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In the main paper, we reported results only on few attributes due to space limitations. We provide
more results in each application which we described in the main paper to highlight the characteristics
of RankCGAN. Additionally, we trained an unconditioned Stage-II GAN from StackGAN method
[5] for 128 x 128 image generation, where the resolution is chosen due to the limited real images size.

1 Image Generation

In this section, we show more results on shoe [4], face [1], scene [2] datasets using additional attributes.

1.1 One attribute interpolation

To perform the interpolation using RankCGAN, we generate the images by varying the latent variable
r in the interval [—1,1], while the unconditional noise vector z is fixed.

Shoes dataset [4] comprises 4 relative attributes (sporty, pointy, open, comfortable). We defined an
additional “black” attribute by comparing the color histogram of images. Figures 1, 2, 3, 4 show one
attribute interpolation with respect to the attributes “black”, “pointy”, “open” and “sporty” respectively.

Face dataset [ 1] comprises 29 semantic attributes. We demonstrated one example of the “masculine”
attribute in the paper. Here, we extend those results by showing two additional attributes results.
Figures 5, 6, 7 demonstrate one attribute interpolation using “smiling”, “young” and “masculine
attributes.

Similarly to face dataset, we highlight two additional attributes for the scene dataset. Figure 8,
9, 10 demonstrate the one attribute interpolation using “open”, “perspective” and “natural” attributes.
Generally, forest and tall building scenes are considered less open than coast and highway scenes, while
the coast and open-country scenes are considered less perspective than street and tall building scenes.

Finally, Figure 11 show one attribute interpolation on 128 x 128 images using “sporty” and

“masculine” attributes.

th)

1.2 Two attributes interpolation

To perform two attributes interpolation using RankCGAN, we vary the latent variable ry, r; in
the interval [—1,1], corresponding to the first and second attributes respectively, while fixing the
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Figure 1: Examples of generated shoe images with respect to “black” attribute. The abscissa values
represent the ranking score of each image.
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Figure 2: Examples of generated shoe images with respect to “pointy” attribute. The abscissa values
represent the ranking score of each image.

P 4!)!“!”&&333

1184 -19, .01

JJJJJJJJJJ&&&::

l 3.80 -1n24 =706 =500 -1.08 -0 Iﬂ 31

JJJJJJJIIIIJJAJ

1086 -9
1ess open More open

Figure 3: Examples of generated shoe images with respect to “open" attribute. The abscissa values
represent the ranking score of each image.

unconditional noise vector z. The additional results support the evidence that RankCGAN decorrelates
multiple semantic attributes.

On shoe dataset, Figure 12 shows the two attributes interpolation using respectively the couple
of attributes (“black”, “sporty”’) and (“black”, “open”). Also, on face dataset, Figure 13 shows the
two attributes interpolation using the couple of attributes (“masculine”, “smiling”) and (‘“masculine”,
“young”). Moreover, Figure 14 illustrates the same interpolation on scenes dataset using the couple
attributes (“open”, “natural”). Lastly, Figures 15 and 16 demonstrate similar interpolation using the
couple of attributes (“black”, “sporty”) and (“masculine”, “smiling”) respectively on 128 x 128 images.
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Figure 4: Examples of generated shoe images with respect to “sporty" attribute. The abscissa values
represent the ranking score of each image.
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Figure 5: Examples of generated face images with respect to “smiling" attribute. The abscissa values
represent the ranking score of each image.
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Figure 6: Examples of generated face images with respect to “young" attribute. The abscissa values
represent the ranking score of each image.

2 Image Editing

In this section, we demonstrate more results on image editing tasks on all three datasets with different
attributes. In order to achieve image editing, we load a real image from the dataset and estimates
the latent variables r,z of RankCGAN that generate a similar image to the real one, called the
reconstructed image. Then, we interpolate the reconstructed image by varying the latent variable
r in the interval [—1,1] and fixing the noise vector z. The estimation of the latent variables r, z is
performed by encoding the real image using the encoders E,, E; as detailed in [3] and using the
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Figure 7: Examples of generated face images with respect to “masculine” attribute. The abscissa

values represent the ranking score of each image.
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Figure 8: Examples of generated scene images with respect to “open" attribute. The abscissa values
represent the ranking score of each image.
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Figure 9: Examples of generated scene images with respect to “perspective” attribute. The abscissa
values represent the ranking score of each image.

manifold projection method [6] as a refining step.

The Figures 17, 18, 19 illustrate results on image editing tasks using shoe, face, scenes datasets
respectively, where the reconstructed images are framed in red color, and the images generated with
subjectively less of the chosen attribute than the reconstructed image are shown on the top line, while
the images generated with subjectively more are on the bottom line. Additionally, the figure 20 shows
128 x 128 image editing on shoes and faces, using the “sporty”” and “masculine” attributes respectively.
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Figure 10: Examples of generated scene images with respect to “natural” attribute. The abscissa
values represent the ranking score of each image.
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Figure 11: Examples of 128 x 128 generated face and shoe images with respect to “masculine” and
“sporty” attributes.

3 Semantic Attribute Transfer

In this section, we provide extended results of attribute transfer tasks. Figure 21 shows the results
of transferring the semantic strength of “smiling” attribute from twelve references images to ten target
images. The column shows the edited target images after transferring the semantic attribute value
from the reference image. It indicates that the “smiling” attribute can be transferred in images with
different pose and gender. The row shows the edited target image after transferring different semantic
attribute values from the reference images. It indicates that the identity of the edited image is retained
regardless of the semantic strength values. In addition, figure 22 demonstrates the same attribute
transfer task on 128 x 128 generated images.

4 Generation Quality

Our model RankCGAN is built on top of GAN architecture and therefore, it inherits many characteris-
tics of GAN in term of diversity, generation capability and quality. Many failure examples are due to
the inability of GAN to generate good quality images on the studied dataset. We notice that the gener-
ated images on shoe dataset [4] have globally a good quality because the images have the same white
background and orientation. Also, on face dataset [1], we observe the appearance of some artifacts on
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Figure 12: Example of two-attributes interpolation on shoe images using (“sporty”,*black") and
(“open",“black") couple attributes.

Apods ssa)
uado ssa]

g, sy (o Y Y e

g, sy By B Yo Yoecn e
L S N N -
ey B B B o s
| S S S NN S -
| S S S N S -
B B G G (o o o

Ky1ods c10m1
wado atour

less young more young less smiling more smiling
g

BUINasE $83]

SUMNSSPU S8

sunosew 1o
2UNNISET 21010

i
-
— -
A
Y
v .4

"o,

Figure 13: Example of two-attributes interpolation on face images using (“masculine”,
and (“masculine",“smiling") couple attributes.

young")

generated faces e.g. in Figure 21. Besides, on scene dataset [2], GAN struggles to generate some cate-
gories in the scene dataset due to its high variability such as forest in Figure 8, inside-city in Figure 9.
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Figure 14: Examples of two-attributes interpolation on scene images using (“open”,
attributes.

natural") couple
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Figure 15: Example of two-attributes interpolation on 128 x 128 shoe images using (“sporty",“black")
couple attributes.
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Figure 16: Example of two-attributes interpolation on 128 x 128 face images using (“mascu-
line",“smiling") couple attributes.
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Figure 17: Examples of image editing task, where the latent variables are estimated for an input
image to perform the editing with respect to the “pointy" attribute (top) and “open” attribute (bottom).
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Figure 18: Examples of image editing task, where the latent variables are estimated for an input image
to perform the editing with respect to the “smiling" attribute (top) and “young" attribute (bottom).
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Figure 19: Examples of image editing task, where the latent variables are estimated for an input image
to perform the editing with respect to the “natural” attribute (top) and “perspective" attribute (bottom).
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Figure 20: Examples of 128 x 128 image editing task, where the latent variables are estimated for
an input image to perform the editing with respect to the “sporty” attribute (top) and “masculine”

attribute (bottom).
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Figure 21: Examples of “smiling" attribute transfer task. The latent variable r of reference images
is estimated and then transferred to the target image in order to express the same strength of attribute.
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Figure 22: Examples of “smiling" attribute transfer task on 128 x 128 images. The latent variable
r of reference images is estimated and then transferred to the target image in order to express the
same strength of attribute.



