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1 LOL Dataset Implementation Details
We employ the following method to eliminate misalignments between the low/normal-light
image pairs.

Step 1: Obtain two normal-light images, termed as N1 and N2.

Step 2: Change the exposure time and ISO to capture several low-light images.

Step 3: The exposure time and ISO are reset to original settings to obtain another two
normal-light images N3 and N4.
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Parameter Value
Exposure −5+5F
Highlights 50 min{Y,0.5}+75
Shadows −100 min{Z,0.5}
Vibrance −75+75F
Whites 16(5−5F)

Table 1: Algorithms that we use to generate values for parameters provided by Adobe Light-
room. X , Y and Z obey uniform random distribution U(0,1) and F = X2.

The average of Ni (i = 1,2,3,4), is treated as the ground-truth G:

G =
1
4

4

∑
i=1

Ni. (1)

And the misalignment for each Ni in one pair is measured by the average mean squared error
(MSE) M between Ni (i = 1,2,3,4) and G as follows:

M =
1
4

4

∑
i=1

MSE(Ni,G), (2)

where

MSE(N,G) =
1
n

n

∑
i=1

(Ni−Gi)
2. (3)

When M is a large value, there are severe misalignments between the four normal-light
images. Thus, the corresponding pairs should be removed from the dataset. In our work, the
threshold is set to 0.1.

2 Parameter Configuration for Synthetic Image Pairs
Final parameter configuration is listed as follows. First, we generate three auxiliary factors
X , Y , Z and F , where X , Y and Z obeys uniform random distribution U(0,1) and F = X2.
Then, we generate parameters according to the algorithm given in Table 1.

3 Denoising Operation
BM3D is employed as the denoising operation for its outstanding performance in removing
practical general noises. As shown in Figs. 2 and 3, the magnitude of noise is not the same in
different regions. Noise in the dark region is amplified by dividing the illumination from the
original image. To prevent over-smoothing in bright parts and keeping noise in dark parts,
we adopt an illumination dependent denoising strategy. The following operation iterates over
the decomposed result reflectance R:

Mt = clip(I,0,UBt)/UBt , (4)
M′t = Mαt

t , (5)
Rt = Rt−1×M′t +BM3D(R,σt)× (1−M′t ), (6)
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(a) Low-Light Image (b) Reflectance

(c)  Brighter part (d) Darker part
Noise Level: 41.305Noise Level: 19.725

Figure 1: We further estimate the noise level using [4]. The magnitude of noise in darker
regions is greater than that in brighter regions.

where I represents decomposed result illumination, Rt represents the reflectance after each
iteration t and R0 is R, BM3D(·) represents the BM3D algorithm and σt is a parameter for it.
Eq.(4) and Eq.(5) generate an illumination guidance map for Eq.(6). Eq.(4) deletes already-
cleaned areas and Eq.(5) strengthens noisy areas. In Eq.(6), darker areas are denoised by
BM3D and combined with the current reflectance. Finally the operation is iterated 3 times,
with UB1 = 1, α1 = 1, σ1 = 10, UB2 = 0.08, α2 = 10, σ2 = 20, UB3 = 0.03, α3 = 100 and
σ3 = 40.

4 More Decomposition Results

We illustrate more decomposition results, comparing with SRIE [2] and LIME [3]. As shown
in Fig. 2, our method produces similar reflectance extracted from low/normal-light images
in both smooth and textual regions. Illumination produced by our method can capture image
structures better and leave less illumination variation on reflectance. It is interesting to note
that in extreme low-light regions, the reflectance tends to be greenish in both SRIE, LIME
and our results, which indicates the higher intensity of green channel of RGB images in dark
regions.

5 More Experimental Results

We now provide more results on real-scene images from public MEF [5], NPE [8], and Fu-
sion [7] dataset. MEF contains 17 image sequences with multiple exposure levels. NPE
contains 8 nature scene images used in [8], and three supplementary datasets contain another
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77 images. Fusion contains 20 testing images. We compare our Retinex-Net with four state-
of-the-art methods, including de-hazing based method (DeHz) [1], naturalness preserved
enhancement algorithm (NPE) [8], simultaneous reflectance and illumination estimation al-
gorithm (SRIE) [2], and illumination map estimation based (LIME) [3]. As displayed in
Figs. 4 to 7, our method suffers from less over-exposure around light areas like lamps and
dark edges, and brightens up details buried in dark regions.

6 More Joint Denoising Experimental Results
We now provide more joint denoising results comparing with LIME and JED [6], a recent
joint low-light enhancement and denoising method. As displayed in Fig. 8, Our method
preserves details better, and removes noise well at the same time.
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（a) Low-light Image

（h) Normal-light Image

（b)  R by LIME （c)  R by SRIE （d)  R by Retinex-Net

（e)  I by LIME （f)  I by SRIE （g)  I by Retinex-Net

（i)  R by LIME （j)  R by SRIE （k)  R by Retinex-Net

（l)  I by LIME （m)  I by SRIE （n)  I by Retinex-Net

Figure 2: More decomposition results compared with SRIE and LIME.
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（a) Low-light Image

（h) Normal-light Image

（b)  R by LIME （c)  R by SRIE （d)  R by Retinex-Net

（e)  I by LIME （f)  I by SRIE （g)  I by Retinex-Net

（i)  R by LIME （j)  R by SRIE （k)  R by Retinex-Net

（l)  I by LIME （m)  I by SRIE （n)  I by Retinex-Net

Figure 3: More decomposition results compared with SRIE and LIME.
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(b) SRIE (c)_NPE

(d) LIME (e) DeHz (f) Retinex-Net

(a) Input

Figure 4: The results using different methods on Farm house in MEF Dataset.



8 WEI, WANG, YANG, LIU: DEEP RETINEX DECOMPOSITION

(b) SRIE (c)_NPE

(d) LIME (e) DeHz (f) Retinex-Net

(a) Input

Figure 5: The results using different methods on Day break in NPE Dataset.
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(d) LIME (e) DeHz (f) Retinex-Net

(c)_NPE(a) Input (b) SRIE

Figure 6: The results using different methods on Platform in Fusion Dataset.



10 WEI, WANG, YANG, LIU: DEEP RETINEX DECOMPOSITION

(d) LIME (e) DeHz (f) Retinex-Net

(b) SRIE (c)_NPE(a) Input

Figure 7: The results using different methods on Chinese garden in MEF Dataset.
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(a) LIME (c) Retinex-Net(b) JED

Figure 8: The joint denoising results using different methods on natural images: (top-to-
bottom) Shower head and Carton from LOL Dataset.


