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Abstract

Semantic segmentation architectures are mainly built upon an encoder-decoder struc-
ture. These models perform subsequent downsampling operations in the encoder. Since
operations on high-resolution activation maps are computationally expensive, usually the
decoder produces output segmentation maps by upsampling with parameters-free opera-
tors like bilinear or nearest-neighbor. We propose a Neural Network named Guided Up-
sampling Network which consists of a multiresolution architecture that jointly exploits
high-resolution and large context information. Then we introduce a new module named
Guided Upsampling Module (GUM) that enriches upsampling operators by introducing a
learnable transformation for semantic maps. It can be plugged into any existing encoder-
decoder architecture with little modifications and low additional computation cost. We
show with quantitative and qualitative experiments how our network benefits from the
use of GUM module. A comprehensive set of experiments on the publicly available
Cityscapes dataset demonstrates that Guided Upsampling Network can efficiently pro-
cess high-resolution images in real-time while attaining state-of-the art performances.

1 Introduction

Most of the current state-of-the-art architectures for image segmentation rely on an encoder-
decoder structure to obtain high-resolution predictions and, at the same time, to exploit large
context information. One way to increase network receptive fields is to perform downsam-
pling operations like pooling or convolutions with large stride. Reduction of spatial resolu-
tion is twice beneficial because it also lightens the computational burden. Even state-of-the-
art architectures that make use of dilated convolutions [5, 23, 25], employ some downsam-
pling operators in order to maintain the computation feasible. Semantic maps are usually
predicted at 1/8 or 1/16 of the target resolution and then they are upsampled using nearest
neighbor or bilinear interpolation.

1.1 Our focus and contribution

We focus on Semantic Segmentation of street scenes for automotive applications where a
model needs to be run continuously on vehicles to take fast decisions in response to envi-
ronmental events. For this reason, our design choices are the result of a trade-off between
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Figure 1: Guided Upsampling Network (GUN) architecture. Two branches with partially
shared weights extract fine and coarse features. Signals are merged by a fusion module.
Output is produced by Guided Upsampling Module (GUM) which exploits high-resolution
features from earliest layers and complex features from deepest ones.

processing speed and accuracy. Our work focuses on a fast architecture with a lightweight
decoder that makes use of a more effective upsampling operator. Our contributions are the
following:

e We developed a novel multi-resolution network architecture named Guided Upsam-
pling Network, presented in Section 3 that is able to achieve high-quality predictions
without sacrificing speed. Our system can process a 512x1024 resolution image on a
single GPU at 33 FPS while attaining 70.4% IoU on the cityscapes test dataset.

e We designed our network in an incremental way outlining pros and cons of every
choice and we included all crucial implementation details in Section 3.1 to make our
experiments easily repeatable.

e We designed a novel module named GUM (Guided Upsampling Module, introduced
in Section 4) to efficiently exploit high-resolution clues during upsampling.

1.2 Related works

[7, 8, 17] represent the pioneer works that employed CNNs for semantic segmentation. FCN
[15] laid the foundations for modern architectures where CNNs are employed in a fully-
convolutional way. Authors used a pre-trained encoder together with a simple decoder mod-
ule that takes advantage of skip-connections from lower layers to exploit high-resolution
feature maps. They obtained a significant improvement both in terms of accuracy and effi-
ciency. DeepLab [2] made use of Dilated Convolutions [22] to increase the receptive field
of inner layers without increasing the overall number of parameters. After the introduction
of Residual Networks (Resnets) [9] most methods employed a very deep Resnet as encoder
e.g. DeepLabv2 [4] Resnet38 [21] FRRN [18], pushing forward the performance boundary
on semantic segmentation task. PSPNet [25] and DeepLabv3 [5] introduced context layers
in order to expand the theoretical receptive field of inner layers. All these methods attain
high accuracy on different benchmarks but at high computational costs.
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Efficiency-oriented architectures. ENet authors [16] headed towards a high-speed archi-
tecture, dramatically raising model efficiency, but sacrificing accuracy. SegNet [1] intro-
duced an efficient way to exploit high-resolution information by saving max-pooling indices
from the encoder and using them during upsampling. ICNet [24] design is based on a three
branches architecture exploiting deep supervision for training. ERFNet [19] implements an
efficient Residual Factorized Convolution layer in order to achieve high a accuracy while
being particularly efficient.

2 Dataset and evaluation metrics

All the experiments presented in this work have been performed on Cityscapes [6]. It is
a dataset of urban scenes images with semantic pixelwise annotations. It consists of 5000
finely annotated high-resolution images (2048x1024) of which 2975, 500, and 1525 belong
to train, validation and test sets respectively. Annotations include 30 different object classes
but only 19 are used to train and evaluate models. Adopted evaluation metrics are mean
of class-wise Intersection over Union (mloU) and Frame Per Second (FPS), defined as the
inverse of time needed for our network to perform a single forward pass. FPS reported in the
following sections are estimated on a single Titan Xp GPU.

3 Network design

In this section we describe in details our network architecture. Most works in literature ex-
pose the final model followed by an ablation study. This is motivated by an implicit inductive
prior towards simpler models, i.e. simpler is better. Even though we agree with this line of
thought we designed our experiments following a different path: by incremental steps. We
started from a baseline model and incrementally added single features analyzing benefits and
disadvantages. Our network architecture, based on a fully-convolutional encoder-decoder, is
presented in details in the following subsections.

Input downsampling A naive way to speed up inference process in real-time applications
is to subsample the the input image. This comes at a price. Loss of fine details hurts perfor-
mance because borders between classes and fine texture information are lost. We investigated
a trade-off between system speed and accuracy. We used a DRN-D-22 model [23] pre-trained
on Imagenet as encoder and a simple bilinear upsampling as decoder. First column of Table
1 shows the mIoU of the baseline model without any subsampling. In the second column
the same model is trained and evaluated with input images subsampled by factor 4. Model
speed increases from 6.7 FPS to 50.6 which is far beyond real-time but, as expected, there is
a big (8%) performance drop.

Multiresolution encoder As a second experiment we designed a multi-resolution architec-
ture as a good compromise to speed up the system without sacrificing its discriminative
power. Our encoder consists of two branches: a low-resolution branch which is composed of
all the layers of a Dilated Residual Network 22 type D (DRN-D-22) [23] with the exception
of the last two. A medium-resolution branch with only the first layers of the DRN-D-22
before dilated convolutions. The main idea is to induce the first branch to extract large
context features while inducing the second to extract more local features that will help to
recover fine details during decoding. We experimented 3 different encoder configurations.
The first named enc24 in Table | consists of two branches that process input images with
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Encoder baseline ‘ enc4d ‘ enc24 ‘ enc24shared ‘ encl24shared ‘
Multiresolution v v v
Shared Parameters v v
Subsampling factor 1 4 2+4 2+4 1+2+4
mloU (%) 65.5 575 | 61.5 63.0 64.2

FPS 6.7 50.6 | 38.7 38.7 24.9

Table 1: Performance on Cityscapes validation set and speed (FPS) of four encoder architec-
tures. baseline is a full-resolution network. enc4 is trained and evaluated with downsampled
input. enc24 and encl24 means 2 and 3 branches with subsampling factors 2,4 and 1,2,4
respectively. shared means that weights are partially shared between branches. In bold the

configuration adopted in the final model.
Sl
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(a) base sum (b) postproc sum
Figure 2: Two fusion module configurations. Both exploit addiction as merge strategy. post-
proc sum performs a dimensionality reduction.

sub-sampling factors 2 and 4 with the structure defined above. The second configuration
named enc24shared is similar to the first. The only difference is weight sharing between
the two branches. Results in Table 1 show that the network with shared branches achieve
better performance. We argue that, by reducing the number of network parameters, weight
sharing between branches, induces an implicit form of regularization. For this reason we
used this configuration as base encoder for the next experiments. In the third configuration
named encl24shared in Table 1 we added a further branch to elaborate full-resolution image.
This indeed brought some performance improvements but we decided to discard this con-
figuration because operations at full resolution are computationally too heavy and the whole
system would slow down below the real-time threshold (30FPS). To train and evaluate the
different encoder designs in Table 1 we fixed the decoder architecture to a configuration
which is referred in Subsection 3 as baseline. Figure 1 depicts the second encoder design
enc24shared. Others have been omitted for space reasons but can be intuitively deduced.

Fusion module. It is the first part of our decoder. It joins information flows coming
from the two encoder branches extracted at multiple resolutions. Input from low-resolution

‘ Fusion Module ‘ base sum ‘ base concat ‘ postproc sum ‘ postproc concat ‘
Sum v v
Concat v v
Postprocessing Step v v
mloU (%) 63.0 63.5 65.8 64.2
FPS 38.7 37.8 373 36.4

Table 2: mloU on Cityscapes val set and FPS for different fusion modules. Differences
are: signal summation or concatenation and presence of a post-processing step. In bold the
configuration adopted in the final model.
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| Transformation | baseline | color jitter | lighting jitter | random scale |
| mloU (%) | 658 [ 626 [ 642 | 67.5 \

Table 3: mIoU on Cityscapes validation set with different data augmentation techniques used
during training. In bold the configuration adopted in the final model.

branch is up-sampled to match the spatial size of signal coming from the medium-resolution
branch. Input coming from medium-resolution branch is expanded from 128 to 512 channels
to match the number of features of the first branch. Then multi-resolution signals are merged
and further processed. In Table 2 are reported experimental results of four different designs.
We experimented channel concatenation and addiction as merge strategies for signals coming
from the two branches, named concat and sum respectively. We further investigated if the
network benefits from feeding the final classification layer directly with the signal after the
merge operation (base in Table 2), or if a dimensionality reduction brings improvements
(postproc). From experimental results shown in Table 2 both mloU and speed take advantage
of the post-processing step. The model is empowered by adding more convolutions and non-
linearities and the final upsampling operations are applied to a smaller feature space. Figure 2
depicts two different configurations: base sum and postproc sum, both with addiction merge
strategy, without and with the post-processing step. Fusion modules with concat as merge
strategy have a similar structure.

3.1 Training recipes

In this section we expose our training recipes: some considerations about hyper-parameters
and their values used to train our models plus a small paragraph on synthetic data augmen-
tation. For all experiments in this paper we trained the network with SGD plus momentum.
Following [23] we set learning rate to 0.001 and trained every model for at least 250 epochs.
We adopted a step learning rate policy. The initial value is decreased every 100 epochs by
a order of magnitude. We also tried different base learning rates and poly learning rate pol-
icy from [2] but we obtained better results with our baseline configuration. We found out
that batch size is a very sensitive parameter affecting the final accuracy. After experiment-
ing with different values we set it to 8. In contrast to what pointed out in [3], increasing
the batch size, in our case, hurts performance. Batch size affect performance because of
intra-batch dependencies introduced by Batch Normalization layers. We argue that, in our
case, the higher stochasticity introduced by intra-batch dependencies acts as regularizer, thus
effectively improving the final network performance.

Synthetic data augmentation. Considering the low amount of data used to train our net-
work i.e. 2970 fine-annotated images from Cityscapes dataset, we decided to investigate
some well-known data augmentation techniques. The application of these techniques is al-
most cost-free in terms of computational resources. They do not increase processing time
during inference and they can be applied as a CPU pre-processing step during training. This
is in line with the research direction of this work which goal is to push forward accuracy
while maintaining a real-time inference speed. Since our system is supposed to work with
outdoor scenes and thus dealing with a high variability of lighting conditions we exper-
imented the use of some light transformations. Color Jitter consists in modifying image
brightness, saturation and contrast in random-order. Lighting Jitter is a PCA based noise
jittering from [13], we used ¢ = 0.1 as standard deviation to generate random noise. We
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Figure 3: Guided Upsampling Module (GUM). The Guidance Module produces a Guidance
Offset Table which steers the upsampling process.

also experimented a geometric transform: rescaling image with a scale factor between 0.5
and 2, borrowing values from [23]. Table 3 shows the results of applying data augmentation
techniques described in this section. Only random scale brought some improvements, thus
we decided to include it in our training pipeline for the next experiments.

4 Guided upsampling module

In this section we introduce Guided Upsampling Module (GUM). It is born from the intuition
that generating a semantic map by predicting independently every single pixel is quite inef-
ficient. It is a matter of fact that most algorithms that perform semantic segmentation do not
predict full resolution maps [5, 15, 23, 24, 25]. They produce a low-resolution map that is up-
sampled with a parameters-free operator. Usually Nearest Neighbor or Bilinear upsampling
are employed. When upsampling a low-resolution map, pixels close to object boundaries are
often assigned to the wrong class, see Figure 3 (a). The idea behind GUM is to guide the
upsampling operator through a guidance table of offsets vectors that steer sampling towards
the correct semantic class. Figure 3 (b) depicts the Guided Upsampling Module. A Guidance
Module predicts a high-resolution Guidance Offset Table. Then GUM performs a Nearest
Neighbor upsampling by exploiting the Offset Table as steering guide. Each bidimensional
coordinates vector of the regular sampling grid is summed with its corresponding bidimen-
sional vector from the Guidance Offset Table. In Figure 3 the GUM module is presented
in conjunction with Nearest Neighbor for simplicity, however, with simple modifications,
GUM can be employed along with Bilinear operator.

Nearest Neighbor and Bilinear operators perform upsampling by superimposing a regular
grid on the input feature map. Given G; the regular input sampling grid, the output grid is
produced by a linear transformation 7g(G;). For the specific case of upsampling, Ty is

simply defined as:
2\ e o]k

where (xf,y}) € G; are source coordinates, (x},y}) are target coordinates and 6 represents the
upsampling factor. Given V; the output feature map and U, the input feature map, GUM
can be defined as follows:

H W
Vi:;;UnmS(LXf'FPi-FO.SJ—m)6(|_yls.+qi_|_0.5J_n) )
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where |x{ +0.5] rounds coordinates to the nearest integer location and 0 is a Kronecker delta
function. Equation 2 represents a sum over the whole sampling grid U,,,, where, through the
Kronecker function, only a single specific location is selected and copied to the output. p;
and g; represents the two offsets that shifts the sampling coordinates of each grid element
in x and y dimensions respectively. They are the output of a function ¢; of i, the Guidance

Module, defined as:
pi
) 3
oi ( qi> (3

Notice that V; and U,,, are defined as bi-dimensional feature maps. The upsampling transfor-
mation is supposed to be consistent between channels therefore, equations presented in this
section, generalize to multiple channels feature maps. In a similar way the bilinear sampling
operator can be defined as:

H W
Vi=YY Upnmax(0,1— |x} + pi —m|)max (0,1 — |y} +¢; — nl) (4)

n m

The resulting operator is differentiable with respect to U and p;. We do not need the operator
to be differentiable with respect to x} because G; is a fixed regular grid. Equations above
follows the notation used by Jaderberg et al. in [10]. In the following paragraph we will
briefly outline the connection between Guided Upsampling Module and Spatial Transformer
Networks.

Connection with Spatial Transformer Networks (STN) [10] They introduce the ability
for Convolutional Neural Networks to spatially warp the input signal with a learnable trans-
formation. Authors of [10] separate an STN into three distinct modules: Localization Net,
Grid Generator and Grid Sampler. Localization Net can be any function that outputs the
transformation parameters conditioned on a particular input. Grid Generator takes as input
the transformation parameters and warp a regular grid to match that specific transformation.
Finally the Grid Sampler samples the input signal accordingly. Our Guided Upsampling
Module can be interpreted as a Spatial Transformer Network where the Guidance Module
plays the role of Localization Net and Grid Generator together. An STN explicitly outputs
the parameters of a defined a priori transformation and then applies them to warp the regular
sampling grid. GUM directly outputs offsets on x and y directions to warp the regular sam-
pling grid without explicitly model the transformation. Grid Sampler plays the exact same
role both in GUM and STN. Since Grid Sampler module is already implemented in ma-
jor Deep Learning Frameworks e.g. PyTorch, TensorFlow, Caffe etc., integration of GUM
within existing CNN architectures is quite straightforward.

Guidance module. The role of Guidance Module is to predict the Guidance Offset Table: the
bidimensional grid that guides the upsampling process. The Guidance Module is a function
which output is a tensor with specific dimensions: HxWxC where H and W represents width
and height of the high-resolution output semantic map and C = 2 is the dimension containing
the two offset coordinates w.r.t x and y. We implemented the Guidance Module as a branch of
our Neural Network, thus parameters are trainable end-to-end by backpropagation together
with the whole network. We experimented three different designs for our Guidance Module
and we named them large-rf, high-res and fusion.

o large-rf it is composed of three upsampling layers interleaved by Conv-BatchNorm-
Relu blocks. It takes the output of the fusion module and gradually upsample it. This
design relies on deep network layers activations with large receptive fields but doesn’t
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‘ Guidance Module ‘ baseline ‘ large-rf ‘ high-res ‘ fusion ‘
Large receptive-fields v v
High resolution details v v
mloU (%) 67.5 69.36 69.29 69.64
FPS 373 26.3 34.8 33.3

Table 4: mloU and FPS with different Guidance Modules. large-rf exploits signal from
deeper layers. high-res exploits signal from early layers. fusion uses both. In bold the
configuration adopted in the final model.

—*— baseline (no-GUM)
~»— GUM-large-rf
—+— GUM-high-res

30 —¥— GUM-fusion

o 5 10 15 20 25 30 35
Trimap width (pixels)

(a) (b)
Figure 4: (a) Trimap experiment for different Guidance Modules. Major improvement is
w.r.t the baseline. (b) Examples of improved boundaries with GUM.

exploit high-resolution information. It is the most computationally demanding, due to
the number of layers required.

e high-res it is composed by a single convolutional layer that takes as input a high-
resolution activation map from the last Convolution before downsampling in the medium-
resolution branch (see Section 3). The convolutional layer is a 1x1 kernel and maps
the 32-dimensional feature space to a 2-dimensional feature space. It is almost free
in terms of computational costs because, with our architecture, it only requires 64
additional parameters and the same number of additional per-pixel operations.

e fusion it lies in the middle between large-rf and high-res modules. It merges informa-
tion coming from high-resolution and large-receptive-field activation maps using the
base sum fusion module described in Section 3. It is a good compromise in terms of
efficiency since it requires only two Conv-BatchNorm blocks and a single upsampling
layer. Despite that, it is the one with most impact on performance because it exploit
the required semantic information being at the same time faster than the iterative up-
sampling of large-rf design.

Table 4 reports mloU on Cityscapes validation set and speed of the overall network in FPS.
Best performance are achieved with fusion Guidance Module.

S Boundaries analysis

To asses the behavior of our Guided Upsampling Network near object boundaries we per-
formed a trimap experiment inspired by [2, 5, 11, 12]. The trimap experiment in [2, 5] was
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run on Pascal VOC where semantic annotations include a specific class to be ignored in train
and evaluation in correspondence with object boundaries. The trimap experiment was carried
out by gradually increasing annotation borders with a morphological structuring element and
considering for the evaluation only pixels belonging to the expanded boundaries. To the best
of our knowledge we are the first to perform the trimap experiment on Cityscapes dataset.
Since there is no boundary class to expand we decided to implement the experiment in a
different but equivalent way: for each object class independently we computed the distance
transform on ground-truth maps. Then we performed the trimap experiment by gradually in-
creasing the threshold on our computed distance transform map to include pixels at different
distances from object boundaries. Figure 4 shows a qualitative and quantitative comparison
of the three Guidance Modules i.e. large-rf, high-res and fusion with respect to the baseline,
where baseline is the exact same network with bilinear upsampling instead of GUM. There
is a clear advantage in using GUM versus the baseline. The type of Guidance Module does
not drastically affect the results even though GUM with fusion achieve slightly higher mloU
levels.

6 Comparison with the state-of-the-art

In Table 5 we reported performance of Guided Upsampling Network along with state-of-the-
art methods on Cityscapes test set. Segmentation quality has been evaluated by Cityscapes
evaluation server and it is reported in the official leaderboard'. FPS in Table 5 have been
estimated on a single Titan Xp GPU. For fairness we only included algorithms that declare
their running time on Cityscapes leaderboard, even though DeepLabv3+[5] has been listed
in Table 5 as a reference for accuracy-oriented methods. Usually, methods that do not care
about processing time, are computationally heavy. Most of them e.g. PSPNet, DeepLabv3
[5, 25] achieve very high mloU levels, i.e. DeepLabv3+ is the best published model to date,
reaching 81.2%, but they adopt very time-consuming multi-scale testing to increase accuracy.
Our Guided Upsampling Network achieve 70.4% of mloU on Cityscapes test set without any
postprocessing. To the best of our knowledge this is the highest mloU for a published method
running at >30 FPS. It performs even better than some methods like Adelaide, Dilation10
etc. that do not care about speed.

7 Conclusions

We proposed a novel network architecture to perform real-time semantic segmentation of
street scene images. It consists of a multiresolution architecture to jointly exploit high-
resolution textures and large context information. We introduced a new module named
Guided Upsampling Module to improve upsampling operators by learning a transforma-
tion conditioned on high-resolution details. We included GUM in our network architecture
and we experimentally demonstrated performance improvements with low additional comp-
tutational costs. We evaluated our network on the Cityscapes test dataset showing that it is
able to achieve 70.4% mloU while running at 33.3 FPS on a single Titan Xp GPU. Further
details and a demo video can be found in our project page: http://www.ivl.disco.
unimib.it/activities/semantic-segmentation.

Thttps://www.cityscapes-dataset.com/benchmarks/
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[ Name | Subsampling  mloU(%) FPS |
SegNet [1] 4 570 264 5
ENet [16] 2 58.3 121.5 £
SQ [20] no 59.8 26.4 &
CRF-RNN [26] 2 62.5 22 =
DeepLab [2] 2 63.1 0.4 =
FCN-8S [15] no 65.3 49 g
Adelaide [14] no 66.4 0.05 3
Dilation10 [22] no 67.1 0.4 ©
ICNet [24] no 69.5 47.9 ?
ERFNet [19] 2 69.7 52.6 2
GUN (ours) 2 70.4 333 z
DeepLabv3+[5] no 81.2 n\a O

Table 5: Comparison with state-of-the-art Figure 5: From top to bottom respectively
methods on Cityscapes test set sorted by in- input image, ground-truth and prediction
creasing mloU. Our method in boldface. obtained with our Guided Upsampling Net.
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