
  

  

Abstract—How human movement is controlled is still poorly 
understood, but numerous studies have suggested that the 
Central Nervous System (CNS) generates and controls 
continuous movement via discrete, elementary building blocks 
of movement or submovements. Most supporting evidence has 
come from kinematic studies, with investigation of neural 
correlates lacking. In this study we used microstate analysis to 
model building blocks of neuroelectrical activity recorded from 
high-density electroencephalography (64-channel EEG) from 
healthy subjects during a reaching task that required online 
movement corrections. Our goal was to provide a proof-of-
principle demonstration of the promise of this method of 
coupling neural activity with movement recording and analysis. 
We found that each kinematic submovement was accompanied 
by a stereotyped set of microstates generated by the activity of 
a frontoparietal network. These results provide further 
evidence for the hypothesis that the CNS generates and controls 
continuous movement via discrete submovements. Applications 
include design of algorithms for robot-assisted neuro-
rehabilitation and quantitative outcome metrics for motor 
disorders of neurological origin including stroke and 
Parkinson’s disease. 

I. INTRODUCTION 
 obot-assisted therapy is increasingly becoming part of 
rehabilitative care following stroke, a neurological 
condition that represents a leading cause of permanent 

disability worldwide and which affects over 785,000 persons 
in the US yearly. About 70% of stroke survivors 
demonstrate motor deficits of the arm and hand [1]. Several 
rehabilitation robots for the upper extremity have been 
proposed, including MIT-Manus, ARM Guide, MIME and 
the more recently developed PLEMO, ARMin, and MEMOS 
[2, 3]. Following nearly two decades of clinical trials 
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focused on testing the safety and viability of robotic devices 
in neuro-rehabilitation, in 2010 the American Heart 
Association endorsed robot-assisted motor rehabilitation for 
the upper limb rehabilitation following stroke. Yet, we still 
do not know how to optimize therapy for a particular 
patient’s needs: how the brain controls movement and 
recovers from injury is still very poorly understood; 
moreover there are multiple variables that are known to 
influence recovery but their impact on outcome remains 
mostly unknown.  
 
While the past few years have seen a proliferation of 
hardware for robot-assisted therapy for the upper limb, the 
main trust of this decade will likely be the design of 
therapeutic protocols and tools to optimize outcomes and for 
quantitatively assessing such outcomes so as to better tune 
interventions. To achieve this goal, it is becoming clear that 
therapy designs need to further incorporate knowledge of 
motor neuroscience.  For example motor learning is often 
used as a model for motor recovery from stroke [4, 5]: 
algorithms that incorporate concepts of motor learning have 
shown to yield higher outcomes compared to sensorimotor 
or strength training that were developed under different 
assumptions on the recovery process [6, 7]. Another 
example is given by our recent work on robot-based training: 
a major challenge for the design of such therapies is 
represented by the presence of motor interference, a well-
known concept in motor neuroscience [8]. 
 
This study is part of a series of studies by our group aimed at 
understanding neural mechanisms underlying submovements 
for the purpose of designing more effective robot-assisted 
neurorehabilitation treatments [9-11], for enhancing our 
understanding of the neural control of movement [12-14], 
and for designing metrics of motor recovery from stroke [5]. 
Submovements are thought to be building blocks of 
movement used by the CNS to construct and control 
complex motor behavior, including online motor corrections. 
According to this hypothesis, the CNS does not control 
continuous movement in a continuous fashion but rather via 
generating and combining discrete elements whose features 
(e.g. amplitude and duration) can be modulated depending 
on the motor task. Submovements have been observed in a 
variety of motor tasks, including reaching under accuracy 
constraints [15-18], handwriting [19], learning of new motor 
tasks [9, 20, 21],  and are particularly evident in movements 
performed by stroke patients during the early phase of 
recovery [21]. While most studies have focused on analysis 
of kinematic data, investigations of neural correlates of 
kinematic submovements have been sparse.  
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To fill this gap in the literature, we sought here to explore 
whether a signature of submovements can be found in 
electroencephalographic signals (EEG) by simultaneously 
recording EEG and kinematic data from healthy subjects 
during a double step target displacement task [22, 23], which 
is known to evoke online corrections of movement 
trajectories.  We modeled brain activation by using EEG 
microstates analysis and source reconstruction. 
 
First described by Lehmann, microstates correspond to 
transient, quasi-stable states of EEG and are thought to 
represent the basic building blocks of information processing 
[24]. We hypothesized that if submovements have a discrete 
nature, then underlying EEG activity should display similar 
microstates with timings correlated to submovements 
onsets/offsets.  
 

II. MATERIALS AND METHODS  

A. Hardware 
An InMotion3 wrist robot (Interactive Motion Technologies, 
Watertown, MA) designed for clinical neurological 
applications, was used in this study. The robot had 3 
actuated degrees-of-freedom, namely radial/ulnar deviation, 
flexion/extension, and pronation/supination. A complete 
description of the hardware is reported in [25]. The angular 
positions were acquired digitally (sampling frequency fs = 
1000 Hz, 16-bit quantization).  EEG was recorded 
continuously with a sampling rate of 1024 Hz using a 64-
channel Active-Two EEG system (BioSemi, Amsterdam, the 
Netherlands).  
 
 
 
 
 
 
 
 
 
                        Figure 1: Experimental set-up.  

B. Experimental Procedure  
Two healthy, right-handed subjects (age 25±5.6 years) with 
no history of neurological disorders participated in this 
experiment. Experiments were approved by MIT’s 
Committee on the Use of Humans as Experimental Subjects 
and by the Institutional Review Board of UCSD. Informed 
written consent was obtained from all subjects. 
 
Subjects were comfortably seated in front of a computer 
screen and held the handle of the wrist robotic device in their 
right hand (Figure 1). Velcro straps at the upper arm and 
distal forearm minimized arm movement. The screen 
displayed 8 outer targets (diameter 2.5 cm) placed on a circle 
and a central target. Outer targets were presented in a 
pseudo-random order and the central target was presented 
following presentation of an outer target. Subjects were 

instructed to move the handle of the robot to make the cursor 
reach the target that was presented. The motor task required 
wrist flexion/extension and radial/ulnar deviation (30 and 15 
degrees rotation). The amount of subjects’ wrist rotation was 
mapped to the position of a cursor also shown on the screen.  
The maximum time allotted for movement from the central 
target to an outer target or from an outer target to return was 
1.4 seconds. At time t=0 one of the outer targets was 
illuminated on the screen. The outer target might remain lit 
(control condition) or shift mid-movement to another target 
requiring a movement correction (shift condition). Targets 
remained lit for 1.4 seconds.  For the first 0.7 seconds of this 
period, the target was one color and then turned to a 
different color.  Subjects were instructed to reach the target 
about when its color changed. If the target changed location 
(shift condition), the subject was instructed to move toward 
the new target location. The shift occurred at 0.4 seconds 
with 50% probability. No specific instructions on movement 
speed, endpoint accuracy, or type of trajectory to be 
generated were given to the subject. All subjects performed 
a total of 1280 movements (640 movements from the central 
to the outer targets and 640 movements back). Three-minute 
rest breaks were given after every 160 movements. Only the 
movements from the central to the outer targets were 
analyzed. Subjects were allowed to practice until they were 
comfortable with the motor task. 
 

C. Kinematic Data Analysis 
Speed profiles of movements from the central to the outer 
targets were calculated as root-square of the sum of squared 
velocity components. Velocity components were obtained 
from the first-time derivatives of position data smoothed 
with a low-pass 12 Hz zero-phase FIR filter. Gaussian-
shaped submovements were extracted from the movement 
speed profiles using a greedy algorithm as described in [21]. 
For each subject, submovements with the highest peak were 
selected from each movement trial (one submovement for 
the control and two submovements for the shift condition) 
and their parameters were calculated (onset, time to peak 
value, offset and sigma or standard deviation).  
 

D. EEG Data Analysis 
EEG data were pre-processed with the EEGLAB toolbox 
[26] for Matlab (MathWorks, Natick, MA). EEG data were 
re-referenced to the average reference, high-pass filtered 
with a 0.1 Hz zero-phase FIR filter to remove offset and 
trend, and downsampled to 128 Hz. Channels with corrupted 
signals and channels showing substantial noise were 
removed. Following removal of data sections containing 
artifacts (e.g. from eye blinks and muscles) via visual 
inspection, EEG data were further inspected for artifacts 
with a procedure based on Independent Component (IC) and 
dipole analysis as described in [26, 27]: IC scalp maps and 
frequency spectra were inspected, and ICs that displayed 
features indicative of artifacts were removed. Dipoles 
models were fit to the remaining components using the 
DIPFIT plug-in for EEGLAB and localized within a three-
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shell boundary element model of the Montreal Neurological 
Institute standard brain. Only the ICs whose dipoles resided 
within the brain volume of the head model and displayed 
less than 15% residual variance were retained. Cleaned EEG 
data were generated by back-projecting the retained ICs to 
the electrodes.  
 
Following pre-processing, brain microstate analysis was 
performed using the Cartool software by Denis Brunet [28]. 
Event-related potentials (ERPs) were computed (see [28]) 
covering 1400 ms after visual stimulus (first target) was 
presented with a 400 ms prestimulus baseline. ERP data was 
then baseline corrected. Two grand-mean ERPs were 
computed across subjects (a total of 56 electrodes was 
retained for each subject), one for each condition, i.e. 
condition 1: control and condition 2: shift. Microstates were 
extracted using a modified K-means algorithm for cluster 
analysis, as described in [24]. Following [28], the final 
number of microstates was selected as the best trade-off 
between the global explained variance, cross-validation 
criterion, and Krzanowski-Lai criterion as implemented in 
Cartool.  
 
Intracranial sources were estimated using low resolution 
brain electromagnetic tomography (LORETA) [24]. 
LORETA inverse solutions were estimated in a realistic 3D 
solution space using a lead field matrix calculated on a 
realistic average brain model provided by the Montreal 
Neurological Institute as implemented in 
BrainVisionAnalyzer2 (Brain Products, Inc., Germany). The 
head model included a grid of 2394 voxels at 7 mm spatial 
resolution [24, 28]. The solution space was restricted to gray 
matter in the Talairach atlas [29]. 
 

III. RESULTS  

A. Kinematics 
In the control condition, wrist speed profiles were similar 
across subjects, demonstrating single peak/bell-shaped 
characteristics (see Figure 2, left panel). Submovement 
onsets occurred at 241.2±37.6 ms after stimulus onset (target 
presentation, 0 ms); submovement peak values were reached 
at 416.6±44.7 ms (sigma 72 ±2.9 ms) after stimulus onset 
and submovement offset was at 592.4±52.0 ms. In the shift 
condition, movement was initially directed towards the first 
target and then changed direction and moved to the second 
target. Speed profiles displayed two main peaks, which 
corresponded to the movement towards the first and the 
second target (see Figure 2, right panel). The first and 
second submovements started respectively at 242.1 ±48.2 ms 
and 694.6±24.9 ms after stimulus onset; peak values for the 
first and second submovements were reached at 415.8±48.5 
ms and 882.8±12.5 ms after stimulus onset, respectively. 
Sigma values were 71.2±0.1 ms and 77.1±5.0 ms for the first 
and second submovements respectively, i.e. the second 
submovement had overall longer duration compared to the 
first one. Offsets were at 589.5±48.8 ms and 1070.8±0.3 ms 
for the first and second submovements respectively. 

 
Figure 2: Speed profiles (red) and submovements (green) for 
the control (left) and shift (right) condition. The main 
submovements are defined as the submovement with the 
highest peaks (blue line), as detailed in Section II.  
 

B.  EEG Microstates 
Figure 3 shows microstates associated to the control (top 
panel) and shift (bottom panel) conditions. The control 
condition was characterized by three microstates (start times 
were -179.6 ms, 242 ms, and 343.7 ms respectively, for 
microstates 3, 1, and 2 - times relative to stimulus onset, 0 
ms); the shift condition was characterized by the same three 
microstates (start times were -187 ms, 242 ms, and 343.7 ms 
respectively, for microstates 3, 1, and 2), followed by a re-
occurrence of the same microstate sequence (start times 
were 476.5 ms, 765.6 ms, and 937.5 ms respectively, for 
microstate 3, 1, and 2). Global explained variance was 
90.2%.  
 

  
Figure 3: Microstates for the control (top) and shift (bottom) 
condition are shown on the temporal profile of Global Field 
Power (GFP) [28]. The vertical line shows the time instant 
when the visual stimulus was presented. 
 
The timing of the three microstates was correlated with the 
timing of kinematic submovement onsets/offsets. In the 
control condition, microstate 3 was active before 
submovement onset. It was followed by microstates 1 and 2, 
which were active during submovement execution, with 
microstate 2 being active before submovement offset. The 
timing of the microstates associated with the pre-shift phase 
of the shift condition were almost identical to the timing of 
the microstates observed in the control phase, and correlated 
with the onset/offset of the first submovement of the shift 
condition similar to microstates and submovement in the 
control data. The timing of the microstates of the post-shift 
phase correlated with the features of the second 
submovement similar to the corresponding data for the 
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control and pre-shift data. In the post-shift phase of the shift 
condition, microstate 3 was active before the second 
submovement onset, after which it remained active for about 
70 ms. Microstate 3 was followed by microstate 1 which was 
active for most of the second submovement execution, and 
by microstate 2, which started before the second 
submovement offset.  
 
Figure 4 shows scalp topography associated with each 
microstate.  
  

  
Figure 4: Topographical scalp maps  ( V)                          
for microstates 1-3.    

   
C. Source Estimations  

Source estimations across the three microstates active during 
the control and shift condition revealed a sequence of 
physiologically plausible generators mainly within frontal 
and parietal regions (Figures 5-7). 
 
The source estimation for the microstate first activated 
following stimulus onset (microstate 3) was localized 
bilaterally in medial frontal gyrus (Brodmann Area 10; 
maxima: +/-4, 59, -6 mm) with further local maxima in right 

and left superior temporal gyri (Brodmann Area 21, local 
maxima: +/-44, 59, -27 mm). 
 

                     
         Figure 5: Source estimations for microstate 1.        

 Activation units are in A/ mm2. 

          
         Figure 6: Source estimations for microstate 2.     
         Activation units are in A/ mm2. 

          
          Figure 7: Source estimations for microstate 3. 
          Activation units are in A/ mm2. 
 
The next activated microstate, microstate 1, was 
characterized by activation in right inferior frontal gyrus 
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(Brodmann Area 45; maximum: 53, 17, 22 mm). The final 
microstate of the sequence of activations, microstate 2, was 
primarily generated by sources in left superior parietal 
lobule (Brodmann Area 7; maximum: -17, -60, 64 mm), as 
well as moderately active sources in medial and left superior 
frontal gyrus (Brodmann Area 6; local maximum: -8, -9, 64 
and 0, -9, 64 mm, respectively) and medial cingulate gyrus 
(Brodmann Area 32; local maximum: 0, 21, 47 mm).  
 
While prior work on the exact patterns of activations for 
online motor corrections is scarce, the sources described 
above are overall consistent with previous studies on 
movement planning and execution. Sources active in 
microstate 3 are presumably involved in cognitive processes 
such as planning, working memory and attention, and are 
known to be active in go/no go tasks [30]; sources active in 
microstate 1 are thought to play a role in inhibition of motor 
responses [31]; and sources active in microstate 2 are known 
to be involved in target localization and visuomotor 
coordination [32]. 
 

IV. DISCUSSION 
How the CNS controls upper limb motion and modifies 
online motor commands to cope with changes that occur in 
the environment is not fully understood. Several studies of 
healthy subjects have suggested that such complex motor 
behavior is constructed by superposing simpler movements 
or submovements that have a stereotyped shape, whose 
features are modulated by motor task demands (see for 
example [17]) through a brain network including the 
posterior parietal cortex, the cerebellum, the motor cortex, 
and the basal ganglia [33]. Behavioral studies on stroke 
patients have corroborated the submovement-based model. 
These studies have shown that the movements performed by 
stroke individuals display stereotyped submovements, which 
are isolated in the acute phase of recovery, and tend to blend 
as motor recovery progresses [9, 11] thereby making 
movements smoother. Changes in submovement parameters 
have provided the basis for objectively quantifying both the 
quality of patients’ movements and the level of motor 
generalization elicited by therapeutic intervention [5]. Here 
we used concurrent kinematic and high-density EEG 
recordings to investigate neural activation underlying motor 
corrections. In a proof-of-principle demonstration, we 
modeled movement speed profiles with submovements and 
EEG activity with microstates, and investigated their 
correlation. We showed that the generation of each 
kinematic submovement was consistently accompanied by 
the occurrence of a sequence of three microstates, whose 
timing was correlated with kinematic submovements 
onsets/offsets and whose localized sources were located in 
fronto-parietal areas known to be involved in the control of 
online motor corrections. The occurrence of the same sets of 
microstates with each submovement production/execution 
provides new evidence in support of the hypothesis that 
continuous movement is generated and controlled via 
discrete submovements. These results complement and 
extend the results of our previous study [34], which analyzed 

ERPs recorded over motor cortex and showed that ERP 
peaks were time-locked to kinematic submovements. While 
our previous analysis focused on ERP waveform 
morphology over time at specific electrode positions, the 
microstate analysis we have presented here takes into 
account another important dimension that multichannel EEG 
offers: the spatial characteristics of the electric fields at the 
scalp and the temporal dynamics of these fields. 
 
While the results we have presented here need to be 
validated on an extended subjects’ data set, we have 
presented a novel technique for the analysis of correlation of 
movement kinematic and EEG data. Applications of our 
results include design of algorithms for robot-assisted neuro-
rehabilitation: specifically EEG microstates can be used in 
the design of brain computer interface (BCI)-aided tools for 
stroke rehabilitation. Moreover, together with submovement 
kinematic parameters, EEG microstate parameters and their 
associated localized sources can be used to elucidate and 
quantify the neuroplastic changes occurring spontaneously 
or elicited by neurorehabilitation treatments during the 
process of motor recovery from stroke, e.g. the relationship 
between such changes and stroke location, and the 
differential roles of the two brain hemispheres in organizing 
movement of the impaired limb following stroke [35]. 
Previous results suggest that recovery might be characterized 
by a progressive decrease in number of EEG microstates 
and/or of EEG microstate switching [9, 11]. Moreover, early 
recovery might be accompanied by increased activation 
(compared to healthy controls) of EEG microstate sources in 
the unaffected hemisphere, replaced, at a later stage of 
recovery, by increased activation of EEG microstate sources 
in the affected hemisphere [35]. The number of EEG 
microstates, their on-off times, and their sources could be 
used to compare the specific effects of different treatments, 
including pharmaceutical and robotic interventions [6, 7, 
36]. Thus, such analyses could help determine which brain 
regions are differentially targeted by different therapeutic 
approaches. We envision similar applications for the 
quantification of motor behavior of subjects with other 
motor disorders of neurological origin, including 
Parkinson’s disease, where submovements are particularly 
frequent [37]. EEG microstates could be used to clarify the 
mechanisms of action of different treatments (e.g. dopamine 
based drugs or deep brain stimulation) and their effects on 
patients’ motor performance. 

REFERENCES 
 
[1] E. L. Miller, L. Murray, L. Richards et al., “Comprehensive overview 

of nursing and interdisciplinary rehabilitation care of the stroke 
patient: a scientific statement from the American Heart Association,” 
Stroke, vol. 41, no. 10, pp. 2402-48, Oct, 2010. 

[2] B. T. Volpe, P. T. Huerta, J. L. Zipse et al., “Robotic devices as 
therapeutic and diagnostic tools for stroke recovery,” Arch Neurol, 
vol. 66, no. 9, pp. 1086-90, Sep, 2009. 

[3] H. I. Krebs, N. Hogan, M. L. Aisen et al., “Robot-aided 
neurorehabilitation,” IEEE Trans Rehabil Eng, vol. 6, no. 1, pp. 75-
87, Mar, 1998. 

1731



  

[4] J. W. Krakauer, “Motor learning: its relevance to stroke recovery and 
neurorehabilitation,” Curr Opin Neurol, vol. 19, no. 1, pp. 84-90, Feb, 
2006. 

[5] L. Dipietro, H. I. Krebs, B. T. Volpe et al., “Learning, not adaptation, 
characterizes stroke motor recovery: evidence from kinematic changes 
induced by robot-assisted therapy in trained and untrained task in the 
same workspace,” IEEE Trans Neural Syst Rehabil Eng, vol. 20, no. 
1, pp. 48-57, Jan, 2012. 

[6] H. I. Krebs, J. J. Palazzolo, L. Dipietro et al., “Rehabilitation robotics: 
performance-based progressive robot-assisted therapy,” Autonomous 
Robots, vol. 15, pp. 7-20, 2003. 

[7] N. Hogan, H. I. Krebs, B. Rohrer et al., “Motions or muscles? Some 
behavioral factors underlying robotic assistance of motor recovery,” J 
Rehabil Res Dev, vol. 43, no. 5, pp. 605-18, Aug-Sep, 2006. 

[8] S. S. Conroy, J. Whitall, L. Dipietro et al., “Effect of gravity on robot-
assisted motor training after chronic stroke: a randomized trial,” Arch 
Phys Med Rehabil, vol. 92, no. 11, pp. 1754-61, Nov, 2011. 

[9] B. Rohrer, S. Fasoli, H. I. Krebs et al., “Movement smoothness 
changes during stroke recovery,” J Neurosci, vol. 22, no. 18, pp. 
8297-304, Sep 15, 2002. 

[10] A. C. Lo, P. D. Guarino, L. G. Richards et al., “Robot-Assisted 
Therapy for Long-Term Upper-Limb Impairment after Stroke,” N 
Engl J Med, Apr 16, 2010. 

[11] L. Dipietro, H. I. Krebs, S. E. Fasoli et al., “Submovement changes 
characterize generalization of motor recovery after stroke,” Cortex, 
vol. 45, no. 3, pp. 318-24, Mar, 2009. 

[12] H. I. Krebs, N. Hogan, W. Hening et al., “Procedural motor learning 
in Parkinson's disease,” Exp Brain Res, vol. 141, no. 4, pp. 425-37, 
Dec, 2001. 

[13] E. Tunik, A. G. Feldman, and H. Poizner, “Dopamine replacement 
therapy does not restore the ability of Parkinsonian patients to make 
rapid adjustments in motor strategies according to changing 
sensorimotor contexts,” Parkinsonism Relat Disord, vol. 13, no. 7, pp. 
425-33, Oct, 2007. 

[14] H. Poizner, A. G. Feldman, M. F. Levin et al., “The timing of arm-
trunk coordination is deficient and vision-dependent in Parkinson's 
patients during reaching movements,” Exp Brain Res, vol. 133, no. 3, 
pp. 279-92, Aug, 2000. 

[15] R. S. Woodworth, “The accuracy of voluntary movements,” Psychol 
Rev vol. 3, pp. 114, 1899. 

[16] R. C. Miall, D. J. Weir, and J. F. Stein, “Intermittency in human 
manual tracking tasks,” J Mot Behav, vol. 25, no. 1, pp. 53-63, Mar, 
1993. 

[17] T. E. Milner, and M. M. Ijaz, “The effect of accuracy constraints on 
three-dimensional movement kinematics,” Neuroscience, vol. 35, no. 
2, pp. 365-74, 1990. 

[18] K. E. Novak, L. E. Miller, and J. C. Houk, “The use of overlapping 
submovements in the control of rapid hand movements,” Exp Brain 
Res, vol. 144, no. 3, pp. 351-64, Jun, 2002. 

[19] P. Morasso, and F. A. Mussa Ivaldi, “Trajectory formation and 
handwriting: a computational model,” Biol Cybern, vol. 45, no. 2, pp. 
131-42, 1982. 

[20] T. E. Milner, “A model for the generation of movements requiring 
endpoint precision,” Neuroscience, vol. 49, no. 2, pp. 487-96, Jul, 
1992. 

[21] H. I. Krebs, M. L. Aisen, B. T. Volpe et al., “Quantization of 
continuous arm movements in humans with brain injury,” Proc Natl 
Acad Sci U S A, vol. 96, no. 8, pp. 4645-9, Apr 13, 1999. 

[22] A. P. Georgopoulos, J. F. Kalaska, R. Caminiti et al., “Interruption of 
motor cortical discharge subserving aimed arm movements,” Exp 
Brain Res, vol. 49, no. 3, pp. 327-40, 1983. 

[23] E. A. Henis, and T. Flash, “Mechanisms underlying the generation of 
averaged modified trajectories ” Biological Cybernetics, vol. 72, no. 5, 
pp. 407-419, 1995. 

[24] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Segmentation 
of brain electrical activity into microstates: model estimation and 
validation,” IEEE Trans Biomed Eng, vol. 42, no. 7, pp. 658-65, Jul, 
1995. 

[25] H. I. Krebs, B. T. Volpe, D. Williams et al., “Robot-aided 
neurorehabilitation: a robot for wrist rehabilitation,” IEEE Trans 
Neural Syst Rehabil Eng, vol. 15, no. 3, pp. 327-35, Sep, 2007. 

[26] A. Delorme, and S. Makeig, “EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics including independent 

component analysis,” J Neurosci Methods, vol. 134, no. 1, pp. 9-21, 
Mar 15, 2004. 

[27] P. S. Hammon, S. Makeig, H. Poizner et al., “Predicting Reaching 
Targets from Human EEG,” IEEE Signal Processing, vol. 25, no. 1, 
pp. 69-77, 2008. 

[28] D. Brunet, M. M. Murray, and C. M. Michel, “Spatiotemporal analysis 
of multichannel EEG: CARTOOL,” Comput Intell Neurosci, vol. 
2011, pp. 813870, 2011. 

[29] J. Talairach, and P. Tournoux, Co-Planar Stereotaxic Atlas of the 
Human Brain, Thieme, Stuttgart, Germany, 1998. 

[30] A. Talati, and J. Hirsch, “Functional specialization within the medial 
frontal gyrus for perceptual go/no-go decisions based on "what," 
"when," and "where" related information: an fMRI study,” J Cogn 
Neurosci, vol. 17, no. 7, pp. 981-93, Jul, 2005. 

[31] A. Hampshire, S. R. Chamberlain, M. M. Monti et al., “The role of the 
right inferior frontal gyrus: inhibition and attentional control,” 
Neuroimage, vol. 50, no. 3, pp. 1313-9, Apr 15, 2010. 

[32] A. Battaglia-Mayer, M. Mascaro, and R. Caminiti, “Temporal 
evolution and strength of neural activity in parietal cortex during eye 
and hand movements,” Cereb Cortex, vol. 17, no. 6, pp. 1350-63, Jun, 
2007. 

[33] E. Tunik, J. C. Houk, and S. T. Grafton, "Basal ganglia contribution to 
to the initiation of corrective submovements," Neuroimage, vol. 47, 
no. 4, pp. 1757-66, 2009. 

[34] L. Dipietro, H. Poizner, and H. I. Krebs, “EEG correlates of 
submovements,” Conf Proc IEEE Eng Med Biol Soc, vol. 2011, pp. 
7429-32, Aug, 2011. 

[35] J. B. Green, Y. Bialy, E. Sora et al., "High-resolution EEG in 
poststroke hemiparesis can identify ipsilateral generators during motor 
tasks," Stroke, vol. 30, no. 12, pp. 2659-65, 1999. 

[36] H. I. Krebs, L. Dipietro, B. T. Volpe et al., “An investigation of the 
specificity of robotic training," Critical Reviews in Clinical and 
Rehabilitation Medicine, vol. 19, no. 2, pp. 141-152, 2007.  

[37] H. Poizner, O. I. Fookson, M. B. Berkinblit et al., "Pointing to 
remembered targets in 3-D space in Parkinson's disease," Motor 
Control, vol. 2, no. 3, pp. 251-277, 1998. 

 
 
 
 

1732


