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We provide additional details about FAb-Net’s architecture and training in Section 1,
the self-supervised baselines in Section 2, pre-processing of the datasets in Section 3 and
additional qualitative results in Section 4.

1 Additional details on architectures and training

Section 1.1 and Section 1.2 give additional details about the encoder-decoder architecture
used and about the training respectively.

1.1 Architecture

The architecture of the encoders and decoders is based on pix2pix [12] but without skip-
connections (see Fig. 1). It consists of encoders (with shared weights) and corresponding
symmetrical decoders (also with shared weights). The face embedding vectors which are
the outputs of the encoder have channel size 256. At the centre of the network, the source
embedding vectors are concatenated pairwise with the target embedding vector. This 512-
channel vector serves as input to the decoders.

The sampler decoders predict a 2⇥ 256⇥ 256 output which determines how to sample
from the source frame. When using multiple source frames, the network is augmented with
confidence map decoders whose architecture is identical to the sampler decoders, except that
the last layer outputs a 1-channel image. The confidence decoders also have shared weights
for the different source frames.

1.2 Training and data augmentation

The images are first scaled to size 256⇥256. Because VoxCeleb1/VoxCeleb2 have different
crops, VoxCeleb2 is re-cropped by padding the images by [20,80,20,30] pixels to the left,
top, right, and bottom respectively and then taking a centre crop of size 190⇥ 190. Given
the re-cropped VoxCeleb2 images and the VoxCeleb1 images, the images are augmented by
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Figure 1: Encoder-decoder: In the encoder, each convolution is followed by a leaky ReLU
(factor 0.2) and a batch-norm layer (except for the first which has no batch-norm); the con-
volutional filter sizes are 4 ⇥ 4 and the stride/padding is 2/1. The face embedding vec-
tor has channel size 256. In the decoder, the face embedding vectors corresponding to the
source/target frame (v

s

,v
t

) are concatenated giving a 512-dimensional embedding vector. In
all decoder layers, the sequence of executions is: ReLU, bilinear upsampling, batch-norm.
The convolutional filter sizes in the sampler decoder and the confidence decoder are 3⇥ 3,
the stride/padding is 1/1. The final 2⇥256⇥256 result (or 1⇥256⇥256 for the confidence
decoders) is passed through a tanh layer to give FAb-Net’s prediction for how to sample from
the source frame.

taking random square crops with width in the range [170,190] for VoxCeleb2 and [180,200]
for VoxCeleb1.

The models are trained using SGD with learning rate 0.001, momentum 0.9 and batch
size N = 8 (unless the curriculum strategy for FAb-Net is used in which case N = 32).
The learning rate is divided by a factor of 10 when the loss plateaus (unless the curriculum
strategy for FAb-Net is used, in which case this occurs only after the curriculum strategy
terminates).

2 Self-supervised baselines

FAb-Net is compared to an autoencoder and to two state-of-the-art self-supervised meth-
ods [3, 10]. FAb-Net’s architecture but the appropriate loss functions and setups are used.
More detail is given below. The baselines are trained with the same training hyperparameters
and data augmentation as FAb-Net (please refer to Section 1.2).

Autoencoder. FAb-Net’s encoder-decoder architecture are used. The autoencoder is trained
to recreate the source frame via a 256-dimensional bottleneck vector, which is used later for
evaluation. (The 256-dimensional vector output from the encoder serves as input to the de-
coder.)

Gidaris et al. [3]. Gidaris et al. apply a rotation q 2 {0�,90�,180�,270�} to an image and
train a CNN to predict the rotation that has been applied. To implement this baseline, FAb-
Net’s encoder (illustrated in Fig. 1) is used. A linear layer (with input channel size 256 and
output channel size 4) is appended followed by a softmax layer. The network is trained with
a cross-entropy loss. The 256-dimensional embedding is used for evaluation.

Zhang et al. [10]. Zhang et al. split an input image into L and ab channels (e.g. grey and
colour channels) and then learn to reconstruct the ab channels from the L channel and the L
channel from the ab channels. To do this, they effectively split the network into two smaller
networks, each with half the capacity of the original network. To implement this baseline,
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the exact same encoder-decoder structure as FAb-Net is used, except that it is divided into
two subnetworks, each with half the capacity of the original network at each layer (e.g. 16
channels in the first layer and 128 channels in the embedding for each sub-network). The
MSE loss is used as the reconstruction loss. The concatenation of the two 128-dimensional
embeddings gives a 256-dimensional embedding, which is used for evaluation.

3 Datasets

For our models and baselines the input image size is 256⇥ 256 except for the VGG-Face
descriptor which requires input images of size 224⇥224.

300-W and MAFL. FAb-Net is evaluated on 300-W and MAFL using the procedure out-
lined in [8]. In order to make the images more similar to those of VoxCeleb+, the images
are re-cropped to make a tighter crop around the face region (this is a fair comparison as
[8, 9, 11] re-crop to make the images more similar to those in CelebA [6] which they use as
their training set).

AFLW. The images in AFLW [5] are resized to 256⇥256 for our models and to 224⇥224
for the evaluation of the VGG-Face descriptor.

EmotioNet. For EmotioNet [1], the classifier is trained on the subset of the dataset that is
automatically annotated. We divide this subset into a training and a validation set (with a
80/20 split). The faces are detected using dlib [4] and cropped to 256⇥ 256. This results
in 743,033 images for training and 185,759 images for validation. The independent set of
about 25k images is used as test set. After detecting faces, this gives 25,517 images for
testing. This evaluation is done for the 11 AUs used in track 1 of the EmotioNet challenge
2017 [2].

AffectNet. For our experiments on AffectNet [7], we use the manually annotated subset of
the dataset. As the AffectNet test set is not released, we use the released validation set to test
on and randomly divide the training set into a training and a validation subset (with a 85/15
split). The faces are detected using dlib [4] and cropped to 256⇥256. Furthermore, images
annotated as ‘non-face’, ‘none’ or ‘uncertain’ are discarded. This results in 287,055 images
for training, 57,411 for validation and 3,989 images for testing. The test set is balanced
across the different emotion categories whereas the training data is not.

4 Additional qualitative results.

Additional examples of learned confidence heatmaps are visualised in Fig. 2 and additional
examples for retrieval are visualised in Fig. 3.
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Figure 2: Additional examples of confidence heatmaps predicted by FAb-Net for the given
source and target frames. These examples demonstrate how the confidence maps allow the
network to focus on certain source frames or parts of different source frames. In the top left
example, the network chooses one eye from the rightmost source frame even though its pose
is quite different as compared to that of the target frame. In the bottom two examples, the
source frames with pose or zoom dissimilar to that of the target frame are discarded.
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Query Images Nearest Neighbours. Arranged left to right.

Figure 3: Additional results for nearest neighbour retrieval using the embedding learned by
FAb-Net. The embedding captures facial attributes, e.g. pose and expression, as it succeeds
in retrieving images with similar facial attributes given a query image.
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