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Abstract

Traditional approaches for color propagation in videos rely on some form of match-

ing between consecutive video frames. Using appearance descriptors, colors are then

propagated both spatially and temporally. These methods, however, are computation-

ally expensive and do not take advantage of semantic information of the scene. In this

work we propose a deep learning framework for color propagation that combines a local

strategy, to propagate colors frame-by-frame ensuring temporal stability, and a global

strategy, using semantics for color propagation within a longer range. Our evaluation

shows the superiority of our strategy over existing video and image color propagation

methods as well as neural photo-realistic style transfer approaches.

1 Introduction

Color propagation is an important problem in video processing and has a wide range of ap-

plications. For example in movie making work-flow, where color modification for artistic

purposes [2] plays an important role. It is also used in the restoration and colorization of her-

itage footage [1] for more engaging experiences. Finally, the ability to faithfully propagate

colors in videos can have a direct impact on video compression.

Traditional approaches for color propagation rely on optical flow computation to propa-

gate colors in videos either from scribbles or fully colored frames. Estimating these corre-

spondence maps is computationally expensive and error prone. Inaccuracies in optical flow

can lead to color artifacts which accumulate over time. Recently, deep learning methods

have been proposed to take advantage of semantics for color propagation in images [56] and

videos [21]. Still, these approaches have some limitations and do not yet achieve satisfactory

results on video content.

In this work we propose a framework for color propagation in videos that combines local

and global strategies. Given the first frame of a sequence in color, the local strategy warps

these colors frame by frame based on the motion. However this local warping becomes less
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Ref. (k = 0) Image PropNet [56] Style transfer [26] SepConv [33] Video PropNet [21]

Ground Truth (k = 30) Phase-based [32] Bil.Solver [5] Flow-based [49] Ours

Figure 1: Color propagation after 30 frames (k = 30). Our approach is superior to existing

strategies for video color propagation. (Image source: [38])

reliable with increasing distance from the reference frame. To account for that we propose a

global strategy to transfer colors of the first frame based on semantics, through deep feature

matching. These approaches are combined through a fusion and refinement network to syn-

thesize the final image. The network is trained on video sequences and our evaluation shows

the superiority of the proposed method over image and video propagation methods as well

as neural style transfer approaches, see Figure 1.

Our main contribution is a deep learning architecture, that combines local and global

strategies for color propagation in videos. We use a two-stage training procedure necessary

to fully take advantage of both strategies. Our approach achieves state-of-the-art results as it

is able to maintain better colorization results over a longer time interval compared to a wide

range of methods.

2 Related work

2.1 Image and Video Colorization

A traditional approach to image colorization is to propagate colors or transformation param-

eters from user scribbles to unknown regions. Seminal works in this direction considered low

level affinities based on spatial and intensity distance [23]. To reduce user interaction, many

directions have been considered such as designing better similarities [29]. Other approaches

to improve edit propagation include embedding learning [9], iterative feature discrimina-

tion [50] or dictionary learning [10]. Achieving convincing results for automatic image

colorization [11, 20], deep convolutional networks have also been considered for edit prop-

agation [12] and interactive image colorization [56]. To extend edit propagation to videos,

computational efficiency is critical and various strategies have been investigated [3, 53].

One of the first method considering gray scale video colorization was proposed by Welsh et

al. [48] as a frame-to-frame color propagation. Later, image patch comparisons [43] were

used to handle large displacements and rotations. However this method targets cartoon con-

tent and is not directly adaptable to natural videos. Yatzi et al. [54] consider geodesic dis-

tance in the 3d spatio-temporal volume to color pixels in videos and Sheng et al. [40] replace

spatial distance by a distance based on Gabor features. The notion of reliability and prior-

ity [19] for coloring pixels allow better color propagation. These notions are extended to
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entire frames [49], considering several of them as sources for coloring next gray images.

For increased robustness, Pierre et al. [37] use a variational model that rely on temporal

correspondence maps estimated through patch matching and optical flow estimation.

Instead of using pixel correspondences, some recent methods have proposed alternative

approaches to the video colorization problem. Meyer et al. [32] transfer image edits as

modifications of the phase-based representation of the pixels. The main advantage is that ex-

pensive global optimization is avoided, however propagation is limited to only a few frames.

Paul et al. [35] uses instead of motion vectors the dominant orientations of a 3D steerable

pyramid decomposition as guidance for the color propagation of user scribbles. Jampani et

al. [21], on the other hand, use a temporal bilateral network for dense and video adaptive

filtering, followed by a spatial network to refine features.

2.2 Style Transfer

Video colorization can be seen as transferring the color or style of the first frame to the rest

of the images in the sequence. We only outline the main directions of color transfer as an ex-

tensive review of these methods is available in [13]. Many methods rely on histogram match-

ing [39] which can achieve surprisingly good results given their relative simplicity but colors

could be transferred between incoherent regions. Taking segmentation into account can help

to improve this aspect [44]. Color transfer between videos is also possible [6] by segmenting

the images using luminance and transferring chrominance. Recently Arbelot et al. [4] pro-

posed an edge-aware texture descriptor to guide the colorization. Other works focus on more

complex transformations such as changing the time of the day in photographs [41], artistic

edits [42] or season change [34].

Since the seminal work of Gatys et al. [15], various methods based on neural networks

have been proposed [24]. While most of them focus on painterly results, several recent

works have targeted photo-realistic style transfer [18, 26, 28, 31]. Mechrez et al. [31] rely

on Screened Poisson Equation to maintain the fidelity with the style image while constraining

the results to have gradients similar to the content image. In [28] photo-realism is maintained

by constraining the image transformation to be locally affine in color space. This is achieved

by adding a corresponding loss to the original neural style transfer formulation [14]. To avoid

the resulting slow optimization process, patch matching on VGG [18] features can be used

to obtain a guidance image. Finally, Li et al. [26] proposed a two stage architecture where

an initial stylized image, estimated through whitening and coloring transform (WCT) [25],

is refined with a smoothing step.

3 Overview

The goal of our method is to colorize a gray scale image sequence by propagating the given

color of the first frame to the following frames. Our proposed approach takes into account

two complementary aspects: short range and long range color propagation, see Figure 2.

The objective of the short range propagation network is to propagate colors on a frame

by frame basis. It takes as input two consecutive gray scale frames and estimates a warping

function. This warping function is used to transfer the colors of the previous frame to the next

one. Following recent trends [22, 33, 51], warping is expressed as a convolution process. In

our case we choose to use spatially adaptive kernels that account for motion and re-sampling

simultaneously [33], but other approaches based on optical flow could be considered as well.
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Figure 2: Overview. To propagate colors in a video we use both short range and long range

color propagation. First, the local color propagation network Fw uses consecutive gray scale

frames Gk−1 and Gk to predict spatially adaptive kernels that account for motion and re-

sampling from Ik−1. To globally transfer the colors from the reference frame I1 to the entire

video a matching based on deep image features is used. The results of these two steps, Is
k

and Iw
k , are together with Gk the input to the fusion and refinement network which estimates

the final current color frame Ik. (Image source: [38])

For longer range propagation, simply smoothing warped colors according to the gray

scale guide image is not sufficient. Semantic understanding of the scene is needed to transfer

color from the first colored frame of the video to the rest of the video sequence. In our case,

we find correspondences between pixels of the first frame and the rest of the video. Instead

of matching pixel colors directly we incorporate semantical information by matching deep

features extracted from the frames. These correspondences are then used in order to sample

colors from the first frame. Besides the advantage for long range color propagation, this

approach also helps to recover missing colors due to occlusion/dis-occlusion.

To combine the intermediate images of these two parallel stages, we use a convolutional

neural network. This corresponds to the fusion and refinement stage. As a result, the fi-

nal colored image is estimated by taking advantage of information that is present in both

intermediate images, i.e. local and global color information.

4 Approach

Let’s consider a grayscale video sequence G = {G1,G2, . . . ,Gn} of n frames, where the col-

ored image I1 (corresponding to G1) is available. Our objective is to use the frame I1 to

colorize the set of grayscale frames G. Using a local (frame-by-frame) strategy, colors of I1

can be sequentially propagated to the entire video using temporal consistency. With a global

strategy, colors present in the first frame I1 can be simultaneously transfered to all the frames

of the video using a style transfer like approach. In this work we propose a unified solution

for video colorization combining local and global strategies.

4.1 Local Color Propagation

Relying on temporal consistency, our objective is to propagate colors frame by frame. Using

the adaptive convolution approach developed for frame interpolation [33], one can similarly

write color propagation as convolution operation on the color image: given two consecutive
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grayscale frames Gk−1 and Gk, and the color frame Ik−1, an estimate of the colored frame Ik

can be expressed as

Iw
k (x,y) = Pk−1(x,y)∗Kk(x,y) , (1)

where Pk−1(x,y) is the image patch around pixel Ik−1(x,y) and Kk(x,y) is the estimated pixel

dependent convolution kernel based on Gk and Gk−1. This kernel is approximated with two

1D-kernels as

Kk(x,y) = Kv
k (x,y)∗Kh

k (x,y) . (2)

The convolutional neural network architecture used to predict these kernels is similar to the

one originally proposed for frame interpolation [33], with the difference that 2 kernels are

predicted (instead of 4 in the interpolation case). Furthermore, we use a softmax layer for

kernel prediction which helps to speedup training [46]. If we note Fw the prediction function,

the local color propagation can be written as

Iw
k = Fw(Gk,Gk−1, Ik−1;Λw) , (3)

with Λw being the set of trainable parameters.

4.2 Global Color Transfer

The local propagation strategy becomes less reliable as the frame to colorize is further away

from the first frame. This can be due to occlusions/dis-occlusions, new elements appearing

in the scene or even complete change of background (due to camera panning for example). In

this case, a global strategy with semantic understanding of the scene is necessary. It allows

to transfer color within a longer range both temporally and spatially. To achieve this, we

leverage deep feature extracted with convolutional neural networks trained for classification

and image segmentation. Similar ideas have been developed for style transfer and image

inpainting [24, 52].

Formally, we note ΦI,l the feature map extracted from the image I at layer l of a discrim-

inatively trained deep convolutional neural network. We can estimate a pixel-wise matching

between the reference frame G1 and the current frame to colorize Gk using their respective

features maps ΦG1,l and ΦGk,l . Similarity for two positions x,x′ is measured as:

SGk,G1
(x,x′) = ||ΦGk,l(x) − ΦG1,l(x

′)||22 . (4)

Transferring the colors using pixel descriptor matching can be written as:

Is
k(x) = I1(argmin

x′
SGk,G1

(x,x′)) . (5)

To maintain good quality for the matching, while being computationally efficient, we adopt a

two stage coarse-to-fine matching. Matching is first estimated for features from a deep layer

l = lcoarse. This first matching, at lower resolution, defines a region of interest for each pixel

in the second matching step of features at level l = lfine. The different levels l of the feature

maps correspond to different abstraction level. The coarse level matching allows to consider

regions that have similar semantics, whereas the fine matching step considers texture-like

statistics that are more effective once a region of interest has been defined. We note Fs the

global color transfer function

Is
k = Fs(Gk, I1,G1;Λs) , (6)
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Figure 3: Global Color Transfer. To transfer the colors of the first frame I1, feature maps

φG1
and φGk

are extracted from both inputs G1 and Gk. First, a matching is estimated at low

resolution. This matching performed on features from a deep layer (lcoarse) allows to consider

more abstract information. It is however too coarse to directly copy corresponding image

patches. Instead, we use this initial matching to restrict the search region when matching

pixels using low level image statistics (from level lfine feature map). Here we show the

region of interest (in blue) used to match the pixel in light green. All the pixels sharing the

same coarse positions (in dark green rectangle) share the same Region Of Interest (ROI).

Using the final matching, I1 colors are transfered to the current gray scale image Gk. (Image

source: [38])

with Λs being the set of trainable parameters. Figure 3 illustrates all the steps from feature

extraction to color transfer. Any neural network trained for image segmentation could be

used to compute the features maps. In our case we use ResNet-101 [17] architecture fine

tuned for semantic image segmentation [8]. For lcoarse we use the output of the last layer of

the conv3-block, while for lfine we use the output of the first conv1-block (but with stride 1).

4.3 Fusion and Refinement Network

The results we obtain from the local and global stages are complementary. The local color

propagation result is sharp with most of the fine details preserved. Colors are mostly well

estimated except at occlusion/dis-occlusion boundaries where some color bleeding can be

noticed. The result obtained from the global approach is very coarse but colors can be prop-

agated to a much larger range both temporally and spatially. Fusing these two results is

learned with a fully convolutional neural network.

For any given gray scale frame Gk, the local and global steps result in two estimates

of the color image Ik: Iw
k and Is

k . These intermediate results are leveraged by the proposed

convolutional network (Figure 2) to predict the final output:

Ik = Ff(Gk, I
w
k , I

s
k ;Λf) , (7)

where Ff notes the prediction function and Λf the set of trainable parameters.

Architecture details. The proposed fusion and refinement network consists of 5 convolu-

tional layers with 64 output channels each followed by a relu-activation function. To keep

the full resolution we use strides of 1 and increase the receptive field by using dilations of

1,2,4,1 and 1, respectively. To project the output to the final colors we us another convolu-

tional layer without any activation function. To improve training and the prediction we use

instance normalization [45] to jointly normalize the input frames. The computed statistics

are then also used to renormalize the final output.
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4.4 Training

Since all the layers we use are differentiable, the proposed framework is end-to-end trainable,

and can be seen as predicting the colored frame Îk from all the available inputs

Ik = F(Gk,Gk−1, Ik−1, I1;Λw,Λs,Λf). (8)

The network is trained to minimize the total objective function L over the dataset D
consisting of sequences of colored and gray scale images.

Λ
∗
f ,Λ

∗
w = argmin

Λ f ,Λw

EI1,I2,G1,G2∼D [L] . (9)

Image loss. We use the ℓ1-norm of pixel differences which has been shown to lead to sharper

results than ℓ2 [27, 30, 33]. This loss is computed on the final image estimate:

L1 = ||Ik − Îk||1 . (10)

Warp loss. The local propagation part of the network has to predict the kernels used to warp

the color image Ii−1. This is enforced through the warp loss. It is also computed as the

ℓ1-norm of pixel differences between the ground truth image Ii and Iw
i :

Lw = ||Ik − Iw
k ||1 . (11)

Since Iw
k is an intermediate result, using more sophisticated loss functions such as feature

loss [14] or adversarial loss [16] is not necessary. All the sharp details will be recovered by

the fusion network.

Training procedure. To train the network we used pairs of frames from video sequences

obtained from the DAVIS [36, 38] dataset and Youtube. We randomly extract patches of

256×256 from a total of 30k frames. We trained the fusion net with a batch size of 16 over

12 epochs.

To efficiently train the fusion network we first apply Fw and Fs separately to all training

video sequences. The resulting images Iw
k and Is

k show the limitations of their respective

generators Fw and Fs. The fusion network can then be trained to synthesize the best color

image from these two intermediate results. As input we provide Gk and the intermediate

images Iw
k and Is

k converted to Yuv-color space. Using the luminance channel helps the

prediction process as it can be seen as an indicator on the accuracy of the intermediate results.

The final image consists of the chrominance values estimated by the fusion network and Gk

as luminance channel.

Running time. At test time, the matching step is the most computationally involved. Still,

our naive implementation with TensorFlow computes high resolution (1280×720) edit prop-

agation within 5s per frame on a Titan X (Pascal).

5 Results

For our evaluation we used various types of videos. This includes videos from DAVIS [36,

38], using the same test set as in [21], as well as from [7]. We also test our approach on HD

videos from the video compression dataset [47].
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Figure 4: Ablation study. Using local color propagation based on [33] only preserve details

but is sensitive to occlusion/dis-occlusion. Using only global color transfer does not preserve

details and is not temporally stable. Best result is obtained when combining both strategies.

See Figure 9 for quantitative evaluation. (Image source: [7, 47])

Ground Truth Zhang et al. [56] Barron et al. [5] Ours

k
=

2
k
=

3
0

Figure 5: Comparison with image color propagation methods. Methods propagating

colors in a single image achieve good results on the first frame. The quality of the re-

sults degrades as the frame to colorize is further away from the reference image. (Image

source: [47])

Ablation Study. To show the importance of both the local and global strategy, we evaluate

both configuration. The local strategy is more effective for temporal stability and details

preservation but is sensitive to occlusion/dis-occlusion. Figure 4 shows an example where

color propagation is not possible due to an occluding object, and a global strategy is nec-

essary. Using a global strategy only is not sufficient, as some details are lost during the

matching step and temporal stability is not maintained (see video in supplemental material).

Comparison with image color propagation. Given a partially colored image, propagating

the colors to the entire image can be achieved using the bilateral space [5] or deep learn-

ing [56]. To extend these methods to video, we compute optical flow between consecutive

frames [55] and use it to warp the current color image (details provided in supplementary

material). These image based color methods achieve satisfactory color propagation on the

first few frames (Figure 5) but the quality quickly degrades. In the case of the bilateral solver,

there is no single set of parameters that performs satisfactorily on all the sequences. The deep

learning approach [56] is not designed for videos and drifts towards extreme values.

Comparison with video color propagation. Relying on optical flow to propagate colors

in a video is the most common approach. In addition to this, Xie et al. [49] also consider

frame re-ordering and use multiple reference frames. However, this costly process is limit-

ing as processing 30 HD frames requires several hours. Figure 1 and Figure 6 shows that
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Ground Truth Phase-based [32] Video PropNet [21] Flow-based [49] Ours
k
=
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k
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5

Figure 6: Comparison with video color propagation methods. Our approach best retains

the sharpness and colors of this video sequence. Our result was obtained in less than one

minute while the optical flow method [49] needed 5 hours for half the original resolution.

(Image source: [47])

Reference (k = 0) Gray (k = 25) Li et al. [26] Luan et al. [28] Ours

Figure 7: Comparison with photo-realistic style transfer. The reference frame is used as

style image. (Image source: [38])

we achieve similar or better quality in one minute. Phase-based representation can also be

used for edit propagation in videos [32]. This original approach to color propagation is how-

ever limited by the difficulty in propagating high frequencies. Recently, video propagation

networks [21] were proposed to propagate information forward through a video. Color prop-

agation is a natural application of such networks. Contrary to the fast bilateral solver [5] that

only operates on the bilateral grid, video propagation networks [21] benefits from a spatial

refinement module and achieve sharper and better results. Still, by relying on standard bilat-

eral features (i.e. colors, position, time) colors can be mixed and propagated from incorrect

regions, which leads to the global impression of washed out colors.

Comparison with photo-realistic style transfer. Propagating colors of a reference image is

the problem solved by photo-realistic style transfer methods [26, 28]. These method replicate

the global look but little emphasize is put on transferring the exact colors (see Figure 7).

Quantitative evaluation. Our test set consists of 69 videos which span a large range of sce-

narios with videos containing various amounts of motions, occlusions/dis-occlusion, change

of background and object appearing/disappearing. Due to their prohibitive running time,

some methods [28, 49] are not included in this quantitative evaluation. Figures 8 and 9 show

the details of this evaluation. For a better understanding of the temporal behavior of the

different methods, we plot error evolution over time averaged for all sequences. On the first

frames, our results are almost indistinguishable from a local strategy (with very similar error

values) but we quickly see the benefit of the global matching strategy. Our approach consis-

tently outperforms related approaches for every frame and is able to propagate colors within

a much larger time frame. Results of the video propagation networks [21] vary largely de-

pending on the sequence, which explain the inconsistent numerical performance on our large

test set compared to the selected images shown in this paper.
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N Gray BSolver Style VideoProp SepConv [33] Matching Ours

[5] [26] [21] (local only) (global only)

10 33.65 41.00 32.94 34.96 42.72 38.90 43.64

20 33.66 39.57 32.81 34.65 41.01 37.97 42.64

30 33.66 38.59 32.70 34.45 39.90 37.43 42.02

40 33.67 37.86 32.61 34.26 39.08 37.02 41.54

50 33.68 37.40 32.54 34.13 38.56 36.75 41.23

Figure 8: Quantitative evaluation: Using PSNR in Lab-space we compute the average error

over the first N frames.

Figure 9: Temporal evaluation: The average PSNR error per frame shows the temporal

stability of our method and its ability to maintain a higher quality over a longer period.

6 Conclusions

In this work we have presented a new approach for color propagation in videos. Thanks to the

combination of a local strategy, that consists of a frame by frame image warping, and a global

strategy, based on feature matching and color transfer, we have augmented the temporal

extent to which colors can be propagated. Our extended comparative results show that the

proposed approach outperforms recent methods in image and video color propagation as well

as style transfer.
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