
Supplementary Material:
Dense Motion Estimation for Natural Phenomenon

In this supplementary material we first provide we provide additional quantitiative and qualitative results
for sequences we tested but which are not shown in the main paper. Then we give further mathematical
details for the optical flow Optimization (Sec. 3.3 in the main paper).

1 Additional quantitative results
In this section, we provide the full version of Table 1 and Table 2 in the main paper showing the Low Rate
Distance(LRD) and High Rate Distance(HRD) errors respectively. Table 1 is a full version of Table 1 in the
main paper, and Table 2 is a full version of Table 2 in the main paper. From these full tables, we obtain
the comparison error which is defined as followed: we sum the errors across all the sequences for all the
methods including the proposed method and other alternatives. The total error sum of the proposed method
is used as a reference to obtain the comparison error for all methods, so

Comparison Error =
Sum Errorm
Sum Errorours

− 100% (1)

where m represent different methods in Table 1 and Table 2. As shown in the tables, the proposed method
is at least 17% and 31% better than all the alternatives as we claimed in the main paper.

2 Additional qualitative results
In this section, additional qualitative results of motion estimation are given for more sequences of natural
phenomena. Figure (2,3,1,4) show a visual comparison on natural phenomena sequences.

As mentioned in the main paper, the test sequences are from our database, public datasets [9, 6, 4], or
from the Internet. The qualitative results of motion estimation baselines include Fullflow [3], EpicFlow [8],
Class+NL [10], HS [7], BA [1], MDP [11] and Flownet [5].

Figure (3,4) show the motion estimation results and corresponding warping results for all the baselines
we compared based on sequences with static or dynamic background from the Internet. Similarly, Fig-
ure (2,1) show the results for sequences from the public datasets [9, 6]. Noted that the quantitative results
are presented in Table 1 in the main paper.
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Ours FullFlow EpicFlow Class+NL HS BA LDOF MDP FlowNet

O
ur

D
at

ab
as

e

Votex Speedup 41.80 51.90 50.39 51.79 52.60 52.28 50.15 50.21 47.24
Eddies 57.23 68.91 74.07 64.21 65.55 64.06 71.90 68.53 103.4

Thick rise 61.60 128.12 166.78 100.03 93.48 100.15 160.14 136.48 135.9
Thin from bottom 37.89 43.39 43.37 42.44 42.91 42.98 44.08 45.43 39.59

Thick Fall Dissipate 41.31 57.67 57.24 57.11 57.78 56.17 56.58 57.39 48.34
Curved Fall 59.35 80.09 88.60 82.12 83.77 86.03 98.28 82.74 82.50

Thin drops multi 58.25 73.32 68.12 65.76 67.16 68.33 64.59 68.14 67.03
Up Down Mix White 57.75 81.24 82.70 69.88 71.46 77.96 80.05 80.14 84.28

Orange white meet 37.89 46.56 41.21 42.14 44.94 43.66 41.75 42.79 42.64
Slanted surface pour 41.00 59.63 57.73 57.18 56.8 59.58 55.61 56.75 80.11
Flat surface waves 47.63 48.90 52.17 46.21 44.29 45.30 49.99 50.66 43.37
Oscillating Rising 48.72 54.00 53.69 49.80 50.17 49.04 51.41 53.57 51.95

Pu
bl

ic
D

at
as

et
s[

9,
6,

4]

Steam 7.38 8.84 8.27 12.55 12.52 13.01 12.4 13.57 15.47
Avalanche01 10.43 12.29 12.26 12.12 12.57 12.24 12.78 12.64 17.76
Boil (water) 13.27 48.61 18.72 13.91 26.26 25.83 13.94 20.96 42.3
Fountain01 19.69 26.52 18.8 23.67 20.2 20.18 21.39 27.48 22.25
Fountain02 30.67 61.72 31.72 26.93 34.66 25.72 31.3 33.56 27.64
Forest fire 8.37 8.84 8.39 8.61 10.59 10.45 10.61 9.1 18.85

Landslide01 86.08 87.72 84.94 87.06 89.67 87.82 87.24 86.31 120.2
Landslide02 88.13 86.96 89.43 91.74 89.04 87.49 91.12 91.17 117.7

Volcano eruption01 5.63 5.82 5.99 5.92 6.89 5.98 5.69 5.97 5.63
Volcano eruption02 6.96 7.22 7.41 7.24 7.54 7.47 7.34 7.58 7.5
Volcano eruption03 7.09 7.97 7.67 7.99 8.11 8.41 7.65 7.99 7.96

Waterfall01 17.86 19.1 18.97 21.45 20.8 19.89 19.3 17.9 18.33
Waterfall02 15.8 17.76 18 20.02 17.6 18.32 18.14 18.42 18.89
Waterfall03 13.97 15.06 14.91 18.06 18.14 17.88 16.68 14.82 16.00
Waterfall04 15.97 19.12 17.32 19.25 19.19 19.03 17.38 16.84 17.95

In
te

rn
et

Car smoke 8.85 10.3 10.69 10.64 10.57 10.66 10.58 9.01 10.79
Fire smoke 12.49 13.21 13.17 12.64 12.81 12.61 12.91 12.68 16.49

Avalanche02 12.34 13.36 13.65 13.38 14.05 13.98 14.24 13.95 15.82
Train 11.2 14.13 14.31 14.28 14.18 14.3 14.08 33.44 16.11

Fireman 18.86 19.42 19.42 19.66 19.52 19.56 19.29 20.72 19.04
Match cube 72.53 74.65 72.93 80.50 87.40 84.32 77.22 87.88 85.09

Comparison Error 0% 28% 25% 17% 19% 19% 25% 26% 36%

Table 1: Low Rate Distance (Equation 11 in the main paper, designed for low frame rate video (Public
Database and Internet). We compare our method to eight state-of-the-art algorithms using videos from our
laboratory, from public datasets, and from the Internet; “Train” is a computer graphic simulation. Bold
figures indicate the best performance in each row, we come first in most cases. Data shown ×100 for easy
reading. Note that the lower readings show higher accuracy.

*

3 Details of Optical Flow Energy Optimization
In the main paper, we use energy function from [2] for dense flow estimation. The energy function is given
as:

E(v) = ED(v) + γES(v)

=

∫
Ω

φ(‖f2(x + v)− f1(x)‖2)︸ ︷︷ ︸
Brightness Constancy

+αφ(‖∇f2(x + v)−∇f1(x)‖2)︸ ︷︷ ︸
Gradient Constancy

dx

+ γ

∫
Ω

φ(‖∇u‖2 + ‖∇v‖2)︸ ︷︷ ︸
Smoothness Constraint

dx (2)
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Ours FullFlow EpicFlow Class+NL HS BA LDOF MDP FlowNet

O
ur

D
at

ab
as

e

Votex Speedup 25.68 29.93 29.61 28.78 28.40 29.02 28.53 32.12 31.38
Eddies 24.30 36.78 36.31 35.1 54.91 34.28 37.13 38.35 30.41

Thick rise 26.74 69.43 72.92 58.54 64.5 53.29 69.16 65.36 61.64
Thin from bottom 28.03 40.01 41.28 41.32 38.03 40.6 38.95 38.24 30.99

Thick Fall Dissipate 24.03 40.49 42.59 40.87 37.57 38.49 40.51 42.69 29.73
Curved Fall 25.93 47.75 58.41 44.81 46.75 42.22 53.58 48.77 51.97

Thin drops multi 32.52 44.01 51.35 40.41 43.17 36.3 46.06 40.15 34.37
Up Down Mix White 27.97 50.68 52.04 46.24 44.43 43.39 51.63 60.15 42.42

Orange white meet 21.63 34 37.13 37.85 36.88 36.2 33.54 34.98 35.28
Slanted surface pour 20.26 44.19 41.94 37.41 34.65 34.75 41.92 41.57 39.81
Flat surface waves 16.87 31.55 31.14 30.2 27.96 27.33 30.74 30.88 25.49
Oscillating Rising 35.37 48.14 53.37 55.29 35.31 30.40 35.48 105.02 20.95

Pu
bl

ic
D

at
as

et
s[

9,
6,

4]

Steam 12.51 16.01 15.33 17.40 17.86 16.75 16.36 18.01 18.95
Avalanche01 15.33 28.00 28.53 30.33 27.39 27.58 29.14 28.55 19.75
Boil water 35.87 40.37 40.95 36.57 36.62 36.45 39.80 28.55 48.15
Fountain01 36.67 61.69 61.56 50.54 47.68 48.99 50.93 50.68 54.53
Fountain02 137.1 165.4 164.5 235.3 177.1 201.0 164.7 164.7 160.9
Forest fire 29.81 29.74 31.00 28.27 67.03 78.26 28.66 31.56 26.24

Landslide01 98.01 138.9 142.8 127.2 127.2 129.3 139.1 129.7 142.8
Landslide02 63.17 56.99 66.95 78.93 80.47 57.29 77.23 57.94 58.45

Volcano eruption01 15.87 21.53 21.43 22.70 21.86 21.69 20.96 21.32 20.65
Volcano eruption02 13.79 20.23 20.40 20.05 19.50 19.86 19.81 19.32 16.16
Volcano eruption03 13.06 19.97 18.46 19.90 22.06 21.31 19.33 17.96 15.75

Waterfall01 30.78 39.96 40.02 41.38 42.12 45.76 38.76 39.87 42.12
Waterfall02 39.32 35.74 41.78 36.70 37.02 40.39 41.92 39.1 39.69
Waterfall03 34.19 43.06 47.58 42.31 43.80 41.65 42.69 43.08 41.40
Waterfall04 32.49 39.29 39.18 38.70 42.02 61.26 39.84 69.60 39.24

In
te

rn
et

Car smoke 45.26 49.62 50.17 129.6 116.5 114.3 113.6 98.56 101.4
Fire smoke 60.74 120.5 108.2 52.04 60.98 51.90 53.84 60.56 46.36

Avalanche02 20.56 29.22 30.98 32.20 23.84 23.48 20.99 20.80 30.45
Train 35.76 83.44 72.45 92.24 91.68 82.13 66.76 150.3 47.11

Fireman 59.84 155.1 167.3 180.8 143.4 180.9 164.9 174.7 124.0
Match cube 57.59 70.57 71.26 72.75 73.07 72.94 65.23 73.21 73.17

Comparison Error 0% 49% 53% 58% 51% 52% 47% 61% 31%

Table 2: High Rate Distance (Equation 12) designed for high frame rate video (our database). We compare
our method to eight state-of-the-art algorithms using videos from our laboratory, from public datasets, and
from the Internet; “Train” is a computer graphic simulation. Bold figures indicate the best performance in
each row, we come first in most cases. Data shown ×100 for easy reading. Note that the lower readings
show higher accuracy.
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where ED(v) represents the data term consisting the Brightness and Gradient Constancy in the image
space while ES(v) denotes a smoothness constraint. In the following subsection, we give the full details of
energy minimization given the input images f1 and f2, as well as the dense initial motion v(x) (Sec. 3.2 in
the main paper).

3.1 Numerical Scheme for Energy Minimization
As mentioned in our main paper, a one-level nested fixed point iterations are applied to minimize our pro-
posed energy. This numerical strategy is used in the recent state-of-the-art work [2]. Here, the similar
abbreviations are referred from the original paper:

fx = ∂xf2(x + v) fyy = ∂yyf2(x + v)
fy = ∂yf2(x + v) fz = f2(x + v)− f1(x)
fxx = ∂xxf2(x + v) fxz = ∂xf2(x + v)− ∂xf1(x)
fxy = ∂xyf2(x + v) fyz = ∂yf2(x + v)− ∂yf1(x)

At the first phase of energy minimization, a system is built based on Eq. 2 where Euler-Lagrange is
employed as follows:

φ′{f2
z + α(f2

xz + f2
yz)} · {fxfz + α(fxxfxz + fxyfyz)} − γφ′(‖∇v1‖2 + ‖∇v2‖2) · ∇u = 0 (3)

φ′{f2
z + α(f2

xz + f2
yz)} · {fyfz + α(fyyfyz + fxyfxz)} − γφ′(‖∇v1‖2 + ‖∇v2‖2) · ∇v = 0 (4)

In current system, given the flow field vi = (vi1, v
i
2)

T from our dense flow interpolation (Sec.3.4), we
assume that the solution vi+1 converges on the next level (i+1). Different from the original scheme from [2],
our flow field is initialized as vi(x) which is the full size dense motion field. In this case, the full size images
are used for each iteration of the energy minimization. We have:

φ′{(f i+1
z )2 + α(f i+1

xz )2 + α(f i+1
yz )2} · {f ixf i+1

z + α(f ixxf
i+1
xz + f ixyf

i+1
yz )}

−γφ′(
∥∥∇vi+1

1

∥∥2
+
∥∥∇vi+1

2

∥∥2
) · ∇vi+1

1 = 0 (5)

φ′{(f i+1
z )2 + α(f i+1

xz )2 + α(f i+1
yz )2} · {f iyf i+1

z + α(f iyyf
i+1
yz + f ixyf

i+1
xz )}

−γφ′(
∥∥∇vi+1

1

∥∥2
+
∥∥∇vi+1

2

∥∥2
) · ∇vi+1

2 = 0 (6)

Because of the nonlinearity in terms of φ′, f i+1
∗ , the system (Eqs. 5, 6) is difficult to solve by linear

numerical methods. We apply the first order Taylor expansions to remove these nonlinearity in f∗, which
results in:

f i+1
z ≈ f iz + f ixdv

i
1 + f iydv

i
2

f i+1
xz ≈ f ixz + f ixxdv

i
1 + f ixydv

i
2

f i+1
yz ≈ f iyz + f ixydv

i
1 + f iyydv

i
2

Based on the flow assumption of Brox et al. [2] w.r.t. ui+1 ≈ ui + dui and vi+1 ≈ vi + dvi where the
unknown flow field on the next level i+ 1 can be obtained using the flow field and its incremental from the
current level i. The new system can be presented as follows:
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(φ′)iD · {f ix(f iz + f ixdv
i
1 + f iydv

i
2)

+αf ixx(f
i
xz + f ixxdv

i
1 + f ixydv

i
2) + αf ixy(f

i
yz + f ixydv

i
1 + f iyydv

i
2)}

−γ(φ′)iS · ∇(vi1 + dvi1) = 0 (7)

(φ′)iD · {f iy(f iz + f ixdv
i
1 + f iydv

i
2)

+αf iyy(f
i
yz + f ixydv

i
1 + f iyydv

i
2) + αf ixy(f

i
xz + f ixxdv

i
1 + f ixydv

i
2)}

−γ(φ′)iS · ∇(vi2 + dvi2) = 0 (8)

where the terms (φ′)iD and (φ′)iS contained φ provide robustness to flow discontinuity on the object
boundary. In addition, (φ′)iS is also regularizer for a gradient constraint in motion space. All of those terms
can be detailed as follows:

(φ′)iD = φ′{(f iz + f ixdv
i
1 + f iydv

i
2)

2 + α(f ixz + f ixxdv
i
1 + f ixydv

i
2)

2 + α(f iyz + f ixydv
i
1 + f iyydv

i
2)

2} (9)

(φ′)iS = φ′{
∥∥∇(vi1 + dvi1)

∥∥2
+
∥∥∇(vi2 + dvi2)

∥∥2} (10)

Although we fixed vi in Eqs. 7 8, the nonlinearity in φ′ leads to the difficulty of solving the system. The
inner fixed point iterations are applied to remove this nonlinearity: dvi,j1 and dvi,j2 are assumed to converge
within j iterations by initializing dvi,01 = 0 and dvi,02 = 0. Finally, we have the linear system in dvi,j+1

1 and
dvi,j+1

2 as follows:

(φ′)i,jD · {f
i
x(f

i
z + f ixdv

i,j+1
1 + f iydv

i,j+1
2 )

+αf ixx(f
i
xz + f ixxdv

i,j+1
1 + f ixydv

i,j+1
2 ) + αf ixy(f

i
yz + f ixydv

i,j+1
1 + f iyydv

i,j+1
2 )}

−γ(φ′)i,jS · ∇(v
i
1 + dvi,j+1

1 ) = 0 (11)

(φ′)i,jD · {f
i
y(f

i
z + f ixdv

i,j+1
1 + f iydv

i,j+1
2 )

+αf iyy(f
i
yz + f ixydv

i,j+1
1 + f iyydv

i,j+1
2 ) + αf ixy(f

i
xz + f ixxdv

i,j+1
1 + f ixydv

i,j+1
2 )}

−γ(φ′)i,jS · ∇(v
i
2 + dvi,j+1

2 ) = 0 (12)

This resulting linear system in Eq (11,12) can be solved by common numerical optimization methods
such as Gauss-Seidel and Successive Over Relaxation (SOR). The latter is employed in our implementations.
Details for the computation of spatial gradient∇ and ‖∇‖can be found in Faisal and Barron’s work.
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Figure 2: Natural phenomenon sequences from public datasets [9, 6, 4]. Top Row: Input frames. Others:
motion field and warping results for proposed method and other baselines.

of correspondences for optical flow. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 1164–1172.

[9] SHROFF, N., TURAGA, P., AND CHELLAPPA, R. Moving vistas: Exploiting motion for describing scenes. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 1911–1918.

[10] SUN, D., ROTH, S., AND BLACK, M. J. Secrets of optical flow estimation and their principles. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 2432–2439.

7



In
p

u
t 

fra
m

es
O

u
rs

F
u

llflo
w

E
p

icF
lo

s
L

D
O

F
C

la
ss+

N
L

M
D

P
F

lo
w

n
et

Fire smoke Car Smoke

H
S

B
A

Figure 3: Natural phenomenon sequences from Internet. Top Row: Input frames. Others: motion field and
warping results for proposed method and other baselines.
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Figure 4: Natural phenomenon sequences from Internet. Top Row: Input frames. Others: motion field and
warping results for proposed method and other baselines.
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