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Abstract— Locomotion mode recognition is one of the most
important aspects for the control of motion rehabilitation
systems, e.g. lower-limb prostheses and exoskeletons. In this
paper, we propose a capacitance based sensing system for
recognizing human locomotion modes. The proposed system
includes two rings as sensing front-ends of body capacitance,
two sensing circuits for processing the signals and the gait
event detection system. The deformation of muscles can be
reflected by the changes of capacitance signals. To validate the
developed prototype, nine locomotion modes are monitored and
ten channels of capacitance signals are collected for locomotion
mode recognition. With the combination of capacitive sensing
approach and phase-dependent classification method, satisfac-
tory recognition results are obtained.

I. INTRODUCTION

Though people’s usual gaits tend to be natural and simple,
the movement of human body differs for different locomotion
modes. Thus, the selection of strategies for the control of re-
habilitation devices, e.g. lower-limb prostheses and exoskele-
tons depends on specific motion patterns. Optimal control
approach can be determined only with current motion state
known. When current state changes, the control strategy will
be adjusted in response. For most of the existing exoskeletons
and prostheses, the control mode is changed by the user
himself during motion, which is complicated and sometimes
even unsafe. Therefore, the development of an interface
for automatic locomotion mode detection and control mode
selection draws increasing attentions of researchers. Previous
studies on motion mode recognition of lower limb are
realized in different ways: using electromyography (EMG)
sensors [1], [2] and inertial sensors [3]–[6]. [1] measured
EMG signals from 16 muscles of lower limb while the
subjects were walking on different terrains or paths. The
recognition of a total of 7 motion modes were tested on
eight able-bodied subjects and two subjects with long trans-
femoral amputations and promising recognition results were
shown. Inertial sensors (accelerometers and gyroscopes) are
wearable and convenient to be fixed on human body and
it is more preferable to be applied in daily life. It is one
of the main advantages of this kind of sensors used for
human motion mode recognition. [4] used AM-FM model for
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gait pattern classification based on accelerometry data. The
experiments recognized five modes of motion and received
some promising results. [5] designed an intelligent shoe,
equipped with inertial measurement unit (IMU), which was
more convenient for applications. Flat walking, descending
stairs and ascending stairs can be recognized by using this
device. In [6], a commercial IMU (Xsens MTx-28A53G25)
was used for recognition of human motion mode. With
Bayesian Networks, seven motion modes including falling,
jumping and lying were recognized.

However, challenges for recognizing locomotion modes
using the apparatus mentioned above still exist. EMG signals
are weak signals with a microvolt-level voltage and easy to
be disturbed by external noise signals. As a consequence, in
order to obtain available EMG signals, filtering, amplifying
and other complex processing approaches are needed, which
put forward high expense for circuit design. For the inertial
sensors, the signals can be full of noise (as the shifting of the
sensors). In order to acquire higher accuracy, more sensors
that provide complimentary information have to be integrated
on different positions of human body , which are independent
sources of noise [9].

In this paper, we develop a capacitance based system for
locomotion mode recognition, which is cheaper and needs
simpler signal processing approaches comparing with the
methods using EMG sensors and inertial sensors. The cost
of this sensing system is about 150 U.S. dollars, which
is lower than the average price of a commercial EMG
measurement system [7] or an inertial sensor module [8].
Whats more, the body capacitance is a representation of
humans motion intention by reflexing the contraction of
muscles. Capacitance sensing of human body was previously
studied by [9], [10]. The technology is also applied on
touch sensing in cell phones. In [9], the designed prototype
was validated to detect human-neck activities. In [10], the
authors designed a prototype based on oscillator for detecting
heartbeat and respiration. The sensing principle used in [9]
and [10] was based on colpitts oscillator detecting the change
of frequency. According to [9], the body capacitance makes
part of the characteristic capacitance of Colpitts oscillator,
which determines the oscillation frequency. The oscillation
frequency was 17 MHz and it was easily disturbed by exter-
nal noise. Thus, the circuit requirement of the prototype was
high (with 24-bit ADC). In touch sensing, many sophisticated
microchip solutions for capacitance sensing are developed.
However, the capacitance range are limited (several decades
of picofarads) for our use. To overcome these problems, we
designed a wearable capacitive sensing system based on the
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principle of sensing impedance, which reduced the noise and
enhanced the reliability. By generating a sinusoid signal with
the frequency constant, the equivalent impedance of body
capacitance changes with the muscle deformation.

This paper is organized as follows. In Section II, we
describe the design of capacitive sensing device. Experi-
ment protocol and classification methods are illustrated in
Section III. Performance of our approach for motion mode
recognition is verified by experimental results in Section IV.
Summary and discussion of this work are shown in Section
V and we conclude in Section VI.

II. MEASUREMENT SYSTEM

A capacitor is a passive two-terminal electrical component
used to store energy in an electric field. The forms of
capacitors vary widely depending on the practical use, but
all contains at least two electrical conductors separated by
a dielectric. The most common example is the parallel plate
capacitor, having two parallel conductive plates separated by
an insulated gap. The capacitance is determined by three
parameters, the electrodes’ area, the distance between them
and the dielectric constant of the filled material. When the
area and distance are constant or change very little, the
capacitance mainly depends on the material between the
electrodes, i.e. the shape, the structure and the molecular
properties. Thus, we can detect the condition of an object by
placing electrodes on it and measuring the capacitance.

The electrodes of the capacitor can be separated as two
parts, the transmitter electrode and receiver electrode [11].
Exciting the transmitter electrode with a signal at a frequency
of several hundred kilohertz, the receiver electrode will
receive the wave. The magnitude of the signal is proportional
to the frequency and voltage of the transmitted signal.
According to the equation, Z= 1

jωC , the impedance of the
capacitor Z is only determined by the capacitance C with
the frequency ω constant. We can detect the human motion
by fixing the electrodes on the human body. The muscle
deformation and contact conditions can be reflected by the
change of capacitance. With proper regulation, the magnitude
of the signals on receiving electrodes will vary with the
human movement. By measuring the voltage, we can get
the motion information accordingly.

Hence, we designed a prototype which can detect the
human motion mode. The design concept of the prototype is
shown in Fig. 1. The capacitor Cbody is constructed with two
electrodes and the body part as its dielectric. By applying a
sinusoid signal on the transmitter electrode with amplitude
and frequency invariable, the equivalent impedance of Cbody

and the resistor Rc in series makes a current loop. Thus, the
voltage across the resistor will vary with Cbody . The original
signal contains noise and incompetent for direct sampling.
For this reason, the signal is preprocessed and converted to
root mean square (RMS) value before the analog to digital
converter (ADC). Based on this, our prototype is made up of
five parts, the sensing front-ends, signal processing circuits,
gait event detection subsystem and a computer to receive data
stream. Fig. 2 shows the sensing front-end of the prototype.

Fig. 1. Design concept of the prototype. The magnitude of the signal on
the receiver electrode is influenced by the body movement. The signal was
converted to RMS value before the ADC.

(a) Above-knee sensing front-end (b) Above-ankle sensing front-end

Fig. 2. The electrodes are made from copper pieces of 0.3mm and fixed to
the thermomaterial ring by double-faced adhesive tapes. The area of each
copper film is about 5cm×2.5cm. The black parts on the electrodes are
insulating tapes.

The device consists of two rings. One is utilized for the thigh
and the other for the shank. Each ring is fabricated with six
copper electrodes on inner surface. For each group of the
electrodes, five of them are utilized as receivers, sampling
five channels of capacitance signals. For each ring, there
is only one transmitter electrode as the signal source. The
sensing principle of the system is detecting the change of
the muscle shape, as shown in Fig. 3. The muscular cross
section of the thigh changes visibly according with lower-
limb movement. The shape change of lower limb can slightly
change the relative positions between the electrodes and skin.
This tiny change will have a strong effect on the capacitance
signals.

However, like most of the other biomechatronic sensors,
there exist some problems in sensing. First of all, although
the muscle deformation has a strong effect on the signal, it
contains useless information which is the major source of
noise. Second, the sensing front-end rings, although fixed to
the lower limb with ties, may glide down because of sweats.
Due to this, the signals can be variable and unstable during
the experiment or practical use. To remedy these problems,
we implemented our sensing front-end with thermoplastic
material. The material can be easily reshaped when heated up
to about 70 ◦C and hardens when cooled to normal temper-
ature. We designed the sensing front-end in accordance with
the shape of lower limb to prevent the undesired shifting,
and we pasted insulating tapes at the intervals of electrodes
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Fig. 3. The sensing principle of lower limb movement detection based
on our prototype. The top half shows the flexion and extension of lower
limb, and the bottom half shows the cross section of thigh accordingly. The
shape change of thigh was reflected by the five channels of the capacitance
signals. Note that the capacitive sensing system including two parts: above-
knee module and above-ankle module. Here we only show the above-knee
module for example.

to keep the electrodes from sweats.
The architecture of the hardware is shown in Fig. 4. Two

circuits were designed to process the capacitance signals
from the sensing front-ends, including oscillation circuits,
RMS-converting circuit,control module and wireless module.
The oscillation circuit was built using MAX038 as its signal
source and a high-slew-rate amplifier (TL3474) as the driver
module. MAX038 is a waveform generator that can generate
sinusoid signal at specific frequency with the peripheral
circuit properly designed. The oscillation frequency is 100
kHz. To prevent from waveform distortion, the signal was
amplified by the driver module before applying on the front-
end. The driver module also provided enough output current
to transmitter electrodes for being signal source although
the current was several dozen milliamperes (mA) at most.
We extracted the signals from the receiver electrodes and
converted them to RMS voltage by RMS-converting circuit.
The regulated signals were then converted to digital data and
processed by the control module. STM32 was used as the
processor of the control module, which was an ARM-based
32-bit Microprogrammed Control Unit (MCU) imbedded
with a 10-channel 12-bit ADC. What’s more, the MCU
was low-power consumption and high-speed (72 MHz CPU
frequency), which is well suited for applications requiring
multichannel signal processing, as that utilized in this study.
The input voltage range of ADC is 0 to 3.3 V. The power
supply of the circuits was ±5 V which was converted from
a 9.6-V Ni-MH battery. For the gait event detection system,
two mechanical switches were fixed on the positions of toe
and heel of a shoe to detect gait events.

As mentioned above, we measured the voltage across the
body capacitors. The resistor divides the voltage with the
body capacitor. To make the voltage vary in the range of 0
to 3.3 V, the value of the resistors should be carefully ad-

Fig. 4. The top half shows the structure of measurement system. The
data flow is as follows, sensing circuit-2 detects the capacitance signals of
shank and receives the data from footswitch detection board as well. It then
transmits the data to sensing circuit-1. Sensing circuit-1 detects the signals
of thigh and transmits all the data to the computer (PC). The bottom half
shows the sensing circuit and power circuit.

justed. With the excited frequency (100 kHz), the estimated
capacitance between electrode pairs is 1 to 30 nF and the
average dielectric constant is about 60 to 80. According to
the sensing principle we utilized, it is not necessary to specify
the body capacitance. We just need to maintain the baseline
invariable during the experiment. Then the value of resistor
was set at about 1.5 kΩ.

To guarantee the validity of the data, the flow of sample
data is conducted as follows, as shown in top half of Fig.
4, two circuits communicate with each other via Universal
Asynchronous Receiver Transmitter (UART). For the gait
event detection board, the data was sent out only if there were
changes on the switches. While the main circuit transmitted
data to computer through the wireless module and the actual
sampling rate was 50 Hz.

III. METHOD

A. Experiment Protocol

One able-bodied subject was recruited in this experiment.
The subject was 24 years old, 181 cm height and 70 kg
weight. The positions of sensors should be carefully chosen
to obtain more useful information of human motion. Two
capacitive sensing rings were worn on the thigh and the
shank, respectively. For the thigh, we fixed the ring around
the up edge of the knee, because the fat distributed here is
little so the shape change is more obvious relatively. What’s
more, it can prevent the front-end from gliding down which
may bring much noise. For the same reasons, we placed
another ring on the ankle. To ensure the consistency of the
sampled data, the rings should be carefully dressed with No.1
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(b) Capacitance signals

Fig. 5. Sequences of photos captured during normal walking of the subject
with capacitive sensing devices worn is shown in subfigure (a). Here we only
show one motion mode for example. The raw data of capacitance signals
is shown in subfigure (b). The red vertical lines denote foot contact(FC),
which are boundaries of gait cycles in our experiments.

electrode heading forward. Specifically, the No.1 electrode of
above-ankle ring should be adhered to tibia and the above-
knee ring to the knee. In this experiment, nine locomotion
patterns were investigated: standing, sitting, stair ascending,
stair descending, ipsilateral turning, contralateral turning,
obstacle climbing, normal walking and giant-step walking on
level ground. For the task of standing, the subject was asked
to stand still for every trials. As for the sitting experiment,
the subject was required to sit on a 42 cm high chair for
every set of experiment. Stair ascending and stair descending
were tested on a 14-step staircase. The stairs were 110 cm
in width, 30 cm in deep and 15 cm in height. In turning
tasks, the subject was asked to turn around a circle about 100
cm in diameter. When the subject turned toward the tested
leg, the task was called ipsilateral turning, otherwise the
task was termed contralateral turning. Obstacles were 17 cm
high cones, with 14 cm diameter. The distance between two
adjacent obstacles was 120 cm and only the tested leg was
required to pass over obstacles. The subject was encouraged
to walk at his favorite speed for normal walking. With respect
to giant-step walking, the subject was asked to walk with a
larger step length compared with normal walking. Rests were
allowed for the subject between trials to avoid fatigue. The
circumstance of the subject walking with capacitive sensing

devices worn are shown in Fig. 5 (a).

B. Classification

Capacitance signals, although time-varying, are quasi-
cyclic, which can be seen from Fig. 5 (b). In other words,
although capacitance signals change a lot for different gait
phases of the same motion mode, the signals are similar
at the same phase of a certain locomotion pattern. As a
consequence, we used a phase-dependent pattern recognition
method mentioned in [1]. Gait events of foot contact (FC)
and foot off (FO) can be detected using footswitches fixed
on the shoe. FC is determined when the state of at least
one footswitch changes from ”off” to ”on”, while FO is
determined when the states of both footswitches become
”off”. Four phases are defined according to these two gait
events: 200 ms prior to FC, 200 ms after FC, 200 ms prior
to FO and 200 ms after FO. Be different from [1], only one
analysis window with 200 ms was used in each phase. Linear
discriminant analysis (LDA) classifier was used for locomo-
tion mode recognition. 15 feature values were calculated for
feature extraction according to the following expressions:

f1 = avg(X),
f2 = std(X),
f3 = min(X),
f4 = max(X)−min(X),
f5 = rms(X),
f6 = iqr(X),
f7 = mad(X),
f8 = std(diff(X)),
f9 = max(diff(X)),
f10 = min(diff(X)),
f11 = avg(|diff(X)|),
f12 = max(|diff(X)|),
f13 = rms(diff(X)),
f14 = iqr(|diff(X)|),
f15 = mad(|diff(X)|),
where X is the data matrix of the analysis window,

avg(X) is the mean value of X , rms(X) is the root mean
square of X , diff(X) is the differences between adjacent
elements of X , iqr(X) is the interquartile range of X and
mad(X) is the mean absolute deviation of X . As a result,
a 150-dimension feature value set was used for classifier
training and testing.

The overall recognition error (RE) is calculated by

RE =
Nmis

Ntotal
× 100% (1)

where Nmis is the number of misrecognized testing data and
Ntotal is total number of testing data.

To better illustrate the recognition performance of certain
locomotion patterns, confusion matrix was defined as

C =




c11 c12 ... c19

c21 c22 ... c29

... ... ... ...
c91 c92 ... c99


 (2)
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Fig. 6. Recognition results of nine motions using capacitance signals from four phases Pre-FC, Post-FC, Pre-FO and Post-FO are shown in Subfigure (a),
(b), (c) and (d), respectively. Diagonal values of the bar chart of confusion matrix represent the recognition accuracies of corresponding motion modes.
And off-diagonal values indicate the confusability of two relevant motions.

where each element is defined as

cij =
nij

n̄i•
× 100%. (3)

nij is the number of testing data in mode i recognized as
mode j and n̄i• is the total number of testing data in mode
i. A higher value of cij (i 6= j) denotes that it is easier for
mode i to be misclassified as mode j.

IV. EXPERIMENTAL RESULTS

To acquire enough data for classifier training and testing,
measurement time and the number of trials for different
tasks are shown in Table I. For the tasks of stair ascending,
stair descending, ipsilateral turning, contralateral turning,
obstacle climbing, normal walking and giant-step walking
on level ground, the selection of analysis windows and the

calculation of feature values were carried out using phase-
dependent analysis window approach. For the tasks of sitting
and standing, whose footswitch signals remained unchanged
during experiments, analysis windows were uniformly dis-
tributed along the time for each trial and feature values were
calculated just like tasks mentioned before.

Experiment data were divided into two sections: 60%
for classifier training and 40% for recognition performance
testing. Overall recognition accuracies for phase Pre-FC,
Post-FC, Pre-FO, Post-FO were 95.05%, 95.21%, 95.77%,
96.58%, respectively. Detailed recognition results expressed
by confusion matrixes are shown in Fig. 6. As shown in
the charts, sitting and standing are the most robust modes
to identify, whose classification accuracies keep at 100%.
Normal walking and stair ascending also show almost perfect
performances. Recognition accuracies of giant-step walking
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TABLE I
PARAMETERS OF EXPERIMENTS

Tasks Trial number Trial time (s)
Stair ascending 30 12

Stair descending 30 12
Obstacle climbing 35 12
Normal walking 20 15

Giant-step walking 20 15
Ipsilateral turning 20 15

Contralateral turning 20 15
Standing 20 10
Sitting 20 10

and stair descending ranged from 90.5% to 99.0%. As was
expected, the recognition for obstacle climbing and two kinds
of turnings didn’t perform well. And we can see from the
charts that these three motions are easy to be confused with
each other.

V. DISCUSSION

Distinct differences between different motion modes and
similarities between different experiment trials of the same
motion patterns are two of the most important influencing
factors for motion recognition. As for the former, the perfor-
mance could be improved by reconsidering device wearing
and sensor distribution. Since the essential for capacitance
based recognition is the variances of the distances between
the skin and sensors, which are caused by the deformations of
muscles during contractions and relaxations. However, only
some parts of human bodies show significant variances while
the changes of other positions are negligible. Thus, more
reasonable consideration of sensor positions will result in
better recognition performance. The latter will also benefit
from reconsideration of sensor positions. In addition to this,
the influence of external interference should be reduced.
During experiments, more external noise signals were ob-
served when muscles were fatigued and sweaty. Thus, how
to improve the comfortability of sensor wearing and the
robustness of sensor design are what we will investigate in
the following research.

Capacitive sensing approach showed encouraging results
in the experiment, which was comparable with the results
obtained using EMG sensors. In [1], the classification er-
rors in the Post-HC, Pre-TO, Post-TO and Pre-HC were
12.4%±5.0%, 6.0%±4.7%, 7.5%±5.1% and 5.2%±3.7%
by measuring ten channels of EMG signals from muscles
in pelvis segment and thigh segment. Adding six channels
of EMG signals from calf segment and foot reduced the
errors by 1.8%-3.0%. In our work, the errors were 4.79%,
4.23%, 3.42% and 4.95% for these four phases by motoring
ten channels of capacitance signals from thigh and shank.
Besides, two more locomotion modes giant-step walking and
sitting were considered in our work. Thus, capacitive sensing
seems promising for locomotion mode recognition. However,

this work is a preliminary study for evaluating whether
capacitive sensing devices will be applied for rehabilitation
device control. Although satisfactory recognition accuracy
was obtained, only one able-bodied subject was measured
in the experiment. The practical applicability of capacitive
sensing devices need a further verification with more able-
bodied subjects and amputees to be measured.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach for recog-
nizing locomotion modes with wearable capacitive sensing
system, which is cheaper and needs simpler signal processing
approaches comparing with the methods using EMG sensors,
cameras and inertial sensors. The proposed capacitive sens-
ing system shows an encouraging performance for off-line
locomotion recognition. With further studies, this sensing
approach may become a potential tool for the real-time
control of powered lower-limb prostheses and exoskeletons.

In the future, the convenience of device wearing need
to be improved. In addition, the most sensitive positions
in lower limbs for capacitance signal measurement will
be investigated. To provide new practical signal source for
the control of lower-limb rehabilitation devices, real-time
recognition of locomotion modes will be studied.
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