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Abstract—Surface Electromyographic signals (sEMG) find
applications in many areas such as rehabilitation, prosthesis and
human-machine interaction. Systems reliant on these muscle-
generated electrical signals require some form of machine
learning algorithm for recognition of specific patterns of muscle
activity. Those systems vary in terms of the signal detection
methods, the feature selection and the classification algorithm
used, however, in all those cases, the use of multiple sen-
sors is a constant requirement. In this paper, we present a
power wheelchair control system that relies on a single sEMG
sensor and a new technique for signature recognition called
Guided Under-determined Source Signal Separation (GUSSS).
Compared to other approaches in the literature, the proposed
technique achieves comparable results even when using a simple
distance classifier and a very small number of features.

I. INTRODUCTION

The ability to recognize Motor Unit Action Potential
Trains (MUAPT) using electromyographic signals collected
at the surface of the skin (sEMG) have been used in many
applications, including rehabilitation, prosthesis, computer
interfacing, exoskeleton robotics, etc. [1], [2], [3], [4], [5],
[6]. When it comes to assistive technology, more specifically
for power wheelchair control, sEMG signals have often been
used as on/off switches. In those cases, menu driven ap-
proaches [7], finite state machines [8], and a combination of
multiple muscles and sensors [9] are common techniques em-
ployed to expand these simple on/off patterns of activation.
In general, sEMG-based systems require more sophisticated
pattern recognition techniques and they vary widely in terms
of the classification approach employed, the feature selection
criteria, and the number of sensors used [10], [8], [9].

In terms of the classification algorithm, the most common
methods used to classify muscle activity are Artificial Neural
Networks (ANN) [4], [11], [5], Fuzzy Logic and Fuzzy
Control systems [4], [12]. For example, in [4] an ANN was
compared to a Fuzzy Inference System (FIS) for classifica-
tion and control of a hand prosthesis. In this work, the authors
concluded that for their application the best performance was
using the FIS classifier which achieved 83% accuracy.

In another work [5], several techniques for classification
were employed in order to identify hand gestures using
sEMG signals extracted from the forearm of human subjects.
The authors compared the performance of ANN, Random
Forest (RF), 1-Nearest-Neighbor (1NN), Support Vector Ma-
chine (SVM), Decision Tree (DT) and Decision Tree with

Boosting (DT/B) as possible classification techniques. They
reported the ANN as the approach with best performance
among those methods.

In terms of feature selection, the features can be ex-
tracted from time or time-frequency domains [4], [11], [3].
These features typically include: number of Zero Crossings
(ZC), Mean Absolute Value (MAV), Slope Sign Changes
(SSC), coefficients of Auto-regressive models (AR) [4], [11];
Absolute Maximum/Minimum, Maximum minus Minimum,
Median Value (Med), Variance, Waveform Length (WL) [3];
coefficients of the Short Time Fourier Transform (STFT) [3];
Wavelets Transform (WT) [3], [2], etc.

Given the wide range of features and their large dimension-
ality, many systems also employ dimensionality reduction
techniques. In those cases, Class Separability (CS), Principal
Component Analysis (PCA), Analysis of Variance (ANOVA)
or Multivariate ANOVA (MANOVA) are the techniques
frequently used. In [4], for example, the authors developed a
feature selection employing CS and PCA for dimensionality
reduction. In that system, as well as in [5] where ANOVA
was the technique of choice, the main concern was, as usual,
to reduce dimensionality without affecting classification.

Finally, in terms of number of sensors used, as far as
we know all systems developed to date have relied on
multiple sEMG signals and a large number of features. For
example, in [4], the authors reported using two differential
sEMG electrodes, multiple features, and PCA to reduce
dimensionality of those features. In [5], the system relied
on even more sensors – 5 to be more specific – and an ANN
as the classification algorithm.

As it can be inferred from the literature, one constant
in most systems is the use of a large number of sensors
and the use of sophisticated classification algorithms to help
coping with a major disadvantage of surface EMG – i.e. the
occurrence of cross-talk from adjacent muscles [1]. Our goal
in this work is to present a much simpler and yet effective
technique using a single EMG sensor, freeing other muscles
to be used in other interfaces or to add modalities of operation
to the interface.

In this paper, we propose a system for operating a
wheelchair that recognizes muscle movements derived from
hand gestures. In our framework, we propose a new technique
to separate the “cross-talked” MUAPTs signals from a sin-
gle sEMG sensor called “Guided Under-determined Source
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Signal Separation” (GUSSS). This technique was inspired
on Independent Component Analysis (ICA), but unlike other
methods based on ICA, e.g. [12], our method relies on a
single sEMG source. Our proposed method combined with
a simple distance classifier was applied to the control of
a power wheelchair using three hand gestures or eyebrow
movements.

II. BACKGROUND AND RELATED WORK

In our method, only two features extracted from a single
sEMG signal are used for classification. Since one of these
features is based on ICA, in this section we present a quick
overview of traditional Blind Source Signal Separation using
ICA [13], [14]. In Section III, we explain the proposed
technique to eliminate cross-talk, which we named “Guided
Under-determined Source Signal Separation” (GUSSS), and
the derived GUSSS ratio.

Traditional Blind Source Signal Separation using ICA
(BSSS-ICA) is a powerful technique for sEMG signal sepa-
ration [12]. In those scenarios, it is assumed that a sEMG
sensor captures a combination of statistically independent
MUAPTs due to cross talk [1], [12]. It is important to notice
that each MUAPT is itself a sum of many activations within
a muscle. However, here we are interested in separating the
entire MUAPT originating from a single muscle. In order to
apply BSSS-ICA, each sEMG signal must be captured by
a specific sensor placed close to the muscle responsible for
that MUAPT.

Mathematically, the goal of BSSS-ICA would be to recover
N source MUAPTs, S = [s1 (t) , . . . , sN (t)]T which are
linearly combined, producing the observed signals X =
[x1 (t) , . . . , xM (t)]T . An analogous example would be that
of N independent sounds emanating from different sources
and being detected as mixed signals by M microphones
spread over the space [14]. Figure 1 depicts this idea for
three sources and one microphone.

Traditional ICA methods are able to separate the signals
whenever M ≥ N , that is, the number of observed signals is
at least equal to the number of independent sources. In those
cases, the sources and the signals can be related in a matrix
form such as X = AS – where A is called the mixing matrix
and contains the coefficients of the linear combination of the
observed sources. The fact that M is greater or equal to N
allows for BSSS-ICA to solve an overdetermined system of
equations through the expression S = A−1X = WX . The
solution is found using a constrained optimization algorithm
that maximizes the independence of the signals in S.

For the under-determined cases, that is, when the number
of sensors is smaller than the number of independent sources
(M < N ), methods for signal separation have been pro-
posed [15], [16] and referred to as Under-determined BSSS.
However, these methods produce losses in the recovered
(separated) sources, which increase with the reduction of the
number of sensors.

III. PROPOSED METHOD

In this work, we propose a wheelchair control system
based on the recognition of hand gestures using a new

Figure 1. Three independent sources mix together and the linear combi-
nation is collected by a sensor.

technique called Guided Under-determined Source Signal
Separation (GUSSS). The use of hand gestures was simply to
illustrate the fact that any muscle activation pattern or signa-
ture derived from a natural and repetitive muscle movement
can be employed by our system. Clearly, in the case of a
person with severe impairment, any other muscle movement,
such as an eyebrow, could be used instead.

In our method, we handle an extreme case of under-
determination where the number of sensors is actually equal
to one – i.e. M = 1. As we will explain in greater
detail later, unlike BSSS-ICA where the source signals to be
separated are unknown, in our method it is assumed that only
signatures previously captured and learned by the system can
be separated from the observed signal – which is the reason
for the term “guided” in GUSSS.

The proposed framework for our method is illustrated in
Figure 2 and it consists of three parts: 1) signal detection
and acquisition; 2) feature extraction and classification; 3)
command execution by the wheelchair.

As the name implies, the first module of our framework is
responsible for detecting and sampling the sEMG signal. The
next module in the flow, as presented in Figure 2, extracts the
features that are used for classification of the hand gestures.
These features are the Mean Absolute Value (MAV) and
the GUSSS ratio. After the features have been extracted the
classification takes place. In order to demonstrate the power
of the proposed GUSSS ratio as a classification feature,
we based our system on a simple distance classifier. A
better classifier using more features should lead to even
better accuracy in classification. The last module in Figure
2 transmits a command associated with the detected gesture
so the wheelchair can move accordingly.

A. Guided Under-determined Source Signal Separation

As in other systems, here we also assume that an sEMG
signal is a mixture of MUAPT originating from different
muscles [1]. In other words, the sensed signals are linear
combinations of independent MUAPTs due to cross-talk
inside the subject’s arm.

In the proposed Guided Under-determined Source Signal
Separation, we let x1 be such linear combination of N
independent MUAPTs. That is, x1 represents a sensed signal
from the single sensor and sp is a particular known MUAPT,
or signature, that the system is trying to identify within the
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Figure 2. Framework of the proposed classification system.

observed signal x1. Since the sensor captures not only sp,
but also various other MUAPTs si, we can write:

x1 = c1s1 + c2s2 + · · ·+ cpsp + · · ·+ cNsN

= cpsp +
∑
i6=p

cisi

= cpsp + s̃

(1)

where ci, i = 1, · · · , N are unknown mixing coefficients.
We assume ci ≥ 0. The final expression above is simply to
stress the fact that x1 can be considered a linear combination
of the desired signature plus a mixture of other MUAPTs s̃.
Since we are interested in separating or identifying only sp,
we will assume that s̃ is independent from sp. This is an
obvious consequence of the assumption that all N MUAPTs
are independent – i.e. if N MUAPTs are independent,
any one of the MUAPTs must also be independent of the
remaining N − 1 MUAPTs. Therefore, an algorithm can
successfully identify sp within x1 iff cp 6= 0. So, the question
remaining becomes how to determine cp.

In fact, two situations may arise: the desired signature
is indeed present in the mixed signal x1, or it is not.
In order to distinguish between those two situations, the
algorithm creates a second, synthesized signal xp by injecting
a weighted copy of the particular signature sp into the sensed
signal x1. That is:

xp = w1x1 + wpsp (2)

where w1 and wp are arbitrarily chosen constants. Substi-
tuting eq. (1) in eq. (2), we obtain:

xp = w1 (cpsp + s̃) + wpsp = w1s̃+ (w1cp + wp) sp (3)

which leads to

x1 = s̃+ cpsp

xp = w1s̃+ kpsp

where kp = w1cp + wp. Finally, we can express these
equations in matrix form as Xp = AS, where

Xp =
[
xT

1

xT
p

]
, A =

[
1 cp
w1 kp

]
, S =

[
s̃T

sT
p

]

The last step of the algorithm is to solve for S. Since
we now have two independent components and two linear
equations on sp and s̃, we can apply a traditional ICA
algorithm to separate the sp and s̃ components. Moreover,
since a sub product of the ICA algorithm is the mixing
matrix A, the coefficients of such matrix can be used to
infer whether or not a particular signature was present in
the sensed signal x1. For example, if we consider the case
where the particular signal sp is not present in the mixture
signal x1, the mixing coefficient cp should be zero. On the
other hand, if sp is indeed present in the mixture x1, that
coefficient should be different from zero.

In practice, the coefficient cp is never exactly zero 1.
However, it should be small whenever the particular signature
is not present in x1 and it should be large otherwise. In the
proposed framework, we define the GUSSS ratio as:

rp =
1
cp

(4)

Finally, while what constitutes a “large” or a “small” value
for the coefficient cp may not be obvious, it is clear that the
derived GUSSS ratio can be used as a feature for determining
if a particular signature is present or not in the sensed signal.
In the proposed framework, the GUSSS ratio is used as such
a feature for the distance classifier.

Identifying multiple signatures in x1: In the previous
discussion, we explained how a particular signature can be
identified or separated from x1. In order to identify the
presence or not of all possible signatures, the framework
employs an iterative method. That is, first, we assume that
the system needs to identify N MUAPT signatures, each one
predominant in one of the N possible hand gestures2. Next,
from the test signal x1, we obtained N ratios by injecting
iteratively the desired signature into x1 – equations (2)-(4) .
That is, we find

xp = x1 + sp for p = 1 to N

and once again, we apply the ICA algorithm to each

Xp =
[
xT

1

xT
p

]
for p = 1 to N

to obtain the ratios r1, r2, ..., rN . Finally, it should go
without saying that if ri is the smallest of the N ratios found
by the GUSSS, it is likely that the sensed signal x1 contains
the signature si, and thus, the hand gesture i is the one being
sought.

B. Mean Absolute Value as a Classification Feature

We considered a second feature for the classifier: the Mean
Absolute Value (MAV) of the signals. The MAV of a signal
x (t) is obtained by calculating the average of the absolute
values of x at all instants t. If the signal is discrete, then

1Noise, inter-dependence between MUAPTs, similarity of gestures, etc.
can cause the coefficient not to be zero.

2We will explain how to obtain the signatures in Section IV
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MAV =
1
K

K∑
k=1

|x (k)|

where K is the number of samples that constitute x (k).

C. Classification Module

As we pointed out earlier, the goal of the GUSSS is to
identify which signature is present in the observed sEMG
signal x1. In order to do so, the same signature must be
injected to synthesize a secondary signal xp. Our framework
uses a training set of sEMG signals to learn those signatures
and in the results section we will explain the approach
used for this purpose. Here, we will simply assume that the
signatures are available.

Furthermore, from the training signals we can also learn
the average MAVs for the different signatures, i.e. for the
different gestures. In mathematical terms, let µ1, µ2, ..., µN

be the average MAVs obtained from the training set and
corresponding to N different gestures to be recognized. Let
σ1, σ2, ..., σN the corresponding standard deviations. Given
the input signal x1, the algorithm calculates its MAV, m1, and
based on this value, it computes the Mahalanobis distances
to the average MAVs of the gestures. That is:

dp =
|m1 − µp|

σp
for p = 1 to N

It should be noted that if x1 contains a MUAPT that is
predominant in gesture i, it is likely that mi is similar to µi.
In that case, di would also be the smallest of the N distances
above.

Using both the GUSSS ratios and the MAV distances
above, we can construct the distance classifier based on
the normalization of both features. That is, we define the
normalized GUSSS ratio and the normalized MAV distance
as, respectively:

r̄p =
rp

N∑
j=1

rj

d̄p =
dp

N∑
j=1

dj

The features are grouped in the feature vector: −→vp =
[
r̄p
d̄p

]
for p = 1, . . . , N , corresponding to each of the N gestures

to be identified. The classification is obtained by assigning
x1 to that gesture (i.e. the class) for which the corresponding
feature vector−→vi is smallest. The reason for the normalization
of the ratios and distances is, of course, to allow both features
to have the same weight in the classification process.

IV. RESULTS

In this section, we explain how we applied the proposed
classification framework. For this experiment we used three
hand gestures and one resting gesture, which are illustrated
in Figure 3. The sEMG signals of interest, i.e., the ones to
be associated with each gesture, are those generated during
the transition from the rest position to the actual hand gesture
and back to the rest position. The signals were acquired using

Figure 3. The hand gestures considered: a) Relax or resting position; b)
“clench” used for the stop command; c) “up” for the forward command;
d) “finger tapping” for the turn command.

a Tinkertron EMG switch. This device consists of circuitry
for detection and amplification of the raw sEMG signals.
The signals from the Tinkertron were then sampled by a TS-
7250 embedded device from Technologic Systems running
the first software module in Figure 2 – Signal Detection
and Acquisition. This module monitors the EMG signals,
waiting for their levels to cross a certain threshold. Once
the threshold is detected, the program stores the signal and
then transmits the signal to the second module of the system
for the purpose of feature extraction and classification. The
latter then sends the commands to the wheelchair on-board
processor, which then sends the control signals to the motors.
It should be mentioned here that the two modules described
above were implemented using a client-server architecture
where each module can run on the same computer or not.
In this experiment, the client – i.e. the Signal Detection
and Acquisition module – ran on the TS-7250 embedded
device, while the server – i.e. the Feature Extraction and
Classification module – ran on a desktop computer.

As we explained before, our framework relies on a single
sEMG sensor. So, for this experiment we placed a pair of
differential electrodes on the Extensor Carpi Radialis muscle
along the forearms of three human subjects. A reference
(ground) electrode was also placed on the wrist of the
opposite arm of the subjects. We choose this muscle for
convenience and ease of use. Later, we also tested the system
for eyebrow movement.

As we mentioned earlier, three different hand gestures
were considered in our experiments (Figure 3). Before the
subjects can use the wheelchair they need to go through
a training process. The system allows the user to repeat
each gesture a certain number of times and it associates
that gesture to one of the possible motions of the chair. The
training signals obtained are analyzed and processed to create
the signatures, which are then stored in the server.

Once the signatures are learned, the user can start using
the wheelchair. But before we present the actual results from
our experiment, we must explain the method used to learn
the signatures.

A. Obtaining the Signature Signals

Given a training set with 3× T samples – i.e. T samples
from each hand gesture in Figure 3 (b, c and d), we did an
averaging of the training signals grouped per hand gesture.
That is, each of the T samples belonging to the same gesture
p were averaged creating a single time signal signature
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Table I
CONFUSION MATRICES FOR OFFLINE CLASSIFICATION OF HAND

GESTURES.

Subject 1 Assigned gesture
clench up tapping

Actual clench 35 5 0
hand up 3 32 5

gesture tapping 1 8 31
Correct classification: 82%

Subject 2 Assigned gesture
clench up tapping

Actual clench 33 3 4
hand up 3 30 7

gesture tapping 8 1 31
Correct classification: 78%

Subject 3 Assigned gesture
clench up tapping

Actual clench 29 2 9
hand up 8 32 0

gesture tapping 4 0 36
Correct classification: 81%

sp(t) = 1
T

T∑
i=1

yip(t), where p is the index of the gesture,

yip is the ith training signal of gesture p.

B. Offline Test using National Instruments Digitizer

The main goal here was to validate the proposed GUSSS
method for classification of sEMG signals. Therefore, we
collected sEMG signals offline and under well-controlled
conditions. We processed and analyzed those signals to get
classification rates, leaving out the last part of the frame-
work presented in Section III (i.e. command transmission
and execution by the wheelchair). A simplified framework
for the method consists of the following parts: 1) signal
acquisition and pre-processing; 2) feature extraction; and 3)
classification. The features used and the classification module
implemented here are as described in Section III-C.

Table II
CONFUSION MATRICES FOR ONLINE CLASSIFICATION AND CONTROL OF

THE POWER WHEELCHAIR USING HAND GESTURES.

Subject 1 Executed command
stop forward turn

Actual clench 43 7 0
hand up 7 37 6

gesture tapping 0 19 31
Correct classification: 74%

Subject 2 Executed command
stop forward turn

Actual clench 41 4 5
hand up 10 28 12

gesture tapping 4 13 33
Correct classification: 68%

Subject 3 Executed command
stop forward turn

Actual clench 29 6 15
hand up 1 32 17

gesture tapping 2 5 43
Correct classification: 69%

Three test subjects were asked to go through the train-
ing process. For each subject, 10 signals per gesture were
acquired in order to train the system. After the training, the

Table III
CONFUSION MATRICES FOR CLASSIFICATION USING EYEBROW

MOVEMENTS.

Subject 1 Assigned gesture
Up Down Cross

Real Up 34 0 6
gesture Down 0 38 2

Cross 9 5 26
Correct classification: 82%

Subject 2 Assigned gesture
3 gestures Up Down Down Up

Real Up 35 0 6
gesture Down 0 64 0

Down Up 8 0 55
Correct classification: 92%

Subject 2 Assigned gesture
4 gestures Up Down Down Up Up Down

Up 23 0 5 13
Real Down 0 64 0 0

gesture Down Up 7 0 54 2
Up Down 16 0 10 43

Correct classification: 78%

subjects were asked to perform a total of 120 test movements:
40 movements for each gesture.

For these offline experiments, the signals from the Tin-
kertron were sampled using a National Instruments (NI)
digitizer. In order to reduce undesired noise coming from the
power lines, we implemented a digital filter to remove the
60 Hz component. Table I shows the confusion matrices for
the classification results obtained for each one of the human
subjects.

C. Online Test with the Wheelchair

A video showing the operation of the wheelchair is in-
cluded in the video proceedings and it can also be found at
http://vigir.missouri.edu/EMGWheelchair.htm

As before, three test subjects were asked to go through
the training process using 10 signals per gesture. This time,
each subject performed a total of 150 test movements: 50
movements for each gesture. Also, for these experiments,
the “clench” movement was assigned to the stop command,
the “up” movement was assigned to the forward command
and the “finger tapping” was assigned to the turn command.
Table II shows the confusion matrices for the classification
results of these experiments.

It is important to mention that the results presented here
encompass all steps required for the real time control of the
wheelchair. In other words, the system had to capture the
signal, localize the time window of muscle activity, extract
the features and classify the gesture correctly in order to
be considered a successful classification. As a result, while
still reasonable, the accuracy of the classification presented
on these tables is worse than the accuracy in the previous
section.

D. Eyebrow Movement Recognition

In a more practical scenario, where severe disabilities
lead to limited to no muscle control below the neck, a
system relying on eyebrow movements or other facial muscle
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activity should be more useful. Here, we present the results
from applying the proposed method to the classification of
different eyebrow movements. Two human subjects were
used for this test: one healthy and the other with a severe
muscular dystrophy. Both subjects were allowed to select the
eyebrow movements that were easier for them to perform.
The first subject selected: eyebrows up, eyebrows down, and
crossed eyebrows (one up and one down). The second subject
preferred: eyebrow up, eyebrow down, a quick up movement
followed by a quick down movement, and a quick down
followed by a quick up movement.

For these tests, a pair of differential electrodes was placed
on the forehead of the test subjects, right between the eye-
brows. The training was done in the same way as for the hand
gestures: 10 signals per eyebrow movement were collected to
extract the signatures and the MAV parameters. We collected
over 40 additional signals per eyebrow movement, and we
applied the classification to those signals. These experiments
were also done offline, using the NI digitizer. Confusion
matrices are shown in Table III.

V. DISCUSSION AND CONCLUSIONS

This paper introduced a novel technique for the extreme
case of under-determined source signal separation – i.e. one
single observation and multiple sources. We showed how this
technique can be employed in robotic assistive technologies,
more specifically, control of a power wheelchair. The pro-
posed framework was tested both offline and online. In all
tests, a single sEMG sensor was used to recognize three
and four different signatures. The classification accuracy
obtained in the offline experiments was slightly higher than
the accuracy obtained online due to the quality of the AD
converter used in each case. Also, the algorithm used online
to automatically locate the window containing the EMG
signature for classification had an impact on the accuracy
of the actual control of the wheelchair.

Despite the problems with the embedded device, the results
achieved here were still quite reasonable, especially given
the highly reduced number of features and the use of a
simple distance classification algorithm. In contrast, other
systems found in the literature achieve slightly better results
using multiple sEMG sensors and elaborated algorithms for
classification. The training process used was also very simple
and was carried out practically on-the-fly – which is yet
another advantage of our method over other methods in the
literature.

VI. FUTURE WORK

Many practical applications, such as prosthetic hands,
wheelchairs, etc. would require higher classification rates
than the ones obtained here. Also, a larger number of
recognizable gestures would be useful for a “real-world” ap-
plication. In that sense, our framework must be enhanced by
the addition of other techniques also found in the literature:
as for example, the use of a better classifier – i.e. instead of
a distance classifier we could use ANN, FIS, etc. Another
improvement for the proposed framework should be easily
achievable by the simple addition of extra features. Also,

new ways of obtaining signatures during training could be
explored. In this paper, we used a small set of features and
other simplifications in the classifier in order to emphasize
the discriminant power of the GUSSS ratio. The main goal
was to support the claim that the introduction of GUSSS
presents a new and very powerful method for separation and
identification of patterns in signals, not only in the context
of sEMG signals, but also in other areas, as we demonstrated
in [17] for Terahertz signals for explosive detection.
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