LIET AL.: LEARNING AND THINKING STRATEGY 1

Learning and Thinking Strategy for Training
Sequence Generation Models

Yu Li'23 " Key Laboratory of Intelligent
liyu@ict.ac.cn Information Processing
Sheng Tang' Institute of Computing Technology,
ts@ict.ac.cn Chinese Academy of Sciences
Min Lin® Beijing, China
linmin@360.cn 2the University of the Chinese Academy
Junbo Guo' of Sciences
guojunbo@ict.ac.cn Beijing, China
Jintao Li 3 Al institute
jfti@ict.ac.cn Q'h.(.)o 360 .
Shuicheng Yan3 Beijing, China
yanshuicheng@360.cn

Abstract

In order to alleviate the exposure bias problem caused by the discrepancy between
training and testing strategies, we propose an Inverse Reinforcement Learning (IRL) based
learning and thinking strategy for sequence generation. First, a task-agnostic reward is
learned to evaluate the appropriateness of the generated tokens at each time step with
the knowledge of ground truth token and current RNN models. With this reward, a deep
SARSA network is then designed to meditate among the whole space. Therefore, it can fill
in the space that has not been exposed during training with a better policy than the original
RNN model. Sequence generation experiments on various text corpus show significant
improvements over strong baseline and demonstrate the effectiveness of our method.

1 Introduction

Generating sequential data that is like real data is an appealing and useful unsupervised
problem that has been explored for a long time. The sequence generation approaches are a
core component of many important artificial intelligence and natural language processing
problems such as language modeling [21], machine translation [2, 29], speech recognition
[8], image caption [14], etc.

Recurrent neural networks (RNN) [21] provide a natural way to model sequence. However,
RNN-based methods suffer from a major exposure bias problem [4] caused by the discrepancy
between the different strategies during training and inference [25]. Generally speaking, during

(© 2018. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

This work was supported by the National Key Research and Development Program of China (2017YFB1002202),
the National Natural Science Foundation of China (61572472, U1703261 61571424).

Corresponding author: Sheng Tang.

Citation
Citation
{Mikolov, Karafi{á}t, and etprotect unhbox voidb@x penalty @M {}al.} 2010

Citation
Citation
{Bahdanau, Cho, and erprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Sutskever, Vinyals, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Chorowski, Bahdanau, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Karpathy and Fei-Fei} 2015

Citation
Citation
{Mikolov, Karafi{á}t, and etprotect unhbox voidb@x penalty @M {}al.} 2010

Citation
Citation
{Bengio, Vinyals, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Ranzato, Chopra, and etprotect unhbox voidb@x penalty @M {}al.} 2016

2 LIET AL.: LEARNING AND THINKING STRATEGY

training, the RNN model is trained to predict the next token given the previous ground truth
as input, which is called teacher forcing strategy [4]; while during inference, we have to feed
the previously generated token back as input at current time step to produce a whole sequence,
which can quickly accumulate a serious bias, i.e., exposure bias problem. Recent researches
[4, 25] figured this problem out in some degree by gently transferring the training input tokens
from ground truth to the previously generated tokens. Once the ground truth is not taken
as input, it is no longer proper to use them as targets due to the aligning problem. More
specifically, if the ground truth sequence is “I really love English”, while the model generates
“I love English”, it is improper to judge “love” as “really” at the second time step. Therefore, a
new judgment is desirable for sequence evaluation. Unfortunately, sequence level metrics like
BLEU [24] and ROUGE-2 [16] are not differentiable which means it will be hard to optimize
the network at sequence level directly. As a result, reinforcement learning (RL) methods [35]
[31] are introduced to language modeling [3, 25] to change these non-differentiable metrics
to reward in RL.

Once the sequence generation model is considered as an agent in RL, which can be
trained with generated tokens as input, it should be noticed that we originally have no access
to any reward signal. We only have plenty of sentences written by human which can be
regarded as sequences sampled from an expert policy, which means it will be more natural to
solve the agent in the view of inverse reinforcement learning (IRL) which attends to recover
the reward given the execution traces of an expert policy [1, 23]. However, methods like
[3, 25] directly construct the reward with task-specific evaluation metrics. Though they
gain improvements with specific metrics, we consider that sequence generation problem is
essentially unsupervised and universal, and it is somehow unnatural to bind the model with
some specific tasks. Another solution starts from the view of generative adversarial networks
(GAN) [9], and use the signal from a discriminator as reward [6, 36].

We follow IRL to figure out a solution. In the view of IRL, traditional RNN-based models
[21] are all IRL methods since they take into account the expert behaviors to imitate the expert
policy. They directly model the state-action value function Q, but the exposure bias problem
proves that Q does not generalize well in the space that training data do not cover [25] due to
the complexity of what Q represents (details will be discussed in Sec.3). Thus, our proposed
methods try to explore and model the space not covered by the training data by taking as input
the previously generated tokens.

On the contrary, we propose to derive the reward R which is less complicated and can
be easier to generalize from Q that is trained with the teacher forcing strategy to learn the
knowledge exhibited in the expert behaviors. With this reward, the agent is able to try a
large number of situations automatically and learn the best choices in different states, which
can be considered as thinking since it is a self-learning process. Additionally, this reward is
task-agnostic. With our proposed learning and thinking strategy, our model can perform better
in the space where training data do not cover and experiments on text generation task with
corpus Penn Treebank (PTB) [19], Chinese Poem [38], and Obama Political Speech show a
significant improvements in perplexity and BLEU scores over strong sequence generation
baseline models, which verifies the effectiveness of our proposed method.

The main contributions of this paper are as follows:

o We propose that the immediate reward should be less complicated and easier to gener-
alize than the action value function which is a discounted expectation summation of
rewards at each time step.

e According to this opinion, we propose the learning and thinking strategy for training

Citation
Citation
{Bengio, Vinyals, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Bengio, Vinyals, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Ranzato, Chopra, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Papineni, Roukos, and etprotect unhbox voidb@x penalty @M {}al.} 2002

Citation
Citation
{Lin and Hovy} 2003

Citation
Citation
{Williams} 1992

Citation
Citation
{Sutton, McAllester, and etprotect unhbox voidb@x penalty @M {}al.} 2000

Citation
Citation
{Bahdanau, Brakel, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Ranzato, Chopra, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Abbeel and Ng} 2011

Citation
Citation
{Ng, Russell, and etprotect unhbox voidb@x penalty @M {}al.} 2000

Citation
Citation
{Bahdanau, Brakel, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Ranzato, Chopra, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Goodfellow, Pouget-Abadie, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Yu, Zhang, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Mikolov, Karafi{á}t, and etprotect unhbox voidb@x penalty @M {}al.} 2010

Citation
Citation
{Ranzato, Chopra, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Marcus, Marcinkiewicz, and etprotect unhbox voidb@x penalty @M {}al.} 1993

Citation
Citation
{Zhang and Lapata} 2014

LIET AL.: LEARNING AND THINKING STRATEGY 3

sequence generation models, which learns action value function from the given training
data and thinks with our derived task-agnostic reward to explore spaces that training
data does not cover to improve the generalization ability of our policy.

2 Related Works

Explorations on Exposure Bias Problem Standard RNN suffers from the aforementioned
exposure bias problem. Once we want to avoid the problem by using as input the previously
generated token during training, how to set proper targets for these frames becomes important.
[10] first advocates to use model’s own prediction as input during training in their proposed
method SEARN. DAGGER [27] is a similar idea in an imitation learning framework. [4]
proposes a method that randomly chooses ground truth words or generated words as input at
each time step. Their targets remain to be the ground truth, which seems improper to force
the model to predict a specific token regardless of input tokens due to the aligning problem.

Thus, a sequence level guidance are required as training target. [25] introduces REIN-
FORCE algorithm [35] to transform evaluation metrics like BLEU [24] to reward signals
for RL which is called MIXER. [3] applies an actor-critic approach [31] to directly improve
task-specific metrics. The similar idea is also applied to image caption task in [17, 26]
which achieve good performances. However, these methods aim at improving some certain
supervised tasks such as machine translation, image caption by using sequence generation as
a submodule. Sequence generation, which is essentially an unsupervised problem, has not
been improved actually. Different from MIXER, SeqGAN [36] and MaliGAN [6] consider
constructing the reward signal with a discriminator that judges whether a sequence is real or
synthetic.

Reinforcement Learning In Markov decision processes (MDPs) [5] where the state space
is very large or continuous, or the environment E (consisting of state transitions 7" and reward
R) is unknown, reinforcement learning algorithms [35] [32] [33] [31] can be adopted to learn
an optimal policy. As deep neural networks achieve great progress in computer vision field
[11, 28], they have also been utilized in RL and open a new era of deep RL [15, 22]. Deep
Q Network (DQN) [22] uses deep convolutional neural networks to approximate Q-learning
[34] and can achieve human-level control in many Atari games, which attracts worldwide
attention. On the contrary, IRL attends to recovering reward R given an expert policy or
its execution traces [1, 23]. These research are usually motivated by the need of modeling
the behaviors of animals and human, who can be regarded as an expert. With the learned
R, we may reproduce the optimal policy. Classical RL methods such as REINFORCE [35],
actor-critic [31], SARSA [13, 18], have been employed to text generation tasks to optimize
the policy via non-differentiable sequence level metrics.

3 Method

Sequence generation can be considered as a decision process. We intend to model it with an
agent using RL methods. A standard model for RL is MDP, which can be represented as a
tuple (S, A, P,R,y) where the state s € S is Markov, as defined in [30], a state signal that
succeeds in retaining all relevant information is said to be Markov, or to have the Markov
property. However, in sequence generation problems, a sequence of tokens (wo,wr,...,wr)

Citation
Citation
{Halprotect unhbox voidb@x penalty @M {}Daum{é}, Langford, and etprotect unhbox voidb@x penalty @M {}al.}

Citation
Citation
{Ross, Gordon, and etprotect unhbox voidb@x penalty @M {}al.} 2011

Citation
Citation
{Bengio, Vinyals, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Ranzato, Chopra, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Williams} 1992

Citation
Citation
{Papineni, Roukos, and etprotect unhbox voidb@x penalty @M {}al.} 2002

Citation
Citation
{Bahdanau, Brakel, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Sutton, McAllester, and etprotect unhbox voidb@x penalty @M {}al.} 2000

Citation
Citation
{Liu, Zhu, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Rennie, Marcheret, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Yu, Zhang, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Bertsekas} 1995

Citation
Citation
{Williams} 1992

Citation
Citation
{Sutton} 1984

Citation
Citation
{Tesauro} 1995

Citation
Citation
{Sutton, McAllester, and etprotect unhbox voidb@x penalty @M {}al.} 2000

Citation
Citation
{He, Zhang, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Levine, Finn, and etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Mnih, Kavukcuoglu, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Mnih, Kavukcuoglu, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Watkins and Dayan} 1992

Citation
Citation
{Abbeel and Ng} 2011

Citation
Citation
{Ng, Russell, and etprotect unhbox voidb@x penalty @M {}al.} 2000

Citation
Citation
{Williams} 1992

Citation
Citation
{Sutton, McAllester, and etprotect unhbox voidb@x penalty @M {}al.} 2000

Citation
Citation
{Kaelbling, Littman, and etprotect unhbox voidb@x penalty @M {}al.} 1996

Citation
Citation
{Maes, Denoyer, and etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{Sutton and Barto} 1998

4 LIET AL.: LEARNING AND THINKING STRATEGY

(0) ORNORNORNO
000000000

Figure 1: Left: Illustration of the searching space for different strategies. This is a generation example of
a sequence whose length is 4, and the vocabulary size is 2. Sequence a is a training sequence. Original
RNN training strategy models the light blue space. Our strategy enables thinking in the dark blue space
while keeping the results in light blue space. Once we sample the pink 0, we may go back to a similar
sequence b or generate an unseen but reasonable sequence c. Right: An illustration of our training
strategy. wj,e;,h;, Q;,0;,r; represent the input words, embedding, hidden state, action value vector,
output, and reward for the i"”* step respectively. The white boxes with shadow are calculated by Q?, and
the gray boxes with black border are calculated by Q%to provide rewards. The green boxes indicate the
ground truth words, boxes in red indicate the generated words. Yellow circles represent reward signals.
Double side arrows represent supervision relationships.

are not Markov because the current token w; is not only related to the previous w;_;. In
natural language processing, traditional methods usually introduce an n-gram hypothesis to
constrain that wy is only decided by the previous n words (w;_1,w;_2,...,w;—,). To transform
our problem into an MDP, we define the state s, = (wg,wy,...,w;). Thus, s; can be only
decided by s, and is Markov.

The agent constructs a policy 7(als) to model the action distributions for each state, and
takes an action a at each time step following 7. 7 is usually derived from a state-action
value function Q(s,a) = E[Y.> o ¥ R(ss,a;)|so = s,ap = a] where ¥ is the discount factor. As
described in DQN [22], modeling the scalar Q(s,a) that is calculated with a state s and an
action a as input can be transformed to modeling a vector Q(s) that is calculated with a state
s, and Q(s,a) is the ay;, element of Q(s), indicating as Q,(s). Normally, with a learned Q,
a policy can be easily derived by applying a = argmaxQ(s a) for many RL methods like

Q-learning. However, in sequence generation, the pohcy should be stochastic because there
may exist many possible actions that are all valid in a state. Consequently, we have:

exp(Q(s))
Yacaexp(Qq(s))”

Q is modeled by RNN because s is a time sequence. Policy can be derived from the
modeled Q with softmax(Q). We intend to solve Q with RL methods, but we still do not
have access to the reward R. We only have access to many expert behaviors (human-written
sentences), which means that sequence generation is actually an IRL problem.

Traditional RNN-based methods [7, 21] usually model Q directly with the teacher forcing
strategy and apply cross entropy loss on Eq.(1). This process does not require the estimation
of reward. But these models suffer from the exposure bias problem [4] which leads to the
question why the errors will accumulate along the inference trail. Why can’t we return to a
“correct” state once we have made some “wrong” decisions?

a ~ 7(s) = softmax(Q) = (1)

Citation
Citation
{Mnih, Kavukcuoglu, and etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Cho, Vanprotect unhbox voidb@x penalty @M {}Merri{ë}nboer, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Mikolov, Karafi{á}t, and etprotect unhbox voidb@x penalty @M {}al.} 2010

Citation
Citation
{Bengio, Vinyals, and etprotect unhbox voidb@x penalty @M {}al.} 2015

LIET AL.: LEARNING AND THINKING STRATEGY 5

Recall the standard training process of RNN with a simple example(Fig.1-Left). Assume
we want to generate a sequence of length 4, and the vocabulary only has two words, 0 and 1.
A ground truth sequence is /001. During training, as we always take the ground truth words
as input, we only search the space in light blue (seen space) where the training data covers.
Ideally, if we model Q function in the light blue space, it should generalize well in the other
space (unseen space), which means if we accidentally made some wrong decision and went to
some unseen state, we should know how to go back to normal trace to generate a reasonable
sequence. Actually, however, Q can be easily “lost” in the unseen areas. This phenomenon
we observed indicates that the Q function learned from the teacher forcing strategy does not
generalize well, and the model is just a mess on these blank areas.

Here, we claim the reason may be the nature of Q, a discounted expectation summation of
rewards at each time step, which has a very sophisticated meaning. We propose that reward R
should be less complicated and easier to generalize because it represents the immediate gain
of the current action, which is much straightforward. We try to recover the reward function R
that the expert follows, and use this R for RL to explore the unseen spaces.

Generally speaking, traditional RNN-based methods only have the learning process,
during which the expert behaviors are absorbed into Q with the teacher forcing strategy and
cross entropy loss. Instead of modeling Q, we propose first to obtain reward R which is easier
to generalize than Q, and then the learned R guides the model to explore more on unseen
states, walk through more trails, and manage to model a better Q in the whole space, which is
called thinking because it is a self-learning process without any expert behaviors involved.

Next, we first explain how to recover the reward R, and then elaborate how to obtain a
new policy with this R. In addition to this main framework, some implementation techniques
are applied to ensure that the policy converges well.

3.1 Learning Reward

To recover the reward R that the expert follows, we first train an RNN model with teacher
forcing strategy and cross entropy loss as in [37], which results in an RNN model Q. We
consider this model Q° as an expert in the seen space. Therefore, the reward R can be
generated from Q° with Bellman Expectation Equations:

~ ¥ n(als)0%(s.0) @
acA
0" (s,a) =R(s,a —H/Z PLVT(s") 3)
s'eS

Because the transform probability from s to s is 1, i. e.,ij\,, = 1 in text generation, we have:

R(s,a) = Q" (s,a) — V" (s)
"(s,0) =7 Y, n(d|s)Q"(s',a) @
deA
In the context here, action a is w;11, and s is s;. Bringing Eq.(1) into Eq.(4), we have:

exp(Q° (s+1))
Za,-E.A eXp(QZ- (8141))

Thus, we derived the reward R with expert behaviors by resorting to teacher forcing
learning. Additionally, as is described above, our reward R is obviously task-agnostic.

Q% (s141))

R® (St,Wip1) = Qg,ﬂ (se) —

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

6 LIET AL.: LEARNING AND THINKING STRATEGY
3.2 Thinking Policy

With the learned reward, sequence generation problem turns into a standard RL problem.
Therefore, a new Q can be obtained by RL methods with learned R. But methods like Q-
learning produce deterministic optimal policies which cannot meet our stochastic requirement.
Thus, to produce policy as shown in Eq.(1), SARSA [13, 18] is suitable for producing stochas-
tic policies. SARSA is an on-policy learning algorithm that interacts with the environment
and updates the policy based on actions taken:

O(sr,ar) < O(sr,ar) + O[R (st,ar) +YQ(s141,ar11) — O(st,a1)], (6)

where « is the learning rate. For each time step, we take the previously generated sequence

s; as input, another RNN model Q? calculates Q?(s;), and randomly samples the next token

following 7(a,|s;) derived from Q9 (s,) following Eq.(1). A reward signal is then given back

by Qf with Eq.(5). To apply SARSA to RNN, referring to Deep Q Network [22], we propose

Deep SARSA Network (DSN), which can be trained by minimizing the loss functions L;(¢;)
that changes at each iteration i,

Li(¢5) = By qom [(vi = QF (51))°] @)
where y; = Eg, o751~ 1 [R(ar,8:) + YQi’f;} (s¢41)|8¢,). Thus,

Vo Li(6) = El(R(ar.s0) +YQEL (s41) — Qi () 7, Q1)) ®)

Then, the RNN model Q‘p can be trained with RL method SARSA and the loss defined

in Eq.(8). We should notice that while learning the SARSA network Q?, no ground truth

text is used. It walks to many unseen spaces and is a self-learning process that only receives
feedback signals R from advanced learned Q?, namely thinking.

3.3 Implementation Techniques

Initialization During thinking, though it is ideally feasible to learn an entirely meditated
model, the policy model Q? is actually very hard to converge well in reality if it is trained
from scratch without any extra conditions because the searching space is often too large.
Consequently, motivated by MIXER, certain conditions are needed to ensure effective thinking
in searching space where reasonable sequences may exist. We initialize Q? with well-trained
QY to ensure it starts off with a much better policy than a random one. This initialization
shrinks the searching space sharply because Q° already focuses on the good part of space.

Constraint Our reward R is derived from the hypothetical expert policy Q% which is
actually not a real expert. Thus, the reward R is biased from the optimal R*, but is still able to
provide better knowledge for Q? in the unseen space. However, if we only use the biased R
for thinking, the accurate estimation of Q in the training data space (that can be well modeled
by the teacher forcing strategy) could also be biased and reduce the performance. So, the
teacher forcing constraint should be added in the training data space to ensure the estimation
of Q in the seen space while we meditate Q in the unseen space to fill in the blank. Also
inspired by MIXER, we design learning and thinking strategy with constraint as shown in
Algorithm.1 A gradually curtate length of head is trained with teacher forcing, and the rest of
the sequence is trained with thinking strategy. The structure is shown in Fig.1-Right.

Citation
Citation
{Kaelbling, Littman, and etprotect unhbox voidb@x penalty @M {}al.} 1996

Citation
Citation
{Maes, Denoyer, and etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{Mnih, Kavukcuoglu, and etprotect unhbox voidb@x penalty @M {}al.} 2015

LIET AL.: LEARNING AND THINKING STRATEGY 7

Data: a set of sequences

Result: Q?

Initialize Q? at random, training schedule S;

Train Q? following S;

Initialize Q% with Q?, set constants A,l,s,e, learning rate [r, and decay, set variable
n.

forn=1:5:—-Ado

Ir=1Irx decay(l_")/A;

Train Q? for e epochs with [r: use cross entropy loss and ground truth as input for
teacher forcing learning in the first n steps; use SARSA loss and generated word
as input for thinking in the remaining (T — n) steps;

end
Algorithm 1: Learning and thinking strategy with constrain for language modeling.

Transpose embedding For RNN-based sequence models, we always need to map a one
hot vocabulary vector to RNN space with an embedding matrix M, € RV, in which each
vector represents a corresponding token, where N is the size of vocabulary W, and m is the
dimension of embedding vectors. For output, another transformation (usually implemented
with a fully connected layer with weight parameter M, € R™*V) is needed to map the hidden
state h, € R™, which has the same dimension as embedding vector does, to a vocabulary
vector that indicates the probabilities of all words in the vocabulary. If we consider h; as a
demand vector that expresses what kind of word is needed now in embedding space, we can
generate the probabilities over vocabulary by calculating the similarity between the demand
vector and each embedding vector. We choose to use inner product, which is correlated
with cosine similarity, to neatly reach this target by replacing M, with MX. The transpose
embedding approach not only reduces a great number of parameters thus prevents the model
from overfitting, but also facilitates the gradient flow among all the calculation graph that
helps the model to converge better. This small technique is coincidentally similar to that of
[12], but we propose it from a totally different motivation.

4 Experiments

We mainly conduct our experiments on text generation task with Penn Treebank, Obama
Political Speech, and Chinese Poem datasets respectively.

Penn Treebank [19] !, has 930K words for training, 74K for validation, and 82K for testing.
The vocabulary size is 10K. Words out of the vocabulary are replaced with *. Perplexity
(PPL) is utilized for model evaluation as is standard in language modeling.

LSTM is used for our basic RNN framework. We conduct two sets of experiments
on different levels of the number of parameters. The small LSTM model base-s and the
large LSTM model base-/ have exactly the same structure as is in [37]. Our implemented
base-/ reproduce the performance of LSTM-1 in [37]. The dimension of embedding vectors
is the same as the LSMT cell. During training Q%, we follow the training schedule in
[37]. During training Q?, we increase the batch size to 100. [r = 0.005,e¢ = 5 for both
models. For small model, we set ! = 10,5 = 4,A = 2.decay = 0.32. For large model, we set
1=35,5=26,A=3,decay =0.5. Base models (base-x) are trained by teacher forcing strategy

Thttp://www.fit.vutbr.cz/ imikolov/rnlm/simple-examples.tgz

Citation
Citation
{Inan, Khosravi, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Marcus, Marcinkiewicz, and etprotect unhbox voidb@x penalty @M {}al.} 1993

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

8 LIET AL.: LEARNING AND THINKING STRATEGY

Table 1: (1) Performance of our models versus other neural language models on PTB(P) and Obama
speech(O) datasets. PPL indicates perplexity (smaller is better). -T and -w/oT means with and without
transpose embedding introduced in Sec.3.3. (2) BLEU-2(B2), perplexity(PPL) performances and their
relative improvements over their own baselines(+%) on Chinese Poem-5 and Poem-7 Corpus.

Table.1(1)
PPL
Set Model ~Val Test
KN-5[20] 1480 1412 Table.1(2)
RNN-LDA[20] - 113.7 Poem-5 Poem-7
LSTM-1[37] 822 784 Model
MaliGANT[6] 1280 1238 B2 +% PPL +% B2 +% PPL +%
base-s 119.8 111.3 RNNLM[38] - - - - - - 1450 -
base-s-extra 1189 110.8 RNNPG[38] - - - - - - 93.0 359
P base-s-T 114.0 109.0
ours-s-w/oT 1127 1055 MLE[6] 0.69 — 564.1 — 032- 1927 -
ours-s 1108 1043 SCqGAND61 07468 — - = - - -
base] B9 7R MaliGAN[6] 0.76 10.1 542.7 3.8 0.55 71.9 1802 6.5
base-I-T 79.0 75.0 base-/ 0.67- 1664 — 0.69— 1349 —
ours-/-w/oT 808 754 ours-/ 0.80 19.4 137.1 17.6 0.77 11.6 82.3 39.0
ours-/ 78.7 735
o base-[128.2 108.3
ours-/ 121.9 100.7

while our models (ours-x) are trained by learning and thinking strategy with techniques stated
in Sec.3.3 without specific states. All the results are shown in Table.1.

4.1 Main Results

On PTB dataset, we list the results of the classical LMs [20] and a current sequence generation
method MaliGAN-full [6] that reports there results on PTB as a reference line to show how
this dataset is solved by methods that focusing on sequence generation. [37] is our baseline
which concentrates on how to add regularization to large LSTM networks. Comparing with
base-s, ours-s improves 7.0 PPL which is by 6.3% relatively. Base-/ reproduces LSTM-1 in
[37]. Ours-I outperforms the state-of-the-art single model LSTM-1 over 6.6% relatively.

To prove the generalization ability of our proposed methods further, we conduct experi-
ments on Obama Political Speech Corpus” and Chinese Poem Corpus [38]°. Obama Political
Speech Corpus is consists of 11,092 paragraphs with 32530 vocabularies (much more than
the vocab size of PTB) from Obama’s political speeches. Comparing with base-/ baseline,
our model also improves PPL of 7.1% relatively.

On Chinese poem generation task, we split the dataset as described in [38], and train 2
models for Poem-5 and Poem-7 (poems consisting of 5 or 7 Chinese characters) respectively
with training set. Following [36] and [6], we report the BLEU-2 scores and PPL. Our method
obtains the best BLEU-2 scores and PPL on both datasets. As the baseline models perform
differently, we consider it will be more fair to compare the relative improvements over
baseline models. RNNLM is the baseline of RNNPG, MLE is the baseline for SeqGAN and
MaliGAN-full, and base-/ is our baseline. As shown in +%, though our baseline model is very
strong and hard to improve, our proposed method achieves relatively higher improvement

Zhttps://github.com/samim23/obama-rnn
3http://homepages.inf.ed.ac.uk/mlap/Data/EMNLP14/

Citation
Citation
{Mikolov and Zweig} 2012

Citation
Citation
{Mikolov and Zweig} 2012

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Zhang and Lapata} 2014

Citation
Citation
{Zhang and Lapata} 2014

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Yu, Zhang, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Mikolov and Zweig} 2012

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zaremba, Sutskever, and etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zhang and Lapata} 2014

Citation
Citation
{Zhang and Lapata} 2014

Citation
Citation
{Yu, Zhang, and etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

LIET AL.: LEARNING AND THINKING STRATEGY 9

Figure 2: Visualization of embedding parameters after PCA. We highlight the most similar words with
our selected words (china and whether). The redder the color is, the closer the word is to the selected
word. Top-5 words are listed on the upper right of each subfigure. (a)(c) are the embeddings of base-s
model; (b)(d) are that of base-s-T model.

over baselines. The B2+% of MaliGAN [6] is high because their baseline 0.32 is very low.
As is shown on these 3 datasets, we conjecture that the learning and thinking strategy can
obtain a better policy in the unseen space, and that the reward R is easier to generalize than Q.

4.2 Ablation Study

Extra Iterations Since our learning and thinking strategy involves extra iterations for
thinking phase, for fair comparison, we train the base-s model with the same extra epochs,
which is base-s-extra. As is shown, base-s-extra can hardly improve PPL since base-s is
already converges well, which means the improvement of our model is caused by our training
strategy but not the extra iterations.

Implementation techniques Without initialization and constraint, the model is easily
trapped in a state where the samples are recurrent, like the original LSTM with a very
low temperature for softmax, which leads to poor generation performance. Without transpose-
embedding, our model ours-s-w/oT still gains 5.8 PPL improvement over base-s. Another 1.2
PPL is obtained comparing ours-s with ours-s-w/oT. Similar results can be derived from large
models.

4.3 Discussions

Transpose embedding This approach increases PPL while decreasing the number of pa-
rameters (61% for base-s, and 77% for base-I). Linking embedding parameter with the output
provides a shortcut for gradient flow across RNN cell, which enables the model to converge
better. As shown in Fig.2, by using transpose embedding (Fig.2(b)(d)) to replace the original
FC layer (Fig.2(a)(c)) for output projection, the embedding parameters learn more semantic
informations. The closest words (thinks, convinced, observes) of the interrogative whether
turn into (how, what, why), which are more reasonable, which verifies that properly cutting
and reusing parameters can prevent overfitting in some degree.

Text generation We feed the same context to base-/ model and ours-/ model respectively
to generate sentences. For normal heads, base-/ and ours-/ perform almost the same, while
sometimes the sentences generated by our model seem to be more natural. Furthermore,
the generated sentences have not appeared in training set, which means the model learns to

Citation
Citation
{Che, Li, and etprotect unhbox voidb@x penalty @M {}al.} 2017

10 LIET AL.: LEARNING AND THINKING STRATEGY

produce novel sentences rather than remembers all the patterns. Some examples are listed in
the following box. To prove that our strategy provides better guidance in the unseen spaces
than original teacher forcing strategy, we deliberately feed some wrong heads to the model.
The wrong heads are totally a mess, which ensures that we start generating at a position in the
unseen area of original strategy. We should notice that in many cases base-/ cannot find a way
back to normal space and generate messy code continuously, while ours-/ can still generate
good sequences. As shown in the box, our model saves the situation by returning to a normal
state, ending the mess, and starting a new sensible sequence.

(Normal heads):
we ’re talking about years ago but two big by theater and the representatives
we ’re talking about years ago when our market was here
but for now they ’re looking forward on a series of occasions
but for now they ’re looking forward to the federal budget agencies
the new company said it believes there are questions that over she
the new company said it believes there are some progress in cooperation and development
(Wrong heads):
result purchasing direct but new the a of and holder if on at for the moment path during the new
york first nine months that might take effect dec. N with the federal reserve board
result purchasing direct but new the a of and holder if on at for a year he said mr. luzon also said
investors are worried about changing his balance of roughly N billion
tailored premium charge be to N address for will sponsor regular old of the funds directly while
the * of such major assets is considerably lower yields but will face those metropolitan
tailored premium charge be to N address for will sponsor regular performance yesterday mr. *
said *of new requirements would be recommended available for storage
but bros. america in you be years N ago people forward with the shapiro in N or N fiat for
example in the country responsible for throughout desktop national deal is
but bros. america in you be years N ago people forward with guys individual advertisers will
charge over capacity that loans would end up abroad

Pleas note: We provide the same context sequences for base-/ model and ours-/ model as
inputs to generate the whole sentences. The bold italic words are generated by base-I. The
bold italic words are generated by ours-/.

5 Conclusions

In this paper, we propose a learning and thinking strategy for sequence generation, in which
the reward is first learned by the teacher forcing strategy, and then deep SARSA network is
designed to guide the model when wandering in the unseen space, and some implementation
techniques are presented to ensure a good convergence of our model. PPL and BLEU score
improvement is obtained on the corpus Penn Treebank, Obama political speech, and Chinese
poem respectively according to our experiments. Detailed discussions and insight analysis
further clarify that our approach can model the expert policy better in the unseen space, which
ensures us to generate novel and meaningful sequences.

LIET AL.: LEARNING AND THINKING STRATEGY 11

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Pieter Abbeel and Andrew Y Ng. Inverse reinforcement learning. In EML, pages 554-558.
Springer, 2011.

Dzmitry Bahdanau, Kyunghyun Cho, and er al. Neural machine translation by jointly learning to
align and translate. /CLR, 2015.

Dzmitry Bahdanau, Philemon Brakel, and et al. An actor-critic algorithm for sequence prediction.
ICLR, 2017.

Samy Bengio, Oriol Vinyals, and et al. Scheduled sampling for sequence prediction with recurrent
neural networks. In NIPS, pages 1171-1179, 2015.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific
Belmont, MA, 1995.

Tong Che, Yanran Li, and et al. Maximum-likelihood augmented discrete generative adversarial
networks. arXiv preprint arXiv:1702.07983, 2017.

Kyunghyun Cho, Bart Van Merriénboer, and et al. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Jan K Chorowski, Dzmitry Bahdanau, and et al. Attention-based models for speech recognition.
In NIPS, pages 577-585, 2015.

Ian Goodfellow, Jean Pouget-Abadie, and et al. Generative adversarial nets. In NIPS, pages
2672-2680, 2014.

IIT Hal Daumé, John Langford, and et al. Search-based structured prediction as classification.

Kaiming He, Xiangyu Zhang, and et al. Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016.

Hakan Inan, Khashayar Khosravi, and et al. Tying word vectors and word classifiers: A loss
framework for language modeling. /CLR, 2017.

Leslie Pack Kaelbling, Michael L Littman, and et al. Reinforcement learning: A survey. JAIR, 4:
237-285, 1996.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In CVPR, pages 3128-3137, 2015.

Sergey Levine, Chelsea Finn, and et al. End-to-end training of deep visuomotor policies. JMLR,
17(39):1-40, 2016.

Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram co-occurrence
statistics. In ACL, pages 71-78. Association for Computational Linguistics, 2003.

Siqi Liu, Zhenhai Zhu, and et al. Optimization of image description metrics using policy gradient
methods. CVPR, 2017.

Francis Maes, Ludovic Denoyer, and et al. Structured prediction with reinforcement learning. ML,
77(2):271-301, 2009.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and et al. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.

12

LIET AL.: LEARNING AND THINKING STRATEGY

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]
(33]

[34]

[35]

(36]

(37]

(38]

Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language model.
SLT, 12:234-239, 2012.

Tomas Mikolov, Martin Karafiat, and et al. Recurrent neural network based language model. In
Interspeech, volume 2, page 3, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, and et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, 2015.

Andrew Y Ng, Stuart J Russell, and et al. Algorithms for inverse reinforcement learning. In /CML,
pages 663-670, 2000.

Kishore Papineni, Salim Roukos, and et al. Bleu: a method for automatic evaluation of machine
translation. In ACL, pages 311-318. Association for Computational Linguistics, 2002.

Marc’ Aurelio Ranzato, Sumit Chopra, and et al. Sequence level training with recurrent neural
networks. ICLR, 2016.

Steven J Rennie, Etienne Marcheret, and et al. Self-critical sequence training for image captioning.
CVPR, 2017.

Stéphane Ross, Geoftrey J Gordon, and et al. A reduction of imitation learning and structured
prediction to no-regret online learning. In AISTATS, volume 1, page 6, 2011.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. /CLR, 2015.

Ilya Sutskever, Oriol Vinyals, and et al. Sequence to sequence learning with neural networks. In
NIPS, pages 3104-3112, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David A McAllester, and et al. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, pages 1057-1063, 2000.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. 1984.

Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38
(3):58-68, 1995.

Christopher JCH Watkins and Peter Dayan. Q-learning. ML, 8(3-4):279-292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. ML, 8(3-4):229-256, 1992.

Lantao Yu, Weinan Zhang, and et al. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI pages 2852-2858, 2017.

Wojciech Zaremba, Ilya Sutskever, and et al. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

Xingxing Zhang and Mirella Lapata. Chinese poetry generation with recurrent neural networks.
In EMNLP, pages 670-680, 2014.

