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Abstract— Variable compliant actuators play a key role in the
development of efficient biomechatronic systems since energy
can be stored in the compliant element thus leading to consump-
tion reduction. In this paper, experimental results comparing
passivity-based control (PBC) and feedback linearization (FL)
for motion control of an actuator with variable torsional
stiffness (VTS) aiming at applications like prosthetic knee joints
are presented. The concept of VTS and the experimental setup
are described and a mathematical model of the latter one is
derived. Based on this, a control architecture consisting of
an extended Kalman filter (EKF) to estimate the velocities,
a friction compensation as well as the mentioned controller
types is developed. Both control methods are analyzed in terms
of accuracy, dynamics and their control torque. FL and PBC
lead to a stable control with high performance whereas the
robustness is low by reason of the model-based control design.
FL is superior to the PBC in terms of accuracy and control
torque, which is mainly due to the high sensitivity of PBC
regarding the discrete position signals. In addition, it is shown
that FL can be applied for stable operation near the second
natural frequency for different stiffness values.

I. INTRODUCTION

With closer interaction of humans and robots, safety
aspects have received increased priority in robotic design
in the the last decades. A widely adopted approach to
ensure safety are compliant actuation concepts including
serial elasticity. Those can further be used for energy stor-
age and thus optimize drive train efficiency and decrease
power consumption [1]. Adjusting the stiffness can provide
additional advantages by matching the natural frequency of
the compliant drive train to the frequency of the desired
trajectory [2]–[4]. First compliant actuators with variable
stiffness like the Series Elastic Actuator (SEA) [2], [5] or the
Mechanical Impedance Adjuster (MIA) [6] were introduced
in the 1990s. The variety of concepts that emerged since
then can be categorized in four groups of fundamental
stiffness variation principles according to [1]: Equilibrium-
controlled, antagonistic-controlled, structure-controlled and
mechanically controlled stiffness. In a more recent re-
view [7], the latter three are categorized as actuators with
adaptable compliance properties in contrast to such with
fixed compliance like the equilibrium-controlled SEA. The
latter ones change the equilibrium position of a spring [8].
In antagonistic-controlled concepts, actuators are coupled
antagonistically via springs to reach adaptable stiffness as
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in AMASC [9]. Many concepts proposed recently, belong to
structure-controlled and mechanically controlled categories.
Structure-controlled ones change stiffness by a modifica-
tion of the physical structure of an elastic element as in
MIA, while mechanically controlled approaches like MAC-
CEPA [10] adjust the system stiffness by pretension.
The authors’ approach is based on variable torsional stiffness
(VTS) and aims at an application in biomechanically inspired
robotic joints as in lower limb prostheses [11]. As the
torsional joint stiffness is adjusted by varying the length
of an elastic element, it belongs to the structure-controlled
variable compliant actuators. The concept described in [11]
enables compact actuators with a large stiffness bandwidth
and customizable dynamic characteristics.
A crucial point for practical application of such a concept is
the selection of a suitable control structure. For the purpose
of motion control, an actuator based on VTS represents
a flexible-joint robot (FJR). A large quantity of different
controllers for such systems have been investigated in the
last three decades. Among those, proportional-derivative
(PD) control with its simple structure is a widely adopted
approach [12]. Such methods provide high robustness but
show limitations in control performance. Higher performance
can be achieved with model-based controllers, like singular
perturbation (SP) techniques [13], passivity-based control
(PBC) [14] and feedback linearization (FL) [15]. PBC is used
in combination with joint torque sensors for position control
of a lightweight robot as in [14], [16] and FL is applied to
a robot with variable-joint stiffness (VSA) by adapting the
control law in [17]. In [18], a simulative evaluation of the
VTS actuator driving a pendulum using FL could show that
FL is a suitable control law to exploit the advantages of the
VTS concept.
In this paper, FL and PBC are experimentally compared
for motion control of a pendulum driven by a prototypic
VTS actuator. After a brief repetition of the VTS concept
and an introduction of the test rig, a model of the drive
train mechanics and an analysis of its dynamics are given in
Section II. Based on the analysis, Section III illustrates the
control architecture including FL and PBC as control laws as
well as the implementation of a friction compensation and an
extended Kalman filter estimating velocities to achieve full
state feedback. Experimental results comparing FL and PBC
during specific motion tasks are presented in Section IV.
Section V covers the conclusions and an outlook.
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II. DYNAMICS MODELING AND ANALYSIS

The concept and modules of the VTS actuator are given in
Figure 1 as well as the control architecture of the algorithms
described in Section III. Actuator 1 applies a torque τi to
the torsional elastic element and drives a pendulum. The
adjustment of the torsional drive train stiffness kvts(y)
is implemented by varying the effective length y of the
elastic element via the location of a counter bearing using
actuator 2. Due to the separation of the actuators driving
the joint and setting stiffness, this adjustment is conducted
independently from the position control in idle state and
during operation. Since the focus of this paper is on the
motion control, the modeling of the stiffness control path is
not considered. In this section, the experimental setup will
be described and the transfer behaviour of the compliant
drive train is modeled and analyzed.

A. Experimental Setup

Figure 2 shows the experimental VTS setup and names
the mechanical components. Actuator 1 is a brushed DC
motor with a rated power of Pact = 200W , a rated torque
of τact = 0.6Nm and a rated speed of nact = 3000 rpm. A
gearbox with a ratio of ig = 80 is attached to the drive. For
the connection to the elastic element a bellows coupling that
compensates for deflection is chosen. Within the aluminium
tube, an elastic element and a counter bearing are located.
Note that the elastic element is fixed to the coupling and
can freely rotate on the output side, hence the torque is
transmitted between counter bearing and pendulum through
the aluminium tube. The stiffness adjustment mechanism is
deinstalled for the experiments shown here and thus, the
active elastic length is varied manually. To measure the
drive side position qi and pendulum position qo an 360 cpr
incremental encoder and an 1024 cpr incremental encoder is
used respectively.
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actuator (Left), inside of the aluminium tube (upper middle) and the
pendulum (right)
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Fig. 3. Mechanical model of the VTS drive train.

B. Model of Actuator Mechanics

The torsional elasticity is modeled by

τt = kvts(y) (qo − qi) =
Γ It(y)

y
(qo − qi) . (1)

In this, the difference of the output position qo and the input
position qi is induced by the torsional torque τt of the elastic
element, which is equal to −τo in Figure 1. The torsional
stiffness kvts(y) of the elastic element is described using the
modulus of elasticity in shear Γ of the material as well as
the active length y and the torsional moment of inertia It(y)
of the elastic element. The experimental setup shown in
Figure 2 can be modeled as two elastically coupled inertias
with a gravitational torque G taking effect on the pendulum
side. Figure 3 shows the resulting mechanical model. Re-
garding the link side, the moment of inertia of the pendulum
is M = mp (αp lp)

2
+ Ip. The actuator inertia Im, gear

inertia Ig and coupling inertia Ic can be summarized to the
reduced inertia J = ig

2 Im + Ig + Ic according to [19]. The
input torque τi equals the transformed drive torque ig τact at
the gear output. G accounts for gravity torques and is given
by G = mp g αp lp sin(qo). Applying the Euler–Lagrange
equations leads to the following equations of motion

M q̈o +G(qo) + kvts (qo − qi) = 0 , (2)
J q̈i − kvts (qo − qi) = τi . (3)

The mechanical parameters of the setup are given in Table I.

C. Model Analysis

In [18], a model analysis focusing on drive train power
consumption is presented. Three areas of minimum con-
sumption of the power Pm,i = τi q̇i are located on a plane
spanned by vectors of varying stiffness kvts and motion
frequency fs. Two of those minima show high dependency re-
garding the variation of stiffness and can be used to adapt the
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system dynamics to the desired motion. Motivated by these
results, the transfer behaviors of qo

τi
and qo

qi are investigated
using Bode diagrams to get insights into the requirements
for control design. Choosing qo = 0◦ as operating point the
transfer functions of the linearized model (2)-(3) are given
by

qo
τi

=
kvts

a4s4 + a2s2 + a0
(4)

with a4 = JM

a2 = (J +M)kvts + Jmplpαpg

a0 = kvtsmplpαpg.

and
qo
qi

=
kvts

Ms2 +mplpαpg + kvts
(5)

In Figure 4 the Bode diagram of the actuating transfer
function qo

τi
is given in blue as well as qo

qi in dashed green for
two stiffness values kvts = {75Nmrad , 400Nmrad }. It becomes
distinct that the natural frequency of qo

qi and the second
natural frequency of qo

τi
are highly influenced by stiffness

variation, whereas the first natural frequency of qo
τi

just
slightly changes. Thus, the second natural frequency is the
optimal operating point to achieve a maximum amplification
of the input torque and thus, low power consumption. At this
point, the phase delay between the drive position qi and the
pendulum position qo is 180◦ and almost 360◦ for qo

τi
which

causes high control efforts.

III. MOTION CONTROL DESIGN

For motion control of similar systems, control algorithms
differing in complexity and performance are applied. For
common PD-control, stability is only guaranteed, if the
coordinates qo and qi collocate. This results in a limited
controller bandwidth, which is not sufficient for operating
the VTS actuator near its natural frequencies. Composite
control algorithms based on singular perturbation system

TABLE I
PARAMETERS OF MECHANICAL SETUP [11].

Parameter Value Unit

V
T

S
dr

iv
e

tr
ai

n

kvts 56− 475 Nm/rad

xmin 10.0 · 10�3 m

xmax 155.0 · 10�3 m

Im 1.80 · 10�4 kg m2

Ig 0.95 · 10�4 kg m2

Ic 2.40 · 10�3 kg m2

ig 80
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nd
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um

mp 6.81 kg

M 9.4101 · 10�1 kg m2
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g 9.81 m s�2
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Fig. 4. Bode diagrams of transfer functions qo
τi

and qo
qi

for kvts =
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rad
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rad
}.

representation require a large joint stiffness [13], which is
not given in the VTS actuator. Generally suitable are rather
complex nonlinear control laws like FL and PBC, which are
utilized here. In addition, an extended Kalman filter as well
as a simple friction compensation will be presented as parts
of the control given in Figure 1.

A. Feedback Linearization

For the design of the FL control scheme in accordance
with the block diagram in Figure 1, equations (2)-(3) are
rewritten in nonlinear state space representation with the state
vector

xT =
[
x1 x2 x3 x4

]T
=
[
qo q̇o qi q̇i

]T
. (6)

Hence, the system is represented by

ẋ = f(x) + g(x)u1 , (7)

ẋ =


x2

−mp g αp lp
M sin(x1)− kvts

M (x1 − x3)
x4

kvts

J (x1 − x3)

+


0
0
0
1
J

 u1 ,
where the scalar system input u1 equals the input torque τi.
This torque is calculated by the scalar input transformation

u1(x, z) =
M J

kvts
(v(z)− a(x)), (8)

using the nonlinear feedback term

a(x) =
mp g αp lp

M
sin(x1)

[
x22 +

mp g αp lp
M

cos(x1) +
kvts
M

]
+
kvts
M

(x1 − x3)

[
kvts
M

+
kvts
J

+
mp g αp lp

M
cos(x1)

]
(9)
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and the new input v(z) as explained in [15], [20]. Using the
coordinate transformation

z =


x1
x2

−mp g αp lp
M sin(x1)− kvts

M (x1 − x3)

−mp g αp lp
M x2 cos(x1)− kvts

M (x2 − x4)

 , (10)

the components of the new state z correspond to the output
position qo, velocity q̇o, acceleration q̈o and jerk ...

qo and the
transformed system behaves like a chain of four integrators.
For this system, a linear tracking control law

v(z) = z
(4)
d + kR z̃ , (11)

aiming at asymptotic stabilization is designed. In this, z(4)d

corresponds to the desired value of the fourth derivation of
the transformed state z1 = q1, z̃ = zd−z is the state control
error and kR are the control gains determined by placing all
poles to sR = −18.

B. Passivity-Based Control
PBC allows a control design without cancellation of non-

linearities and achieving a good level robustness properties
[21]. Through feedback control, a passivity of the closed-
loop system is obtained. According to [22], this is achieved
by choosing a control law such that energy is dissipated
whenever x differs from the stable origin. This allows a
large quantity of possible control laws. For the VTS actuator,
the control algorithm proposed in [21] and applied in [23]
for a FJR is implemented. The singular perturbed system
description, which can be obtained of the equations (2)-(3)
by eliminating qi, is given by

Mq̈o = −G(qo) + τt (12)

k−1
vtsτ̈t = −

(
M−1 + J−1

)
τt +M−1G(qo) + J−1τi. (13)

Equation (12) corresponds to the dynamics of a rigid robot,
the control variable is however the torsional torque τt and
not the drive torque τi. By defining a virtual desired velocity

vo = q̇d − Λ (qo − qo,d) , (14)

where qo,d is the desired position, a tracking error

s = q̇o − vo (15)

is obtained. Note that this tracking error depends on the
velocity error and and a position error weighted by Λ. The
control algorithm proposed for subsystem (13) is

τd = Mv̇o +G(qo)− kss, (16)

where τd is the desired joint torque and

τi =
(
1 + JM−1

)
τt − JM−1G(qo)+ (17)

J
(
k−1
vtsτ̈d + kdėτ + kpeτ

)
,

for torque dynamics control, with torque error eτ = τd− τt.
A drawback of PBC is that there is no straightforward
way to tune the gains kp, kd, Λ and ks hence these are
selected heuristically based on experimental results as given
in Table II. Besides, the coordinate qo up to the fourth
derivative must be measured, estimated or computed from
x in analogy with (10).
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Fig. 5. Principle of friction compensation modified from [25].

C. Friction Compensation

Due to the occurence of gearbox friction, control perfor-
mance can be increased by compensating such effects. For
this purpose, friction parameters are identified experimentally
and approximated via a nonlinear least squares regression
using a friction model presented in [24]:

τR(q̇i) = sgn(q̇i)τCoul︸ ︷︷ ︸
Coulomb

+ σq̇i︸︷︷︸
Viscous

+ sgn(q̇i)(τStri − τCoul)exp

(
−
∣∣∣∣ q̇iVS

∣∣∣∣δ
)

︸ ︷︷ ︸
Stribeck

. (18)

The model consists of a Coulomb and viscous part plus a
part to shape the Stribeck effect in the low-velocity Stribeck
region. Experimentally identified parameters are given in
Table II. The second block in Figure 5 shows the regression
with the torque increasing continuously from the static
friction level of τCoul = 2.4025Nm, which is achieved by
a negative shape factor δ = −0.1309. Figure 5 depicts the
compensation scheme composed of a velocity dependent part
generating τR,V , a part τR,C depending on the linear control
and a third part composing the output τR by a weighted sum
of the previous parts depending on the actuator velocity [25].

D. Extended Kalman Filter

The differentiation of the position signal led to a noisy
velocity signal, which could not be smoothed sufficiently by
low pass filtering without a phase delay. Hence, an EKF is
used to estimate x̂ =

[
q̂o ˆ̇qo q̂i ˆ̇qi

]
from the position

signals qo, qi and the controller output τc. The EKF theory
and its application is presented in [26]. The jacobian of the
system matrix f(x) of the state space representation (7) is

Ak =


0 1 0 0

−mplpαpg cos(qo)
M − kvts

M 0 kvts

M 0
0 0 0 1
kvts

J 0 −kvts

J 0

 , (19)

and the measurement matrix

Hk =

[
1 0 0 0
0 0 1 0

]
. (20)
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The parameters of the covariance matrices of the process
noise Q and measurement noise R are defined heuristically
and shown in Table II. Since the influence of noise on system
states and measurement is unknown, the matrices are set to
be Vk = 1 and Wk = 1 respectively.

IV. EXPERIMENTAL EVALUATION

For the experiments, a cRIO realtime system from NI Ger-
many GmbH, Munich is used to implement the controllers
running at a sampling frequency of fs = 1kHz. The control
methods are analyzed in terms of accuracy, dynamics and
their energy consumption based on a sinusoid with frequency
of 2Hz and an amplitude of 0.0873 rad and a sigmoidal step
reaching an amplitude of 0.1745 rad after 0.6 s. For motion
planning, polynomial trajectories are developed according
to [27]. The drive train stiffness is set to kvts = 75 Nm

rad ,
which results in maximum amplification of the input torque
in case of the sinosoid according to Figure 4. With the
sinusoid the focus is set on the analysis of dynamics and
energy consumption, whereas accuracy is evaluated by the
step response.
In Figure 6 the system response to a sigmoidal step and
the corresponding input torque is shown applying FL and
PBC. Both controllers do not reach the exact final value
and FL overshoots. After 3 s, the static error is qo,d − qo =
−0.008 rad on the pendulum side, whereas the deviation on
the drive side is qi,d − qi = −0.0012 rad. The difference
between the deviations indicates that the model parameters
are slightly inaccurate. The final position of PBC is qo,d −
qo = 0.0226 rad lower than the desired position thus, the
deviation is greater in magnitude compared to the FL result.
Input torque curves of both controllers are qualitatively
similar. However, PBC shows a high sensitivity to position
steps of coordinate qo whereas the output torque of FL is
smoother and reaches higher values. Taking this into account,

TABLE II
PARAMETERS OF CONTROLS, FILTERS AND FRICTION COMPENSATION.

Parameter Value Unit

C
on

tr
ol

sR
[
−10− 10− 10− 10

]
kp 100

kv 20 s

kd 10 kg · m
s

Λ 10 s�1

E
K

F Q diag
(
10�3 10�1 10�3 10�1

)
R diag

(
10�1 10�1

)

Fr
ic

tio
n

C
om

pe
ns

at
io

n τs 0.005 Nm

τCoul 2.4025 Nm

τStri 376.0605 Nm

δ −0.1309

σ −0.8038 Ns

VS 3.5570e4

q̇i,max 7 · 10�3 rad
s

q̇i,min 5 · 10�3 rad
s
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Fig. 6. Position and input torque response to a sigmoidal trajectory applying
the FL (left) and PBC (right).
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Fig. 7. Position and input torque response to a sinus trajectory (Frequency
of 2Hz and an amplitude of 0.0873 rad) applying the FL (left) and PBC
(right).

it is difficult to evaluate the accuracy of PBC.
Figure 7 shows the system behavior if a sinus trajectory is
applied. Both controllers lead to a stable oscillation with
sufficiently high dynamics and a slight superelevation. With
same stiffness and higher frequencies the amplitude tends to
result in an increase of the superelevation and with lower
frequencies this dynamic effect inverts. Since the system is
operated in the second natural frequency and hence beyond
the antiresonance the phase delay between qi and qo is 180◦

which corresponds to the system analysis in Section II-C.
As in the case of the step, the output torque of the PBC is
superposed with chattering which is due to the discrete sensor
signal whereas the FL output is smooth. This circumstance
doesn’t allow a fair comparision of energy consumption.
Control effort increases with the oscillation frequency, as
dynamic requirements are rising. Figure 8 shows that stable
control can be reached at a frequency of 3, 2Hz and stiffness
set to kvts = 200 Nm

rad enabling exploitation of the second
natural frequency.
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Fig. 8. Position and input torque response to a sinus trajectory (Frequency
of 3, 2Hz and an amplitude of 0.0873 rad) applying FL.

V. CONCLUSIONS

In this paper experimental results comparing FL and PBC
for motion control of an prototypical actuator with variable
torsion stiffness are shown. Based on the mechanical model
of the experimental setup that is given in Section II, the
control designs are described in Section III together with
a friction compensation and an extended Kalman filter.
Both controllers are analysed considering criteria assessing
stability, dynamics, accuracy and commanded torque. Using
sinusoidal trajectories, it is shown that PBC and FL lead to
stable control with high dynamics though both controllers
lack in robustness due to the model-based approach. How-
ever, examining a sigmoidal trajecory shows that a larger
steady-state deviation is caused by PBC. This is due to the
high sensitivity to the discrete position signal which results
in a noisy input torque τi. Overall, with FL better results
are obtained. By increasing the stiffness and the oscillation
frequency, it is further shown that FL is suitable, if stiffness
is adapted to the systems movement and hence subject for
future research. Such will include further improvement of
VTS controls in terms of the mentioned assessment crite-
ria and the automation of stiffness adjustment. Thereupon,
experiments with continuously varying stiffness during pen-
dulum motion can be realized and benefits of VTS during
dynamic operation, which finally might support prosthetics
or other wearable robotics, can be clarified.
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