
STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 1

A Decomposed Dual-Cross Generative
Adversarial Network for Image Rain Removal
Xin Jin
jinxustc@mail.ustc.edu.cn

Zhibo Chen
chenzhibo@ustc.edu.cn

Jianxin Lin
linjx@mail.ustc.edu.cn

Jiale Chen
chenjlcv@mail.ustc.edu.cn

Wei Zhou
weichou@mail.ustc.edu.cn

Chaowei Shan
cwshan@mail.ustc.edu.cn

CAS Key Laboratory of Technology in
Geo-spatial Information Processing and
Application System
University of Science and Technology
of China
Hefei 230027, China

Abstract
Rain removal is important for many computer vision applications, such as surveil-

lance, autonomous car, etc. Traditionally, rain removal is regarded as a signal removal
problem which usually causes over-smoothing by removing texture details in non-rain
background regions. This paper considers the issue of rain removal from a completely
different perspective, to treat rain removal as a signal decomposition problem. Specifi-
cally, we decompose the rain image into two components, namely non-rain background
image and rain streaks image. Then, we introduce an adversarial training mechanism to
synthesize non-rain background image and rain streaks image in a Dual-Cross manner,
which makes the two adversarial branches interact with each other, archiving a win-win
result ultimately. The proposed Decomposed Dual-Cross Generative Adversarial Net-
work (DDC-GAN) shows significantly performance improvement compared with state-
of-the-art methods on both synthetic and real-world images in terms of qualitative and
quantitative measures (over 3dB gains in PSNR).

1 Introduction
Unpredictable rainy conditions adversely affect the performance of many outdoor vision sys-
tems and cause them to likely fail especially in heavy rain, such as surveillance, autonomous
car, etc. Effective methods for removing rain streaks are needed for a wide range of practical
applications.

As a low-level image processing problem, rain removal is challenging due to the complex
appearance of natural scenes and the motion dynamics of rain streaks. Traditional methods
are usually suffered from the over-smoothing effect due to its inherent perspective of regard-
ing the issue as a signal removal problem [2, 7, 15, 21].
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Instead, this paper tries to understand the issue from a completely new perspective of
signal decomposition and proposes an end-to-end learning based model named Decomposed
Dual-Cross Generative Adversarial Network (DDC-GAN) and demonstrates its effectiveness
in rain removal problem.

2 Related Work
A lot of efforts have been dedicated towards rain removal in the past decades and almost
all these solutions model the problem as a basic signal removal problem. These methods
generally fall into two categories: video based and single-image based methods. Some re-
search works focus on recovering rain image from video sequences [2, 4, 7] by leveraging
more prior information, such as spatiotemporal correlation. Image rain removal problem is
usually more challenging without temporal context information and can be further classified
into after-mentioned two categories.

Traditional single-image based methods usually try to use different mathematical mod-
els to describe the non-rain background and the rain streaks image separately [11, 15, 21].
Recently, some single-image based rain removal algorithms model this problem as a layer
separation task. Luo et al. [21] use a discriminative sparse coding method to recover a clean
image from background images. Huang et al. [15] propose to separate the rain streaks from
the high frequency layer by sparse coding, with a learned dictionary. Li et al. [17] exploit
the Gaussian mixture models to separate the rain streaks, and patch-based priors are used for
both a clean layer and a rain layer, which still remain residual rain and block artifacts in the
synthesized background, i.e. rainy artifacts.

The renaissance of deep neural network (DNN) remarkably accelerates the progress of
image processing applications [1, 3, 19, 22, 23]. [5] tries to propose CNN-based rain removal
solution but gets unsatisfactory results. Recently, inspired by ResNet [10], Fu et al. [6] sim-
plified the learning process by changing the mapping form, and focusing on high-frequency
details during training. Yang et al. [27] proposed a deep recurrent rain removal network to
remove rain streaks progressively, which achieves the state-of-the-art performance even in
the presence of heavy rain and rain streak accumulation. However, such a mechanism con-
taining redundant convolution operations may still causes over-smoothness and blur artifacts
in the background.

In general, there still exists obvious over-smoothness and rainy artifacts in non-rain re-
gions due to the intrinsic overlapping between rain streaks and background texture patterns
in traditional signal removal frameworks. Therefore, we propose a Decomposed Dual-Cross
Generative Adversarial Network (DDC-GAN) for single-image rain removal, which can re-
move rain streaks as clean as possible while keeping the details of the no-rain background
intact. The contributions of this work are summarized as follows:

• We redefine the problem of single-image rain removal from the perspective of signal
decomposition and decomposed the model into two components (one for background,
the other for rain streaks) while preserving domain independent features. This unique
decomposed structure guarantees both the texture details of synthesized background
and rain streaks.

• For each component, we adopt a dual-cross adversarial learning mechanism to make
both the results of background and rain streaks indistinguishable from reality. Dif-
ferent from simple dual learning frameworks [9, 18, 28], we introduce a concept of
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Figure 1: Different images and corresponding histograms. (a) Rainy image; (b) Background
image; (c) Rain streak image; (d) Histograms of above images.

dual-cross adversarial learning where the background synthesized by one generator
has the ability to help the other generator infer realistic rain streaks, while the syn-
thesized rain streaks in turn lead to realistic background, and then achieve a win-win
result.

• To the best of our knowledge, it is the first paper to successfully introduce GAN [8,
13, 16, 24, 25, 29] to decrease the blur artifacts in de-rained images generated by
conventional networks with hallucinatory synthesis schemes.

• We train the network on synthetic data since the ground truth clean images correspond-
ing to real-world rainy images can not be publically available. We then show that the
learned network has strong generalization ability to deal with real-world test images.
Experimental results also demonstrate that our proposed DDC-GAN outperforms ex-
isting methods.

3 Decomposed Dual-Cross GAN (DDC-GAN)
We illustrate the proposed DDC-GAN framework in Figure 2. We will first briefly discuss
the statistical histograms of background image B and rain streaks image R in 3.1, and con-
clude from the analysis that they can be modeled separately from the perspective of signal
decomposition. Subsequently, we introduce our core ideas, network structure and mecha-
nisms in 3.2 and 3.3.

3.1 Analysis and Modeling
To improve the synthetic results, it is important to make the model to learn the regression
function well. This requires that the distribution of the input signal is consistent with the
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distribution of the target. As shown in Figure 1, we observe that background image B, rainy
image I, and rain streaks image R (R = I - B) have significant differences in pixel value
distributions. This implies that it is possible to decompose B and R into two separate com-
ponents, and achieve the successful regression for synthesized B and R separately. Therefore
we proposed a decomposed structure to decompose image R and image B separately.

3.2 Decomposed Structure

As described above, each component of the model corresponds to a generator as shown in
Figure 2. A rainy image I is first fed into two mutually independent generator GB and GR to
generate synthesized background B̂ and rain streaks R̂, respectively. Then, the two generators
swap positions to form a dual-cross structure as the orange dotted arrows denoted in Figure
2, GB receives the residual of I - R̂ and GR receives the residual of I - B̂ as input again. This
implies that this dual-cross operation assists GB to learn a regression function from B̂ to B̃ (I
- R̂), GR from R̂ to R̃ (I - B̂). Intuitively, the two generators form a closed loop, generating
informative feedback signals through interactive objective function to each other for better
convergence, which makes both synthesized background B̂ and B̃ simultaneously close to the
real one, and for R̂ and R̃ as well.

Figure 2: The structure of our proposed DDC-GAN. The testing stage is shown in the bottom
row and the other part is training stage.

3.3 Dual-Cross Adversarial Training Mechanism

In addition to the unique decomposed structure, we also leverage the dual learning techniques
and GAN theories to jointly optimize the DDC-GAN and restrict it from the perspective of
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signal decomposition, which is achieved by a set of loss functions shown as below. The
whole optimization process as pseudo code in Algorithm 1.

Algorithm 1 DDC-GAN training process
Require: Training inputs and labels {Ii}N

i=1 ⊂ Dinput , {B j}N
j=1 ⊂ Dbackground , {Rm}N

m=1 ⊂
Drain, batch size K, optimizer Opt(·, ·);

1: Randomly initialize GB, GR, D.
2: Randomly sample a minibatch of images and prepare the data pairs S =
{(Ik,Bk,Rk)}K

k=1.
3: Update the two decomposed generators as follows:

No.1 step: For any data pair (Ik,Bk,Rk) ∈ S , generate first-step synthesis B̂k, R̂k by E-
q.(1), and constitute the MSE loss function by Eq.(2);
No.2 step: The two generators GB, GR swap their position to form a dual-cross struc-
ture, generate second-step synthesis B̃k, R̃k by Eq.(3), and constitute the MSE-cross loss
function by Eq.(4);
No.3 step:
GB← Opt(GB,(1/K)∇GB ∑

K
k=1`MSE(B̂k,Bk)),

GB← Opt(GB,(1/K)∇GB ∑
K
k=1`MSE-cross(B̃k,Bk)),

GR← Opt(GR,(1/K)∇GR ∑
K
k=1`MSE(R̂k,Rk)),

GR← Opt(GR,(1/K)∇GR ∑
K
k=1`MSE-cross(R̃k,Rk));

4: Update the discriminators as follows:
D← Opt(D,(1/K)∇D∑

K
k=1`GAN(B̂k, B̃k,Bk));

5: Repeat step 2 to step 5 until convergence

3.3.1 Hybrid Loss Function

The key idea of our hybrid loss include dual-cross loss and GAN loss. Dual-cross loss
is to improve the performance of two generators by minimizing the square error between
synthesized results and targets. The following I,B,R, B̂, B̃, R̂, R̃ are shown in Figure 2. That
is,

B̂ = GB(I), R̂ = GR(I) (1)

`MSE = ‖GB(I)−B‖2 +‖GR(I)−R‖2 (2)

Furthermore, the dual generators swap their position to form a dual-cross structure.
Hence, GB receives the residual of I ĺC R̂ and GR receives the residual of I ĺC B̂ as input
respectively, and the corresponding loss function is defined as follows:

B̃ = GB(I− R̂), R̃ = GR(I− B̂) (3)

`MSE-cross = ‖GB(I− R̂)−B‖2 +‖GR(I− B̂)−R‖2 (4)

In general, the final `dual−cross is defined as:

`dual-cross = `MSE + `MSE-cross (5)
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Hence, this Ldual−corss allows the dual composed branches interact with each other. In
other words, the synthesized background can help to infer realistic rain streaks, while the
synthesized rain streaks in turn lead to realistic background. This makes each component
learn the corresponding regression function well and then achieve satisfactory synthesized
results.

In addition, The generators GB, GR try to minimize the whole objective function against
the adversarial discriminator D that tries to maximize it. The discriminator D learns to
distinguish real backgrounds from the synthesized ones. Since we end up with background
synthesis, we only update the parameters of GB during backward propagation period through
the loss function of GAN:

`GAN = log(D(B))+ log(1−D(GB(I)))

+ log(1−D(GB(I− R̂)))
(6)

In summary, the generators GB, GR and the discriminator D form a dual-cross generative
adversarial network together, which enables the DDC-GAN to generate more sharper and
realistic backgrounds and rain streaks. The whole model can be optimized by jointly solving
the learning problem with the following two loss functions:

min
GB,GR

max
D

`dual-cross(GB,GR)+λ`GAN(GB,D) (7)

where λ balances the dual-cross loss and GAN loss, and we set it to 0.8 in our experiments.

3.3.2 Basic Architectures of Generator and Discriminator

We aim to train an end-to-end deep neural network for the rain removal task, but the original
GAN [8] suffers from several training difficulties such as mode collapse and instable conver-
gence, thus we have redesigned the basic structures of our two decomposed generators and
single discriminator, which makes DDC-GAN focus on the synthesized qualities of results.
The new structures of our generators and discriminator are shown in supplementary material.

4 Experiments

Table 1: Quantitative Evaluation

Baselines Rain100L Rain100H

PSNR SSIM PSNR SSIM

ID 27.21 0.75 14.02 0.52
DSC 30.02 0.87 15.66 0.54
LP 32.02 0.91 14.26 0.42
SRCNN 34.41 0.94 20.02 0.67
Detail-Net 33.75 0.93 21.82 0.74
JORDER 36.02 0.96 23.45 0.75
SRGAN 35.07 0.94 25.45 0.87
DDC-CNN 34.95 0.94 25.11 0.85
DD-GAN 36.09 0.96 26.23 0.88
DDC-GAN 37.21 0.98 27.13 0.90
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4.1 Datasets
To evaluate our approach, we compare DDC-GAN with state-of-the-art methods on both syn-
thetic and real-world datasets: (1) Rain100L, which is the synthetic data set with synthetic
rain streaks described as [27]; (2) Rain100H, which is the synthetic data set with five streak
directions; (3) Real-world data set, which includes 20 real rain images with various types of
rain streaks. Note that, all the training and testing data sets that we use are derived from [6]
and [27], because they released their training and testing sets, as well as their source codes
for synthesizing datasets. Here we express our heartfelt thanks to authors. For the train-
ing stage, the networks take images of 64*64 resolution as inputs. But in the testing stage,
any resolution image size can be processed because our DDC-GAN is a fully convolutional
network [20].

4.2 Baseline Methods and Ablation Studies
We compare our proposed method with state-of-the-art de-raining methods: image decom-
position (ID) [15], layer priors (LP) [17], and discriminative sparse coding (DSC) [21]. Deep
detail network [6] and JORDER [27] are both published in CVPR 2017, and authors have
released their source code. SRCNN [14] and SRGAN [16] are implemented and trained by
ourselves for rain removal task according to the methods provided by the authors. For the
Quantitative Evaluation, two metrics Peak Signal-to-Noise Ratio (PSNR) [12] and Structure
Similarity Index (SSIM) [26] are used as comparison criteria. For the Qualitative Evalua-
tion. We not only show multiple subjective experimental results but also conduct a subjective
experiment to demonstrate the effectiveness of our model in generating perceptual pleased
results.

In order to analyse the efficacy of our decomposed network structure and dual-cross
adversarial training mechanism, we also implement three ablated baselines for comparison:

1. SRGAN[16]. SRGAN is the naive application of Generator-B, which could be inter-
preted as an ablated DDC-GAN without decomposed dual-cross structure and opti-
mization strategy, demonstrating the efficacy of decomposing and crossing procedure.

2. DDC-CNN. To further verify the effectiveness of adversarial optimization mechanism,
we remove the GAN loss of DDC-GAN during training and propose DDC-CNN.

3. DD-GAN. To further verify the effectiveness of our proposed crossing procedure, we
remove the cross operation of DDC-GAN during training and propose DD-GAN.

4.3 Quantitative Evaluation
Table 1 shows the results of different methods on Rain100L and Rain100H. From this table,
we can observe that our DDC-GAN significantly outperforms other models in terms of both
PSNR and SSIM. Note that our DDC-GAN has the ability to handle such heavy rainy cases,
and achieves considerably better results. In addition, DDC-GAN gains over 2 dB in PSNR
than other previous methods in heavy rain scene, such a large gain strongly demonstrates
that the decomposed structure and training mechanism significantly boost the performance.

In addition, the complexity and time cost of different learning-based methods cost is
an important issue. We further conducted a time cost comparison which was performed
on a personal computer with Intel core i7-7700 central processing unit (CPU) at 3.60GHz
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Figure 3: Results of different methods on synthetic (Top three rows) and real images (other
rows). From left to right: rain image, Detail-Net, JORDER, SRGAN and DDC-GAN. Note
that the image contents in the red boxes are enlarged and shown below the corresponding
images.
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and NVIDIA GeForce GTX 1080Ti GPU with 11GB memory. 5 synthetic rain pictures
at resolution 500*500 are used for test, and the cost time results in GPU of DDC-GAN,
Deep detail network [6], JORDER [27] are 6.27s, 6.51s, 7.69s respectively, which manifest
that our DDC-GAN is considerably faster than the existing state-of-the-art learning-based
methods.

4.4 Qualitative Evaluation

4.4.1 Evaluation on Synthetic and Real-world Test Data

Figure 3 shows the visual comparison of synthesized background images. As shown in the
second and third column, method [6] leaves residual rain streaks in the background. This
is because their method just uses signal-removal measures (i.e. filter) to extract pixel-wised
features and then some rain streaks still exist in the low frequency part. JORDER proposed
by [27] still generates smooth background due to the recurrent signal removal operation.
In contrast, our DDC-GAN shown in the last column can remove rain streaks while still
preserving details through our decomposed structure and training mechanism based on the
signal composition idea. Furthermore, the pure SRGAN model is also inferior to our method.

Furthermore, we have conducted a subjective test to perceptually evaluate the de-rain
results of our DDC-GAN and other methods. To build the subjective database, we choose 10
images randomly from Rain100L, Rain100H and real-world test data separately with a ratio
of 3:4:3. And each image is de-rained by Detail-Net, JORDER, SRGAN, and DDC-GAN
separately to generate 4 non-rain background images. Then 50 non-expert subjects are in-
vited to participate in the test by showing one rainy image together with its four de-rained
results by different methods. Every participant is instructed to vote for the best de-rained re-
sults based on the perceptual quality considering both rainy artifact and smoothness artifacts.
Table 2 shows that DDC-GAN gets 316 votes from total 500 votes, which demonstrate its
effectiveness in synthesizing more realistic and high-quality de-rained images. Finally, we
specially conducted the user study on the real-world test data separated out from the overall
combined subjective database (i.e. synthetic and real data set), the final results also showed
that DDC-GAN has a strong ability to get more votes from total votes than other methods.

Figure 4: Synthesized rain streaks results of
synthetic rainy image (top) and real-world
rainy image (bottom).

Table 2: Subjective Experiment. Voting situa-
tion of different methods, the higher the better.

Baselines Number of votes

Detail-Net 5

JORDER 111

SRGAN 68

DDC-GAN 316

Total 500
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4.4.2 Rain Streaks Results and Application Extension: Dehazing and Denoising

Finally, we indicate that our DDC-GAN can also synthesize rain streaks image based on our
decomposed network structure and the result corresponds to above R̃ in Figure 2. Figure
4 shows the synthesized rain streaks results of synthetic rainy image and real-world rainy
image. These results demonstrate that our proposed DDC-GAN also has the ability to infer
realistic rain streaks, which lay the foundation for better rain removal results based on the
idea of signal decomposition.

Finally, we mention that our DDC-GAN can be directly applied to other kinds of de-
graded images. The experimental results of image dehazing and denoising are illustrated in
supplemental material. This test demonstrates that our proposed DDC-GAN is actually a
general framework for image processing tasks.

5 Conclusions and Future Work
In this paper, we have introduced a Decomposed Dual-Cross Generative Adversarial Net-
work (DDC-GAN) based on the idea of signal decomposition to address the single-image
rain removal problem, especially in heavy rain. A decomposed network structure and a
dual-cross adversarial training mechanism are proposed for perfect de-rained processing
while still preserving texture details to the utmost extent. The two decomposed components
promote each other and make progress together through the dual-cross adversarial training
mechanism. Experiments demonstrate that our proposed DDC-GAN noticeably outperforms
other state-of-the-art methods, including traditional and DNN-based frameworks, in terms of
image perceptual and quantitative value. In the future, we can apply the proposed model to
more challenging computer vision tasks, and then popularize the signal decomposition idea
and dual-cross adversarial learning mechanism to more advanced and broader fields.
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