Supplementary Material:
Dense Motion Estimation for Natural Phenomenon

In this supplementary material we first provide we provide additional quantitiative and qualitative results
for sequences we tested but which are not shown in the main paper. Then we give further mathematical
details for the optical flow Optimization (Sec. 3.3 in the main paper).

1 Additional quantitative results

In this section, we provide the full version of Table 1 and Table 2 in the main paper showing the Low Rate
Distance(LRD) and High Rate Distance(HRD) errors respectively. Table[I]is a full version of Table 1 in the
main paper, and Table [2]is a full version of Table 2 in the main paper. From these full tables, we obtain
the comparison error which is defined as followed: we sum the errors across all the sequences for all the
methods including the proposed method and other alternatives. The total error sum of the proposed method
is used as a reference to obtain the comparison error for all methods, so

Sum Error,,

Comparison Error = —100% €))

Sum Errorours

where m represent different methods in Table [T]and Table[2] As shown in the tables, the proposed method
is at least 17% and 31% better than all the alternatives as we claimed in the main paper.

2 Additional qualitative results

In this section, additional qualitative results of motion estimation are given for more sequences of natural
phenomena. Figure (23][T]4)) show a visual comparison on natural phenomena sequences.

As mentioned in the main paper, the test sequences are from our database, public datasets [9, |6, 4], or
from the Internet. The qualitative results of motion estimation baselines include Fullflow [3]], EpicFlow [8],
Class+NL [10], HS [7], BA [1], MDP [11] and Flownet [5]].

Figure (3J4) show the motion estimation results and corresponding warping results for all the baselines
we compared based on sequences with static or dynamic background from the Internet. Similarly, Fig-
ure show the results for sequences from the public datasets [9, 6]. Noted that the quantitative results
are presented in Table 1 in the main paper.



I | Ours FullFlow EpicFlow Class+NL ~ HS BA  LDOF MDP  FlowNet
Votex_Speedup 41.80  51.90 50.39 5179 5260 5228  50.15  50.21  47.24
Eddies 57.23 6891 74.07 6421 6555 6406 7190 68.53  103.4
Thick_rise 61.60 128.12 16678 100.03 9348 100.15 160.14 136.48 1359
o | Thinfrom bottom | 37.89  43.39 43.37 4244 4291 4298 4408 4543 39.59
& || Thick Fall Dissipate | 41.31  57.67 57.24 5711 5778 5617 5658 5739 4834
g Curved_Fall 59.35  80.09 88.60 8212 8377 8603 9828 8274 8250
A | Thindrops.multi | 58.25  73.32 68.12 6576  67.16 6833 6459 6814  67.03
& | Up-DownMix White | 57.75  81.24 82.70 69.88 7146 7796 80.05 80.14  84.28
Orange white meet | 37.89  46.56 4121 4214 4494 4366 4175 4279 4264
Slanted_surface_pour | 41.00  59.63 57.73 5718 568 59.58 5561 5675  80.11
Flat_surface_waves | 47.63  48.90 52.17 46.21 4429 4530 4999  50.66  43.37
Oscillating Rising | 48.72  54.00 53.69 49.80  50.17 49.04 5141 5357 5195
Steam 738 884 8.27 1255 1252 1301 124 1357 1547
Avalanche01 1043 1229 12.26 1212 1257 1224 1278 1264  17.76
Boil (water) 1327 4861 18.72 1391 2626 2583 1394 2096 423
— Fountain01 19.69  26.52 18.8 2367 202 2018 21.39 2748 2225
= Fountain02 3067  61.72 31.72 2693 3466 2572 313 3356  27.64
= Forest_fire 837 8384 8.39 8.61 1059 1045 1061 9.1 18.85
2 Landslide01 86.08  87.72 84.94 8706  89.67 8782 8724 8631 1202
Z Landslide02 88.13  86.96 89.43 91.74  89.04 8749 9L12 9117 1177
8 | Volcano eruption01 | 5.63 582 5.99 5.92 689 598 569 597 5.63
2 | Volcano_eruption02 | 696  7.22 741 7.24 754 747 734 158 7.5
2 Volcano_eruption03 7.09 7.97 7.67 7.99 8.11 8.41 7.65 7.99 7.96
& Waterfall01 17.86  19.1 18.97 2145 208 1989 193 179 1833
Waterfall02 158  17.76 18 2002 17.6 1832 1814 1842  18.89
Waterfall03 1397  15.06 14.91 18.06 1814 17.88 1668 1482  16.00
Waterfall04 1597 19.12 17.32 1925 19.19 19.03 1738 1684  17.95
Car_smoke 8.85 10.3 10.69 10.64 1057 1066 1058  9.01 10.79
- Fire_smoke 1249 1321 13.17 1264 1281 1261 1291 1268  16.49
£ Avalanche02 1234 1336 13.65 1338 1405 1398 1424 1395 1582
E Train 112 1413 14.31 1428 1418 143 1408 3344  l6.11
2 Fireman 18.86  19.42 19.42 19.66 1952 19.56 1929 2072 19.04
Match_cube 7253 74.65 72.93 80.50  87.40 8432 7722 87.88  85.09
| Comparison Error | 0% 28% 25% 17% 19% 19% 25% 26%  36%

Table 1: Low Rate Distance (Equation 11 in the main paper, designed for low frame rate video (Public
Database and Internet). We compare our method to eight state-of-the-art algorithms using videos from our
laboratory, from public datasets, and from the Internet; “Train” is a computer graphic simulation. Bold
figures indicate the best performance in each row, we come first in most cases. Data shown x100 for easy
reading. Note that the lower readings show higher accuracy.

3 Details of Optical Flow Energy Optimization

In the main paper, we use energy function from [2] for dense flow estimation. The energy function is given

as:

E(v) = Ep(v) +vEs(v)

= /Q¢(||f2(x +v) = LX))?) +a g(|V fa(x +v) = VA X)) dx

Brightness Constancy

oy /Q o(|Vul® + [Vo]?) dx

Smoothness Constraint

Gradient Constancy

©))



‘ ‘ ‘ Ours  FullFlow EpicFlow Class+4NL  HS BA LDOF MDP FlowNet
Votex_Speedup 25.68 29.93 29.61 28.78 28.40 29.02 2853 3212 31.38
Eddies 24.30 36.78 36.31 35.1 5491 3428 37.13 3835 30.41
Thick rise 26.74 69.43 72.92 58.54 645 5329 69.16 65.36 61.64
° Thin_from_bottom 28.03 40.01 41.28 41.32 38.03 40.6 3895 3824 30.99
_§ Thick_Fall Dissipate | 24.03 40.49 42.59 40.87 37.57 3849 4051  42.69 29.73
£ Curved_Fall 25.93 47.75 58.41 44.81 46.75 4222 5358  48.77 51.97
e Thin_drops_multi 32.52 44.01 51.35 40.41 43.17 363 46.06 40.15 34.37
& || Up-Down_Mix_White | 27.97 50.68 52.04 46.24 4443 4339 51.63  60.15 42.42
Orange_white_meet | 21.63 34 37.13 37.85 36.88  36.2 3354 34098 35.28
Slanted_surface_pour | 20.26 44.19 41.94 37.41 34.65 3475 4192 4157 39.81
Flat_surface_waves 16.87 31.55 31.14 30.2 2796 2733 30.74  30.88 25.49
Oscillating_Rising 35.37 48.14 53.37 55.29 3531 3040 3548 105.02  20.95
Steam 12.51 16.01 15.33 17.40 17.86 16.75 1636  18.01 18.95
Avalanche01 15.33 28.00 28.53 30.33 2739 27.58 29.14 2855 19.75
Boil_water 35.87 40.37 40.95 36.57 36.62 36.45 39.80 2855 48.15
= Fountain01 36.67 61.69 61.56 50.54 47.68 48.99 5093  50.68 54.53
= Fountain02 137.1 165.4 164.5 235.3 177.1 201.0 1647 164.7 160.9
= Forest_fire 29.81 29.74 31.00 28.27 67.03 7826 28.66 31.56 26.24
g Landslide01 98.01 138.9 142.8 127.2 127.2 1293 139.1  129.7 142.8
2 Landslide02 63.17 56.99 66.95 78.93 80.47 5729 7723 5794 58.45
8 Volcano_eruption01 | 15.87 21.53 2143 22.70 21.86 21.69 2096  21.32 20.65
2 Volcano_eruption02 | 13.79 20.23 20.40 20.05 19.50 19.86 19.81 19.32 16.16
3 Volcano_eruption03 | 13.06 19.97 18.46 19.90 22.06 2131 1933 17.96 15.75
A WaterfallO1 30.78 39.96 40.02 41.38 42.12 4576  38.76  39.87 42.12
Waterfall02 39.32 35.74 41.78 36.70 37.02 4039 41.92 39.1 39.69
Waterfall03 34.19 43.06 47.58 42.31 43.80 41.65 4269 43.08 41.40
Waterfall04 32.49 39.29 39.18 38.70 42.02 61.26 39.84  69.60 39.24
Car_smoke 45.26 49.62 50.17 129.6 1165 1143 1136  98.56 101.4
5 Fire_smoke 60.74 120.5 108.2 52.04 6098 5190 53.84 60.56 46.36
E Avalanche02 20.56 29.22 30.98 32.20 23.84 2348 2099  20.80 30.45
= Train 35.76 83.44 72.45 92.24 91.68 82.13 66.76 1503 47.11
. Fireman 59.84 155.1 167.3 180.8 1434 1809 1649 1747 124.0
Match_cube 57.59 70.57 71.26 72.75 73.07 7294 6523 7321 73.17
H Comparison Error ‘ 0% 49 % 53% 58% 51% 52% 47% 61% 31%

Table 2: High Rate Distance (Equation 12) designed for high frame rate video (our database). We compare
our method to eight state-of-the-art algorithms using videos from our laboratory, from public datasets, and
from the Internet; “Train” is a computer graphic simulation. Bold figures indicate the best performance in
each row, we come first in most cases. Data shown x 100 for easy reading. Note that the lower readings
show higher accuracy.



where Ep(v) represents the data term consisting the Brighmess and Gradient Constancy in the image
space while Fs(v) denotes a smoothness constraint. In the following subsection, we give the full details of
energy minimization given the input images f; and fo, as well as the dense initial motion v(x) (Sec. 3.2 in
the main paper).

3.1 Numerical Scheme for Energy Minimization

As mentioned in our main paper, a one-level nested fixed point iterations are applied to minimize our pro-
posed energy. This numerical strategy is used in the recent state-of-the-art work [2]. Here, the similar
abbreviations are referred from the original paper:

fw:&;fg(x—i-v) fyy: yny(X-i-V)
fy=0yfo(x+v)  f.=fax+V) - fi(x)

foa = xfo(X+V) fxz:afo(X+V)_axfl(X)
Joy = Onyfo(X+ V) fyz = 0y f2(x + V) — Oy f1(x)

At the first phase of energy minimization, a system is built based on Eq. 2] where Euler-Lagrange is
employed as follows:

Wﬂf+a(m+-wﬂ {fofe + alfanfue + foyfy2)} — 70 (V01| + Vo2 |?) - Vu=0 (3)
SLZ+ alf2 + o)y Ay fe+ alfyyfyz + foyfoz)} =90 (IV01]° + [[V02|?) - Vo =0 (4)

In current system, given the flow field v = (v, v4)" from our dense flow interpolation (Sec.3.4), we
assume that the solution v'*! converges on the next level (i+1). Different from the original scheme from [2]],

our flow field is initialized as v¢(x) which is the full size dense motion field. In this case, the full size images
are used for each iteration of the energy minimization. We have:

PN + a(fEE) + alFidD2Y AL + alfi filh + fl, fif )}
(| Vol [* + || Vo)) - Vit =0 (5)

ST +alfil)? + a2 AL +alfy, fid' + fy fi2 D))
(| Vo[ + ||Vt - veitt =0 ©6)
Because of the nonlinearity in terms of ¢/, fi*!, the system (Egs. @) is difficult to solve by linear

numerical methods. We apply the first order Taylor expansions to remove these nonlinearity in f., which
results in:

fitt & fL+ fldv + fldvs
falt = fon + Frodvi + fr,dvy
fl+1 ~ f;z + faltydv’i + f;ydvé

Based on the flow assumption of Brox et al. [2] w.r.t. u't! ~ u? + du® and v**! ~ v' + dv’ where the
unknown flow field on the next level 7 4+ 1 can be obtained using the flow field and its incremental from the
current level 7. The new system can be presented as follows:



(&) - {fL(fL+ fidvi + fldv))
tafpn(for + fradV] + fr,dvs) + afy, (fy. + fr,dvi + fp,dvs)}

(@) - V(vi +dvi) =0 7

(@) - {fy (fi + frdvi + fydvy)
Fofyy(fyz + faydvl + foydvy) + of iy (fr 4 fradvl + fr,dvs)}
—(¢)s - V(vy + dvy) =0 ®)
where the terms (¢)%, and (¢')% contained ¢ provide robustness to flow discontinuity on the object

boundary. In addition, (¢’)% is also regularizer for a gradient constraint in motion space. All of those terms
can be detailed as follows:

(@) = ¢ {(f2 + fadvi + f,dv3)* + afy. + fradvl + fr,dv3)* + a(fy. + fr,dvi + f,dv)*} 9)

i i NIK i iy|2
(¢)s = (ﬂ{HV(vl + d“1)” + HV(U2 + d”2)H } (10)
Although we fixed v* in Egs. the nonlinearity in ¢’ leads to the difficulty of solving the system. The
inner fixed point iterations are applied to remove this nonlinearity: dv}” and dvy” are assumed to converge

within j iterations by initializing dvi’o =0and dv;’o = (. Finally, we have the linear system in dvi’j *and
dvy? ™ as follows:

(&) AL+ fiaviT 4 flavii ™)
e fl (fL 4 fladvid T 4 fL Ao T £ afi (fL 4 fdvi T 4 f it
() V(i +diTTy =0 a1

()5 - ALy + Ladoy”™ 4 fydoy?™T)

tofyy (Fye  Foydy” T 4 Ly dvy? ) afyy (Fon + frpdoy? ™+ frydvy? ™))
—(¢)g V(s + vyt =0 (12)
This resulting linear system in Eq (TT][T2) can be solved by common numerical optimization methods

such as Gauss-Seidel and Successive Over Relaxation (SOR). The latter is employed in our implementations.
Details for the computation of spatial gradient V and ||V||can be found in Faisal and Barron’s work.
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Figure 1: Natural phenomenon sequences from public datasets [9, 6, 4]. Top Row: Input frames. Others:
motion field and warping results for proposed method and other baselines.
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Figure 2: Natural phenomenon sequences from public datasets [9} 6, 4]]. Top Row: Input frames. Others:
motion field and warping results for proposed method and other baselines.

of correspondences for optical flow. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 1164-1172.

[9] SHROFF, N., TURAGA, P., AND CHELLAPPA, R. Moving vistas: Exploiting motion for describing scenes. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 1911-1918.

[10] Sun, D., ROTH, S., AND BLACK, M. J. Secrets of optical flow estimation and their principles. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 2432-24309.



sawedy
nduj

SNl

MOp]Ind

so|401d3

TIN+SSe|D

SH

vd

4041

dan

J9UMO|H

Fire smoke Car Smoke

Figure 3: Natural phenomenon sequences from Internet. Top Row: Input frames. Others: motion field and
warping results for proposed method and other baselines.
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Figure 4: Natural phenomenon sequences from Internet. Top Row: Input frames. Others: motion field and
warping results for proposed method and other baselines.
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