
test on MNIST-M [8]. The MNIST-M [8] is generated by blending grey scale MNIST im-
ages with color background patches from BSD500 dataset [1]. The resulting color images in
MNIST-M thus enlarge the domain shift and are much difficult for automatic classification.

Syn-Num — SVHN. The synthetic number (Syn-Num) dataset, which consists of 500000
training images, was introduced in [8]. In Syn-Num, the images are generated by varying
the fonts and properties (including position, orientation, background, stroke colors, and the
amount of blur) of digits to stimulate SVHN.

Syn-Signs — GTSRB. The synthetic signs (Syn-Signs) dataset is provided by [20] and con-
tains 100000 training images generated by applying various manual transformations to traffic
sign images. The German Traffic Signs Recognition Benchmark (GTSRB) [30] consists of
39209 training images and 12630 testing images. Because the GTSRB was originally pro-
vided for recognition task, we follow the same setting in most previous work to resize the
cropped region of interest (Rol) in each image into the same size as Syn-Signs images. Both
the two tasks Syn-Signs — GTSRB and Syn-Num — SVHN use synthetic data as the source
data and real data as the target domain; but the adaptation of Syn-Signs — GTSRB is more
complex because it involves 43 categories rather than 10 categories.

STL < CIFAR. Both STL-10 [4] and CIFAR-10 [14] are 10-category image datasets. Here,
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Source | SVHN  MNIST  Syn-Num MNIST CIFAR  STL Syn-Signs
Loss function Target | MNIST SVHN SVHN MNIST-M STL  CIFAR GTSRB
L, (DNN-SO) 85.7 41.0 90.1 64.4 753 56.7 95.5
Ly+ L, (DANN-O) 86.0 61.5 88.7 92.9 76.2 58.0 94.0
Ly + L, + Cond. (DANN-C) 97.1 64.2 91.5 93.5 76.3 58.5 96.9
Lp/Lc—rm (GAGL-FM) 95.3 63.3 92.5 90.3 78.0 65.4 96.9
Lp/Lg (GAGL) 96.7 74.6 93.1 94.9 77.0 61.5 97.6

Table 1: Evaluation of loss functions. We show the classification accuracy of test set on
seven domain adaptation benchmarks.

we follow the setting in previous work to remove the non-overlapping "monkey" and "frog"
categories from STL and CIFAR, respectively, and have a 9-category domain adaptation task.

4.2 Implementation Details

CNN architecture. To have a fair comparison with [29], we adopt the same architecture of
classification model D as in [29]. We use large CNN for STL <+ CIFAR tasks and use small
CNN for the other adaptation tasks. All the input images are resized to 32 x 32 using bilinear
interpolation. As to the generative model G, we use 1 dense layer followed by 3 transpose
convolution layers. We use leaky-ReLU as non-linearity and apply batch normalization be-
fore non-linearity on each layer (including convolution and dense layers) of D and G before
non-linearity, except for the domain discriminator D,, where we use ReLU as non-linearity
and apply no batch normalization. More details of our CNN architecture is provided in the
supplementary file.

Data pre-processing. The only pre-processing we apply is instance normalization. As sug-
gested in [29], by introducing two learnable parameters ¥ and 3, instance normalization is
served as a learnable layer before the first convolution layer in the classification model.
Hyper-parameters. For each task, we randomly select 1000 samples from the target domain
to form a validation set, and then use the validation set to tune the hyper-parameters (4,4, A;,).
The ranges of hyper-parameters are set as in (1072, 0) and (107!, 1) for A, and A,,, respec-
tively. We apply Adam optimizer [13] for both the generative and classification models with
learning rate equal to 103, B; = 0.5, and B, = 0.999. All tasks are trained for no more than
80000 iterations.

Exponential moving average of model parameters. As suggested in [22], using the av-
eraged model parameters over the training process tends to result in a better model than
directly using the parameters obtained at the last iteration. We thus keep the model pa-
rameters 6; of D at each iteration and then use their exponential moving average (EMA)
Oema in the final classification model D(x,0gy4). We calculate the EMA parameters by
Oema = Opya + (1 — )6, where 6, refers to the model parameters of the /" iteration and
a is set as 0.998 in our experiments. In general, EMA models provide more stable and
slightly better results than non-EMA models.

4.3 Experimental Results and Discussion

Evaluation of loss functions. Table 1 shows the performance of using different combi-
nations or variants of loss terms in the proposed model. In Table 1, DNN-SO is the model
trained on supervised source data XS only, DANN-O is our implementation of domain adver-
sarial training, DANN-C is the model which includes the conditional entropy loss of target
data X on DANN-O model, GAGL-FM is the model using the feature-matching GAN [25]
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Source | SVHN  MNIST Syn-Num  MNIST  CIFAR STL  Syn-Signs

Target | MNIST SVHN SVHN MNIST-M STL CIFAR GTSRB
DNN-SO 85.7 41.0 90.1 64.4 75.3 56.7 95.5
DAN [18] 71.1 - 88.0 76.9 - - 91.1
DANN [8] 71.1 35.7 90.3 81.5 - - 88.7
ADDA [32] 76.0 - - - - - -
SBADA-GAN [23] 76.1 61.1 - 99.4 - - 96.7
DIFA [34] 89.7 - 93.0 - - - -
ATT [24] 92.0 52.8 94.2 - - - 96.2
Assoc. [11] 97.6 - 91.9 89.5 - - 97.1
VADA [29] 94.5 733 94.9 95.7 78.3 714 99.2
DIRT-T [29] 99.4 76.5 96.2 98.7 - 73.3 99.6
Self-ensemble [7] 99.5 37.5 97.1 - 80.0 69.9 994
GAGL ‘ 96.7 74.6 93.1 94.9 77.0 61.5 97.6

Table 2: Comparison with existing methods on UDA benchmarks.

(i.e., matching the statistic mean values of two distributions) as the distribution criterion
Dist(-,-) in the generator loss Lg, and GAGL is the proposed model, which use CMD [35]
as the criterion Dist (-, -).

We first investigate the loss terms in domain adversarial training. In the first two rows of
Table 1, although including the domain prediction loss L, to label prediction loss L, improves
the classification performance in most cases, we observe that, in Syn-Num — SVHN and
Syn-Signs — GTSRB tasks, including L, even deteriorates the performance. Because the
two tasks involve adaptation from synthetic data to real data, the domain adversarial learning
alone is insufficient to generalize the learnt model to a much complex target domain. This
also verifies our claim that a domain-invariant model does not necessarily lead to a target
discriminative model.

Next, when including the generator model, we see that both GAGL-FM and GAGL im-
prove the performance over DANN-O with a considerable margin. These results support our
argument that both domain-invariant and target discriminative issues are essential to domain
adaptation tasks. Moreover, we observe that GAGL generally performs better than GAGL-
FM. One possible reason is that GAGL learns a better generator model through using a more
effective distribution matching measurement CMD [35] in the generator loss Lg. The results
show that a generative adversarial learning guided by an effective generator really affects the
performance of GAGL model.

In Table 1, we also show the results of DANN-C, where we add the conditional entropy
loss of the target data X7 to DANN-O model. The goal of conditional entropy loss is to learn
discriminative model by enforcing confident prediction on X”; however, learning directly
from noisy or wrong predictions of X7 may lead to undesirable model, especially when
there exists great diversity in X”. Therefore, the proposed GAGL outperforms DANN-C
model in most tasks, especially in MNIST — SVHN by more than 10%.

Comparisons. Table 2 shows the comparisons with existing methods on seven UDA bench-
marks. The proposed GAGL achieves promising performance on most of the tasks. In com-
parison with ADDA [32], which did not explicitly address the target discriminative issue, the
proposed GAGL not only learns a source discriminative model but also enforces the model
to be target discriminative under the guidance of the generator. Thus, the learnt classification
model can better generalize to the target domain. Note that, Self-ensemble [7] introduced
additional data augmentation, including translation, flipping, and affine augmentation, to the
task; whereas we only apply learnable instance normalization layer to our model. In DIRT-
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(b)

Figure 3: Visualization of feature representation from MNIST (blue) — MNIST-M (red) task
via t-SNE. (a): DNN-SO; (b): DANN-O; (¢): GAGL.

T [29], the authors assumed that a well-trained model on the source domain may degrade
the performance on the target domain; thus, DIRT-T [29] is trained specifically for the tar-
get domain and thus usually achieve the best performance for each specific task. In the
MNIST — SVHN task, our method especially achieves promising performance. In com-
parison with VADA [29], which includes conditional entropy loss to explicitly enforce the
prediction confidence of target data X7, our model is less prone to the noisy or wrong pre-
dictions of X”. Moreover, the proposed GAGL directly learns a target discriminative model
through generative adversarial guided learning and thus achieve comparable results on the
UDA benchmarks.
Visualization. Figure 3 shows the t-SNE visualization [33] of feature representation in
MNIST — MNIST-M task before the last dense layer of classification model D. We ran-
domly select 3000 samples from the testing sets of both datasets, and show the visualization
of 3 different models: DNN-SO, DANN-O, and GAGL. In the DNN-SO, the target samples
spread farther away from source clusters and are widely scattered. The two models DANN-
O and GAGL better preserve the clustering structures on the target samples. DANN-O pro-
duced several small clusters between large ones; these small clusters may contain ambigu-
ous samples (e.g., domain-invariant but not discriminative) resulted from domain adversarial
training. On the other hand, GAGL generally produced clusters with clear separability on
the target samples. More t-SNE visualization data are provided in the supplementary file.
Figure 4 shows some random samples generated by the generative network. Although
the images do not look visually plausible, these results meets the theoretical analysis in
[5, 15] that the generated samples, which influence most to the classification model, are
neither very realistic nor unreal ones. These moderate samples contribute the most to guide
the decision boundary away from high density areas. Moreover, as the generative model
in GAGL is meant to guide the classification model to generalize to the target domain, the
generator trained by GAGL may not fit for synthesizing realistic images. On the other hand,
we observe some slight mode collapsing (e.g., Figure 4 (¢)&(d)). Nevertheless, because our
goal is not to generate realistic images with high diversity, our experimental results verify
that the guided learning from generated samples indeed improve the classification model in
UDA tasks.

Discussion. Figure 5 shows a failure case in the MNIST — SVHN task. As shown in
Figure 5 (a), the confusion matrix shows that all the other categories are classified with
around 75% accuracy, except for the category of number 6. When examining this category
of number 6, we found that many samples are misclassified as 0, 5, or 8 and thus have only
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Figure 4: Samples generated from MNIST <+ SVHN tasks. (a)&(b): MNIST — SVHN;
(¢)&(d): SVHN — MNIST.
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Figure 5: A failure case in the MNIST — SVHN task. (a): The confusion matrix; (b): the
correctly classified samples; and (c): the wrongly classified samples.

37% classification accuracy. Nevertheless, as shown in Figure 5 (b) and (c), the correctly and
wrongly classified samples actually look very similar. We suspect that, the poor performance
is attributed to the noisy guided learning in the beginning of the training stage. That is, some
target samples in this category are guided into wrong clusters. Although we did not observe
similar situation in our other experiments, this problem seems more likely to occur when both
the source-target domain shift and the target domain intra-class variance are comparatively
large, such as in this MNIST — SVHN task.

5 Conclusion

This paper proposed a Generative Adversarial Guided Learning (GAGL) model to tackle
the unsupervised domain adaptation problem, especially focus on the source-target domain
shift problem and on learning a target discriminative model. We adopt the concept of do-
main adversarial training to build a domain-invariant classification model. By incorporating
a generative network, we further push the decision boundary of the classification model away
from high-density area of the target data. The proposed end-to-end GAGL model simultane-
ously learns the classification model and refines its decision boundary under the guidance of
the generative network. Experimental results verify the effectiveness of the proposed GAGL
model and show that GAGL achieves competitive results with state-of-the-art methods on
standard UDA benchmarks. In the future, we will investigate the relation between mode col-
lapsing and GAGL and will verify the effectiveness of GAGL on higher resolution images.
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