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Abstract— In this paper we describe how a humanoid robot
can learn a representation of its own reachable space from
motor experience: a Reachable Space Map. The map provides
information about the reachability of a visually detected object
(i.e. a 3D point in space). We propose a bio-inspired solution
in which the map is built in a gaze-centered reference frame:
the position of a point in space is encoded with the motor
configuration of the robot head and eyes which allows the
fixation of that point. We provide experimental results in which
a simulated humanoid robot learns this map autonomously and
we discuss how the map can be used for planning whole-body
and bimanual reaching.

I. INTRODUCTION

Our society looks at robots as future helpers for humans:
they could assist elderly people, cooperate with us in the
execution of tedious and hard works, and even replace us for
the accomplishment of the most dangerous tasks. This long
term goal is pushing robotic researchers to build more and
more complex robots, especially humanoids, which exploit
state-of-the-art technologies for their structure and actuation,
showing an increasing number of degrees of freedom and
sensors [1], [2]; these robots should be able to cope with
the unstructured environment in which humans daily live
and act. In particular, they should be able to reach for
objects using the arms or even the whole body, eventually
ending up grasping and using such objects. An important
issue associated with these behaviors is the definition of the
space that the robot can reach, i.e. the reachable space or
workspace. In general, if an accurate model of the system
is available, analytical or geometric methods can be used
to analyze and obtain the robot reachable space. However,
to build analytical model of current humanoid robots is
becoming a more and more difficult task, due to their in-
creasing complexity. Learning techniques offer an interesting
solution if insufficient analytical knowledge is available, and
seem even mandatory as long as humanoids are supposed to
become completely autonomous and gain knowledge through
their own experience.
This work explores the possibility of learning a represen-
tation of the robot reachable space from motor experience:
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a Reachable Space Map. We have already introduced this
idea in a recent work (not published yet) in which only
very preliminary results are provided. The robot acquires
autonomously a kinematic model of its body through ex-
ploration of the motor space (i.e. motor babbling); the
knowledge of this model allows to produce training data to
learn the Reachable Space Map. After learning, the robot can
use the map to estimate the reachability of a visually detected
object before starting the reaching movement. Furthermore,
the map can also be exploited to plan body movements that
would make the subsequent reaching action successful (e.g.
bending or rotating the waist, bending the knees, walking
toward the object).
The main aspect which makes our solution innovative with
respect to previous works is the use of a gaze-centered
reference frame to describe the robot workspace. Indeed, the
position of a point in space can be defined in different ways,
the most common one being the Cartesian position with
respect to fixed reference frame, either placed somewhere in
the environment or on the robot body. Conversely, here we
propose to encode positions in space with motor coordinates:
in particular, the position of a point in space is defined
by the motor positions of the head and eyes when the
robot is fixating that point, or in other terms by the gaze
configuration. This choice is inspired by converging evidence
both in monkeys and humans, that will be discussed in
Section II. Then in Section III we review the studies in
which this idea has been applied to robotics and those
which address the generation of the reachable space of
humanoid robots. The details of our implementation are
described in section IV. Finally, simulation results obtained
with the dynamic simulator of the humanoid robot iCub are
presented in section V, while in Section VI we discuss how
the Reachable Space Map can be used for planning whole-
body and bimanual reaching. In section VII we report our
conclusions.

II. A BIO-INSPIRED APPROACH

Experiments on monkeys reveal that the parietal reach
region (PRR) of the posterior parietal cortex (PPC) codes
the location of reaching targets [3], [4]. This information
is encoded explicitly in a gaze-centered, eye-fixed frame of
reference, and is updated during eye movements [4], [5] as
opposed to a head or body-centered frame, which would be
independent of eye movements [6].
In humans, evidence from fMRI (functional Magnetic Reso-
nance Imaging) recordings suggest that spatially contiguous
neuronal populations operate in different frames of reference,
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supporting sensorimotor transformations from gaze-centered
to body-centered coordinates [7]. In particular, the posterior
parietal cortex dynamically updates the spatial goals for
action in a gaze-centered frame [8]. Behavioral studies
enforce the hypothesis of the presence of a gaze-centered
frame of reference for the control of pointing [9]–[12] and
reaching [13], even in the case of whole-body reaching [14].
Furthermore, neurophysiological evidence based on TMS
(Transcranial Magnetic Stimulation) measurements show that
human perception of what is reachable or not relies on motor
information [15], [16]. In [15] the task of visually judging
the reachability of objects was influenced by the application
of TMS on the motor area (facilitation effect), while in [16]
recorded motor evoked potentials (MEPs) from hand muscles
were found to be higher when visually detected objects were
lying within the subjects reachable space, during magnetical
stimulation of the primary motor cortex.

III. RELATED WORKS

The idea of encoding positions in space by using motor
variables is not new in robotics. Different works show how
this solution allows to learn a motor-motor mapping that
can be used for reaching control [17]–[19]. This approach
has been considered also in recent works [20], [21] in
which the authors mention a motor representation of the
space surrounding the robot, either referred as “embodied
representation of space” or “visuomotor representation of the
peripersonal space”. However, none of these works makes
this representation explicit, and they only represent the space
that the robot can reach (not the space that the robot cannot
reach); therefore, it is not clear how this information can
be used for planning body movements that facilitate the
subsequent reaching action.
Recently numerical methods have been applied in order to
build a representation of the reachable space of humanoid
robots. In [22] an optimization-based method and the Monte
Carlo method are compared: locations in space are associated
with a binary information (i.e. reachable / non-reachable)
which is stored in a database for later utilization. A richer
description of the robot workspace is provided in [23], where
reachable points in space are ranked by their reachability,
a measure indicating the number of possible approaching
directions for the arm; on the basis of that measure a
capability map is built which has a directional structure and
can be used to identify good approach directions for grasping
objects, as shown in a subsequent work [24]. In [25] the
reachability space is represented by a grid of voxels holding
information about the success probability of an IK (inverse
kinematics) query, and it is used to speed up a randomized
IK solver.
In all these works the robot workspace is described with
respect to a Cartesian frame of reference (either placed in
the world or on the robot). With respect to this solution,
representing locations in space using the gaze configuration
has several advantages. First, we can easily represent all
locations the robot can see, even if not reachable, in a
compact map, which is limited by the robot joints limits.

This is not possible using other representations, and in
fact other works either encode only reachable locations or
create arbitrary limitations around the robot (e.g. bounding
box). Second, this representation is directly linked with the
visual search: after a visually detected object is fixated
the reachability information can be retrieved without the
need of any additional transformation. Moreover, the gaze
configuration can be used to directly trigger the reaching
movement, as described in the literature [17]–[21].
Furthermore, previous works provide a discrete representa-
tion of the space (i.e. grid of voxels). Conversely, in our
approach the reachable space is approximated using a LWPR
(Locally Weighted Projection Regression) neural network
[26], which deals with continuous input and output; we will
further explain how this is important when using the map
for planning body movements. Using LWPR also provides
a compact representation that can be queried in real-time
to get online evaluations of the reachability of visually
detected object; memory occupancy and response time (i.e.
the time needed to perform a query) are typically smaller
then databases or other neural networks.

IV. PROPOSED SOLUTION

The definition of the reachable space is based on a
kinematic model of the robot arm, head and eyes, namely the
arm-gaze forward kinematics. Given the arm configuration,
the model provides the gaze configuration (head+eyes config-
uration) which allows fixation of the robot end-effector (i.e.
the hand). This model is learned online and autonomously
by the robot through motor babbling using LWPR. Then,
training data to estimate the reachable space map is obtained
by solving a large number of IK queries (i.e. inversion of
the learned kinematic model). We propose two different
solutions to design the Reachable Space Map: the Basic Map
and the Enhanced Map. While the output of the Basic Map
estimates the probability of having a valid IK solution for a
given gaze configuration (i.e. it estimates whether the fixated
point is reachable or not), the output of the Enhanced Map
provides a richer information about the degree of reachability
of the fixated point, according to a certain quality measure.
The Enhanced Map indicates not only whether the fixated
point is reachable or not but also how well the robot can
reach for it (in case of reachable locations) or how far from
reachable it is (in case of non-reachable locations). Both
maps are implemented using a LWPR neural network.
Hereinafter we describe the different components of the
system in detail.

A. The iCub Simulator

The experiments described in the paper were carried on
using the iCub Dynamic Simulator [27], displayed in Figure
1. We actuate 3 DOFs of the head+eyes system and 4 DOFs
of the arm, namely:

. qgaze = [θy θp θv]T ∈ R3

. qarm = [θsy θsp θsr θe]
T ∈ R4

where θy and θp are the neck yaw and pitch angles respec-
tively (pan and tilt of the head), θv is the eyes vergence angle,
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θsy , θsp, θsr are the shoulder yaw, pitch and roll angles
respectively (elevation/depression, adduction/abduction and
rotation of the arm) and θe is the elbow flexion/extension
angle.
The robot joints limits are defined as follows:

. qmin
gaze = [−55◦;−40◦; 5◦]T

. qmax
gaze = [55◦; 40◦; 90◦]T

. qmin
arm = [−95◦; 0◦;−20◦; 15◦]T

. qmax
arm = [10◦; 160◦; 80◦; 105◦]T

Standard image processing techniques are used to segment
and to compute the center position of the hand (i.e. the palm,
colored in green) and the object (i.e. the red ball).

Fig. 1. The dynamic simulator of the humanoid robot iCub. Top: view
from outside. Bottom: view from robot cameras (i.e. robot viewpoint).

B. Gaze control

The gaze controller allows the robot to fixate a 3D point
in space by moving the head and eyes. We will refer to
this point as the “target” (i.e. target of the gazing action) to
explain how this controller works. Then, in the rest of the
paper, the target can be either the hand or the object, and
we use the verbs “to gaze at” or “to fixate” to indicate the
activation of this controller.
If the target is visible (i.e. inside the image plane) joints
velocities are generated as follows:

q̇gaze(t) = −Gx(t) (IV.1)

where G ∈ R3×3 is a positive definite gain matrix and the
position of the target x ∈ R3 is defined as follows:

x =

 uL − uR
(uL + uR)/2
(vL + vR)/2

 =

 1 −1 0 0
1/2 1/2 0 0
0 0 1/2 1/2



uL
uR
vL
vR


being uR and vR the coordinates of the target on the right
image plane and uL and vL the coordinates of the target on
the left image plane. Indeed, the goal of the controller is to
reduce to zero [uL uR vL vR]T , which entails bringing the
target to the center of both cameras (i.e. the fixation point).
However, since vL = vR (perceived targets have the same
vertical position on both images) it is sufficient to reduce to
zero [uL − uR (uL + uR)/2 (vL + vR)/2]T .
If the target is not visible a stereotyped motion strategy (i.e.
random left-right and up-down movements of the neck) is

used to detect it; then controller IV.1 is activated.
After fixation is achieved we encode the target position in
space using the gaze configuration qgaze; since we actuate
only 3 DOFs of the head+eyes system the mapping from gaze
configuration to target position is unique. If more DOFs are
used the redundancy should be solved by the gaze controller,
as we did for instance in [19].

C. Motor babbling

The robot learns the arm-gaze forward kinematics qgaze =
f(qarm) online using LWPR, during a motor babbling phase.
The arm motor space has been uniformly sampled to create a
set of 20000 target arm configurations; for each of them the
robot first moves the arm, and than it gazes at the hand as
soon as the arm movement is finished. If the fixation of the
hand is achieved, a sample < qarm,qgaze > is used to train
the LWPR. During this process 4400 samples were collected
and used for training (the other 15600 arm movements
brought the hand to points that could not be fixated, due
to joints limits). Other 700 samples were collected moving
the arm to random positions, to be used as test set. The
estimation error (RMSE, Root Mean Square Error, where
the Error is in our case the difference between the real and
estimated qgaze) with respect to the test set was computed
during the online update of the LWPR. The trend of the
error as the number of training samples increases is shown
in Figure 2: the final RMSE is 0.84◦.

Fig. 2. Estimation error (RMSE) of the arm-gaze forward kinematic model
with increasing number of training samples.

The gathered training samples identify points in space that
are reachable (i.e. a feasible arm configuration exists which
brings the hand to that point). These points are displayed in
Figure 3 with respect to different reference frames: Cartesian
and gaze-centered. The first two images from the top show
the points in Cartesian coordinates (view from the top and
view from the side). The highligthed rectangular regions
indicate the area in which the reachability test described
in Section V is performed. The robot arm and head are
also sketched. In the bottom image the same points are
plotted in the gaze-centered reference frame, projected on
the yaw/vergence plane. Some representative points (A, B, C,
D) are highlighted to show the relation between the different
representations. In particular, C and D are respectively the
farthest and the closest to the robot head; in fact, C is
fixated with the minimum vergence (θv = 11.17◦) and can be
reached with the arm fully extended (minimum elbow angle,
θe = 15◦), while D is fixated with the maximum vergence
(θv = 89.15◦) and can be reached with the arm fully bent
(maximum elbow angle, θe = 105◦).
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Fig. 3. Reachable points represented in different reference frames and
projected on selected dimensions. From the top: Cartesian X and Z (i.e.
view from the top), Cartesian Y and Z (i.e. view from the side). The
highligthed rectangular regions indicate the area in which the reachability
test is performed (see Section V). Then, in gaze-centered reference frame,
projected on the yaw/vergence plane. Some representative points (A, B, C,
D) are highlighted to show the relation between the different representations.

D. Inverse kinematics

To know whether a fixated object is reachable or not we
need to invert the arm-gaze forward kinematics, which means
answering the following question: does an arm configuration
exist which brings the hand to the current fixation point? Or
in other terms, does a valid IK solution exist? As our system
is redundant (qgaze ∈ R3 while qarm ∈ R4) we can have
also multiple solutions (i.e. the same fixation point defined
by qgaze can be reached with different arm configurations
qarm).
We solve the IK as an optimization problem by using IpOpt
(Interior Point Optimizer [28]), a minimization algorithm
which has been proven to be fast and reliable (see for
example [29] for a precise evalutation of its performance
in solving an inversion problem very similar to the one
discussed here). The IK computation involves two stages:
first we look for a valid solution, then, if at least one exists,
we look for an optimal solution according to a given criteria

(thus resolving the redundancy).
The first stage is formalized as follows:

qS
arm = argminqarm∈Ω ‖qgaze − fwdKin(qarm)‖

(IV.2)
where Ω ≡ [qmin

arm,q
max
arm ] (i.e. arm joint limits) and qS

arm

is the IK solution. We say that qS
arm is a valid solution if∥∥qgaze − fwdKin(qS

arm)
∥∥ = 0. In that case, the optimal

solution is found solving the following problem:

qS
arm = argminqarm∈ΩM(qarm) (IV.3)

s.t. 0 ≤ ‖qgaze − fwdKin(qarm)‖ ≤ ε (IV.4)

where M(qarm) is the measure we want to minimize and ε
is an arbitrary low error threshold (we set ε = 0.0001). We
consider a solution optimal if it maximizes the distance of
the arm from joints limits, as proposed in [30], and therefore
we define M(qarm) as follows:

M(qarm) =
1

N

N∑
i=1

(
qarm(i)− ai
ai − qmax

arm(i)

)2

(IV.5)

where ai =
qmax
arm(i)+qmin

arm(i)
2 .

E. Training the maps
To produce training samples for the reachable space maps

we sampled the gaze motor space uniformly creating a set
of 52000 gaze configurations; then we computed IK for
each gaze configuration, and stored the results in the form
< qgaze, S,R >. The value S indicates the presence or
not of a valid IK solution (after the first stage of the IK
computation): S = 0.75 if the solution exists, S = 0.25
if it does not. The value R is in inverse proportion to the
IK error if no valid IK solution exists (case A), while it is
proportional to the optimality if a valid IK solution exists
(case B):

A)R =
1− IK ERR

2 ∗MAX IK ERR
(IV.6)

B)R =
1 +OPT

2
(IV.7)

where IK ERR =
∥∥qgaze − fwdKin(qS

arm)
∥∥ and

MAX IK ERR are the final and maximum IK error after
the first stage of the IK computation and OPT = (1 −
M(qS

arm)) is the optimality measure after the second stage
of the IK computation. R ranges from 0.0 to 1.0, where
0.0 means far from being reachable (high IK error) and 1.0
means reachable with an optimal arm configuration (in our
implementation, as far as possible from the arm joints limits).
The Basic Map is trained with samples < qgaze, S > while
the Enhanced map is trained with samples < qgaze, R >.
Since we are interested in building a compact representation
that can be queried fast in real-time, we set the LWPR
learning parameters in order to have a total number of
receptive fields around 10000, and therefore a response time
under 2ms for a query. We believe that this is a reasonable
trade-off between complexity and performances, since the
maps are fast enough to be queried in real-time and we were
able to achieve good results in terms of accuracy (as we will
show in the next Section).
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V. EXPERIMENTAL RESULTS

We evaluate here the learning of the reachable space maps.
For both maps we show the same set of plots. First we
display a 3D visualization of the map training data and of
the map output in the gaze configuration space (Figures
4 and 7). Then we show a 2D visualization: a slice on
the yaw/vergence plane with pitch = 0◦ (Figures 5 and 8).
With the latter visualization we show the map output not
only in relation with the training data, but also in relation
with some of the reachable points that were retrieved during
the motor babbling phase (in particular, the points that are
fixated with pitch ∈ [−3.0◦, 3.0◦]). Finally, we show the
results obtained during a test phase in which the robot gazes
at objects positioned at different locations, both reachable
and not reachable (Figures 6 and 9). About 9000 locations
were obtained by sampling the Cartesian space uniformly
within the following ranges: X ∈ [−0.10; 0.10], Y ∈
[0.75; 0.95], Z ∈ [0.20; 0.35] (highlighted regions in the top
images of Figure 3). We selected on purpose an area in
which reachability borders are present, as those are the more
challenging locations for the reachability judgment. Among
these positions, the robot was able to fixate about 8000 of
them (because of joints limits, the robot could not gaze at
some of them): for each of those the output of the maps was
computed (in the gaze configuration space) and plotted in
the Cartesian space. Projections of the plots on the X/Z and
Z/Y planes are shown. Reachable points identified during
the motor babbling phase are also shown for comparison.
For both maps the output is a continuous value ranging from
0.0 to 1.0 (from red to blue, in the plots). Outputs coloured in
blue indicate that the fixated point is considered as reachable.

A. Basic Map estimation

The purpose of this map is to provide a probabilistic
information, hence to answer the question “what is the
probability of the fixated object to be reachable?”. A fixated
point is judged to be reachable if the map output is over a
certain threshold.
Since the map is trained with a binary output (reachable
/ non-reachable) but it produces a continuous output when
simulated, it makes no sense to compute the estimation error
as a difference between these two values. On the contrary,
we compute the percentage of JE (judgement errors about
the reachability), and in particular the percentage of FN
(false negatives, the training sample indicates the point as
reachable while the map output defines it as non reachable)
and FP (false positives, vice versa). While JE depends on
the learning settings (e.g. total number of receptive fields)
and on the nature of the training data, we can play with
the design of the map to favor either a lower percentage
of FN or FP. We believe is better to have a lower number
of FP. In fact, when the map is used for motion planning,
the perceived non-reachability of an object would trigger a
robot movement which is intended to change the position
of the robot with respect to the object, thus making it more
easily reachable (e.g. walking toward the object if it is too
far); even in the case of a FN, the generated movement will

probably make the reaching action simpler, while in the case
of a FP the robot would try to reach for the non-reachable
object, and is doomed to fail. For the Basic Map we achieved
JE = 1.3%, FN = 4.7% and FP = 0.4%.
Figure 4 and 5 show visually how the map output matches
the training data and how the area defined as reachable (blue
area) contains the reachable points extracted during the motor
babbling. The results of the test phase are displayed in Figure
6: again, the blue area follows the profile of the reachable
points. In the Z/Y plane projection, the white area on the
bottom right corner of the plots identifies a region of the
Cartesian space that cannot be fixated, due to joints limits.

Fig. 4. Basic Map. On the left the training data, on the right the map
output after training.

Fig. 5. Basic Map. Projection on the yaw/vergence plane, with pitch =
0◦. From the left: training data, map output after training, map output in
relation with reachable points (white dots). On the right, the color scale
indicating the reachability.

Fig. 6. Basic Map. Results of the reachability test displayed in the Cartesian
space, projected on the X/Z plane (top images) and on the Z/Y place
(bottom images). From left to right: reachable points, map output, color
scale.

B. Enhanced Map estimation

The purpose of this map is to provide information about
the degree of reachability of a fixated point, hence to answer
the question “how much / how well is the fixated object
reachable?”. The map outputs a continuous value ranging
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from 0.0 to 1.0, where 0.0 means far from being reachable
and 1.0 means optimally reachable (where the optimality is
measured as distance of the arm joints from the limits).
The percentage of judgment errors, false negative and false
positive is approximatively the same as for the Basic Map:
JE = 1.2%, FN = 4.5% and FP = 0.4%. Differently from
the Basic Map, here also the training data are continuous
and the outputs should be as close as possible to them.
Therefore, we can compute the estimation error as the
difference between map outputs and training data: the RMSE
is equal to 0.022, which means an average error of 2.2%.
This small amount of error is evident from the plots in
Figures 7 and 8, where the map output strongly resembles
the training data. The accuracy of the estimation is also
suggested by the plots in Figure 9. Noticeably, the accuracy is
not only in judging whether the fixated point is reachable or
not, but also in judging the degree of reachability; moreover,
the output changes smoothly over the whole space. This
aspects make this map the best suited for motion planning,
as we will better explain in the next Section.

Fig. 7. Enhanced Map. On the left the training data, on the right the map
output after training.

Fig. 8. Enhanced Map. Projections with different values of head pitch
orientation. From the left: training data, map output after training, map
output in relation with reachable points (white dots). On the right, the color
scale indicating the reachability.

VI. POSSIBLE APPLICATIONS

Humans can exploit a variety of movements to extend their
possibility to reach for objects. Moreover, their ability to
use grasped objects depends on the position of their arm in
the workspace: the best performance is achieved only in a
relatively small subspace.
Similarly, the workspace of a humanoid robot can be huge,
depending on its motor skills: to grasp a detected object the
robot can decide to rotate or to bend the waist, to bend its
knees or to walk toward the object. Furthermore, if the robot
places itself optimally with respect to the object, reaching can
be achieved with an optimal final arm configuration, easing
the subsequent use of the grasped object.
The Reachable Space Map we introduced can be used to
realize these behaviors. Assuming that the control of gaze

Fig. 9. Enhanced Map. Results of the reachability test displayed in the
Cartesian space, projected on the X/Z plane (top images) and on the Z/Y
place (bottom images). From left to right: reachable points, map output,
color scale.

is always active, any motion of the robot body with respect
to the target object causes the gaze configuration to change
along a specific trajectory to keep the object in fixation. The
motor-motor relation between the robot motions and the gaze
trajectories can be learned from motor experience, for exam-
ple during an exploration phase in which the robot performs
different body motions while keeping an object in fixation.
When such motor-motor relations (i.e. kinematic models) are
learned they can be used for motor planning: the robot plans
a trajectory of the gaze within the Reachable Space Map, in
order to change the reachability of an object from the current
one to a desired one (e.g. from non-reachable to reachable),
and retrieves the body motion that realizes that trajectory. In
this respect, it is particularly beneficial that the output of the
map is continuous: this allows to use better mathematical
tools both for learning the motor-motor relations and for
planning and executing the movements.
This application scenario clarifies the advanteges provided
by the Enhanced Map with respect to the Basic Map. In
fact, the robot can plan a body movement which makes a
fixated object not only reachable, but also reachable with
an optimal arm configuration. In our current implementation
we choose the distance from joints limits as optimality
measure, but other ones can be used, as for example the
distance from singular configurations [31], the manipulability
measure proposed in [32] or the reachability index developed
in [23]. Furthermore, the smoother output provided by the
Enhanced Map facilitates the generation of gaze trajectories
for motion planning, for example using a gradient descent
approach; that would be more difficult on the Basic Map,
as in some areas a lot of points show very similar outputs
(especially inside the non-reachable areas).
A further extension is the creation of a Bimanual Map that
join together the maps of both arms: using such a map
the robot can position itself optimally in order to perform
bimanual operations.
We are currently implementing the complete system on our
walking humanoid robot Kobian [1] in order to show the
integrated whole-body reaching and locomotion behavior.

1153



VII. CONCLUSIONS

We presented a bio-inspired design for representing the
reachable space of a humanoid robot: a Reachable Space
Map. The map is encoded in a gaze-centered reference
frame, and is learned autonomously by the robot from
motor experience. Our solution is innovative with respect to
previous works in the choice of both the reference frame and
the learning algorithm. As we do not rely on any model of
the robot kinematics, our approach is very general and can be
applied to any robot equipped with arm and binocular head.
We showed results obtained on the dynamical simulator of
the humanoid robot iCub, concerning the autonomous gener-
ation of two different kinds of maps: the Basic map and the
Enhanced map. Both maps provide fast and accurate response
when queried. The first one shows a simpler design and can
be used to estimate whether a fixated object is reachable or
not. The second one encapsulates a richer information about
the degree of reachability of fixated objects and seems the
best suited for planning more complex robot behaviors such
as whole-body and bimanual reaching.
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