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Abstract— This paper presents a novel estimation method
for extracting the activation rate of the human leg muscles
using the recursive least squares algorithm. It is shown that the
output force of each leg muscle group can be simply estimated
from the reconstructed real measurement data. The estimation
result turned out to be fairly comparable to those from
electromyography, yet much simpler and faster. Considering
the importance of the knowledge regarding the activation and
deterioration state of each leg muscle group for rehabilitation,
the proposed method is expected to contribute to the progress
in the fields of biomechanics, by providing a simple, accurate,
and fast estimation data to the developers, which will lead to
the controller design of adaptive type walking assist devices.

I. INTRODUCTION

World’s population is rapidly getting old [1]. With con-
tinually increasing life expectancies and decreasing birth
rates, many issues regarding aging are rising in importance
in many societies around the world. Concerns regarding
incidences of age-related pathologies are a part of the issues.
In treating those patients, rehabilitating them, and helping
them to return to their daily lives and enjoy them, robot
technologies and applications have contributed enormously,
and their missions are expected to grow in importance. In
an attempt to deal with these issues, there are robots that
are attached to physically disabled patients on their disabled
parts of body. Especially, walking assist devices help them
at a very fundamental level, considering the importance of
walking ability in human life. Due to the fact that walking
ability is essential for quality of life and participation in so-
cial and economic activities, gait disorders eventually disturb
the patients’ life itself. As the world population becomes
older, the demand for such devices is increasing and expected
to grow more. Moreover, not only the patients suffering
from age-related pathologies involving gait disorders, such
as Parkinson’s Disease and the stroke, but also the young
patients who have gait disorders caused by congenital and
acquired diseases are the beneficiaries.

Many walking assist devices have been introduced and
commercialized to rehabilitate the patients, and help them to
return to their daily life activities. For example, the AlterG
Bionic Leg of AlterG Inc. is well know for its performance
improving the mobility of stroke patients. ReWalk is also a
well known personal exoskeletal rehabilitation system, which
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allows the user to sit, stand, turn, and climb and descend
stairs. Some other works of the field show the increasing
interests in the interaction between the patient and the robotic
system utilizing combined sensors and actuators as in [2]
and [3]. They measure the force and torque of the user’s
body, and decide whether and how to augment them — in
most cases simply amplifying them — which is inherently an
indirect way, compared to the ones based on the segmental
characteristics of the human body beforehand.

However, studies on the intrinsic characteristics the human
limbs and relating them to the assist devices, are relatively
few in the literature considering the substantial importance.
Meanwhile, there are a number reported research works
that tried identifying the parameters using external mea-
surements, Hatze [4] first showed in 1981 that the external
information of constraint forces and moments along with the
human body dynamics could make the system of equations
overdetermined, which enabled Vaughan et al. [5] to esti-
mate the segmental parameters of the human body. More
recently, many other researchers, including Li et al. [6] and
[7], have worked on model-based estimation of segmental
muscle forces during movements, yet the complexity of the
estimation scheme costs much.

This work presents a simple and fast method to improve
accuracy and repeatability in estimating the segmental mus-
cle forces of the human leg during walking using the inverse
dynamics embodying Hill’s muscle model, with only the
external measurements: the angular displacements of the hip,
knee, ankle joints along with time; and the ground reaction
forces. This analysis enables the simple diagnosis of a patient
about his/her muscle deterioration, and the deviation from
the normal muscle group activation during the gait. Conse-
quently, the results can be used for the gait rehabilitation,
and the advanced walking assist device control.

II. MUSCLES

In this section, muscles in the scope of this work are
defined, and modeled by adopting Hill’s three-element mus-
cle model which has been widely used in the field of
biomechanics as a standard model.

A. Muscles in Scope and Groups

In order to make the problem simple and clear, the walking
motion is assumed limited in the sagittal plane, consisting
of the vertical downward (x-) and the horizontal forward (y-
direction), leaving 23 muscles in scope, which are gluteus
maximus (GM), iliacus (IA), pectineus (PC), psoas major
(PM), tensor fasciae latae (TFL), rectus femoris (RF), biceps
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TABLE I
HUMAN LOWER LIMB MUSCLE PARAMETERS IN SCOPE [8]

Muscles Group PCSA θm d FCmax l0
[cm2] [deg] [cm] [N] [cm]

GM e1 30.4 21.9 6.5 1852.6 15.7
IA f1 10.2 14.3 5 621.9 10.7
PC f1 1.8 0.0 5 177.0 13.3
PM f1 7.9 10.7 5 479.7 11.7
TFL f1 1.8 3.0 5 155.0 9.5
RF e12 13.9 5.0 5, 4 848.8 7.6
BF f12 16.8 12.0 6.5, 4 1021.0 11.0
GR f12 2.3 8.2 6.5, 4 137.3 22.8
SM f12 19.1 15.1 6.5, 4 1162.7 6.9
ST f12 4.9 12.9 6.5, 4 301.9 19.3
SA x12 1.9 1.3 5, 4 113.5 40.3
VI e2 16.8 4.5 4 1024.2 9.9
VL e2 37.0 18.4 4? 2255.4 9.9
VM e2 23.7 29.6 4 1443.7 9.7
PP f2 2.0 0.0 4 176.4 3.1
GN f23 31.3 11.0 4, 5 1814.4 5.5
EDL e3 5.7 10.8 5 345.4 6.9
FDL e3 4.5 13.6 5 274.4 4.5
FHL e3 7.2 16.9 5 436.8 5.3
SO e3 58.0 28.3 5 3585.9 4.4
TP e3 14.8 13.7 5 905.6 3.8
EHL f3 2.7 9.4 5 436.8 5.3
TA f3 11.0 9.6 4 673.7 6.8

femoris (BF), gracilis (GR), semimembranosus (SM), semi-
tendinosus (ST), sartorius (SA), vastus intermedius (VI), vas-
tus lateralis (VL), vastus medialis (VM), popliteus (PP), gas-
trocnemius (GN), extensor digitorum longus (EDL), flexor
digitorum longus (FDL), flexor hallucis longus (FHL), soleus
(SO), tibialis posterior (TP), extensor hallucis longus (EHL),
and tibialis anterior (TA). This assumption is base on the idea
that the forces and the moments related to lateral motion are
symmetric over the sagittal plane. These 23 muscles that
have force components in the sagittal plane are shown and
categorized in Table I. Then they are modeled into a multi-
link mechanical structure, where each muscle has joints
and moment arm to act on. The parameters are collected
from [8], which are based on anatomical measurements and
normalization.

Fig. 1 shows the schematic view of the assumed multi-
link structure. The 23 muscles are sorted into 10 categories
according to their acting joints and working direction, based
on the fact that the lumped force output characteristics of the
muscles vastly depend on the direction of the attachment and
the number of the joint-link they involve [9][10], which are:
e1 and f1, the extensors and flexors at the hip joint (J1); e2
and f2, the extensors and flexors at the knee joint (J2); e3 and
f3, the extensors and flexors at the ankle joint (J3); e12, the
bi-articular muscles that bend the hip and at the same time
extend the knee; f12, the bi-articular muscles that extend the
hip and at the same time bend the knee; x12, the bi-articular
muscles that bend the hip and at the same time bend the
knee; and f23, the bi-articular muscles that bend the knee
and at the same time extend the ankle outwards. Specific
names and the categories of the 23 muscles are indicated in
Table I.

Fig. 1. 10 categories of a human leg muscles. e1 and f1 are the mono-
articular extensor and flexor muscles for the hip joint, e2 and f2 are the
mono-articular extensor and flexor muscles for the knee joint, and e3 and f3
are the mono-articular extensor and flexor muscles for the ankle joint. e12,
f12, f23, and x12 are the bi-articular muscles that exert the same amount
of torque to their adjacent joints.

B. Hill’s Muscle Model

Hill’s three-element muscle model has been widely
adopted for describing muscle behavior, and has become a
standard in the field of biomechanics. For the estimation in
this work, Hill’s is used to model the muscles in scope. The
model describes the muscle-tendon unit (MTU) force with
three different elements, which are the contractile element
(CE), the parallel element (PE), and the series element (SE).
The force that an MTU produce is written as follows.

FMTU = FCE + FPE (1)
FSE = FCE (2)

where, the transient characteristics of FSE can be neglected
assuming that the stiffness of a tendon is high enough. Then,
an MTU can be modeled with only FCE and FPE , which
are written as follows.

FCE = fCv · fCl · FCmax · am · cos θm (3)
FPE = fPl · FPmax · cos θm + fPv (4)

where, am is the activation level of the contractile element
of the MTU which has a value between 0 and 1, θm is the
pennation angle of the muscle fiber, and FCmax and FPmax

are the maximal contractile force and the maximal isometric
force, respectively, which are all constants. fCv , fCl, fPl,
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and fPv are the nonlinear functions of the muscle velocity
(v) and the muscle length (l), which are defined as below.

fCv =
0.143

0.107 + exp
(
−1.41 sinh

(
3.20v
vmax

+ 1.60
)) (5)

fCl = exp

(
−0.5

(
l/l0 − 1.05

0.19

)2
)

(6)

fPl =
exp (10 (l/l0 − 1))

148.41
(7)

fPv = −Bv2 (8)

where, vmax is the maximal contractile velocity of a muscle
which is known to be around 0.50 m/s [11], l0 is the resting
length of the muscle fiber, and every coefficient in the
equations is empirically given by [12] and [13].

In addition, each muscle has different maximal force
output, and consequent torque according to the place of
attachment, the physiological cross-section area (PCSA), and
the length of moment arm d. These parameters vary from
person to person and even according to the posture. However
in this work, an average subject, who is 172cm tall with 70kg
body mass and the average body proportion, is assumed for
simplicity, and the postural variation is neglected regarding
that it is relatively small. Then these parameters can be
assumed constant, as given in Table I.

III. HUMAN BODY JOINT-LINK MODEL

Then, the muscle model introduced in the previous section
is embedded into the joint-link model of the human body, to
formulate the estimation algorithm. In this work, a human
body is modeled to consist of 4 links with correspondent
masses, which are connected via 3 joints as schematically
shown in Fig. 1.

A. Equations of Motion

Assuming that there exists no external force nor moment
other than the ground reaction force (FGRF ) applied to the
subject, the equation of motion of a leg in scope during
normal walking is written as follows, regardless of the
number of supporting legs: single or double support phases,
i.e. during double support phase, two equations for each leg
are superpositioned with the smooth transition assumption
[14]. The frame of reference is assumed attached at the hip
joint for the description.

MΘ̈ + C +G+RFMTUs + JTFGRF = 0 (9)

for one leg in scope, where, Θ is the angular displacement
vector of the three joints of the two legs, M(Θ) is the mass
and inertia matrix, C(Θ, Θ̇) is the Coriolis terms, G(Θ)
is the gravitational terms, R(Θ) is the muscle embedding
transformation, FMTUs is the force output vector of the
muscle-tendon units, J(Θ) is the Jacobian, and lastly FGRF

is the ground reaction force vector. To be specific, these terms
are written as follows.

Θ = [θ1 θ2 θ3]
T (10)

M(Θ) =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 (11)

C(Θ, Θ̇) = [C1 C2 C3]
T (12)

G(Θ) = [G1 G2 G3]
T (13)

R(Θ) =

 R11 R12 . . . R123

R21 R22 . . . R223

R31 R32 . . . R323

 (14)

FMTUs(Θ, Θ̇) = [FMTU1 FMTU2 . . . FMTU23]
T(15)

J(Θ) =

[
J11 J12 J13
J21 J22 J23

]
(16)

FGRF =

[
fx
fy

]
(17)

where,

M11 =
m2l

2
1

4
+ I2 + (m3 +m4)l21 (18)

M12 = M21 =

(
m3l1l2

2
+m4l1l2

)
cos(θ2 − θ1) (19)

M13 = M31 =

(
m4l1l3

2

)
cos(θ3 − θ1) (20)

M22 =
m3l

2
2

4
+ I3 +m4l

2
2 (21)

M23 = M32 =

(
m4l2l3

2

)
cos(θ3 − θ2) (22)

M33 =
m4l

2
3

4
+ I4 (23)

C1 = −
(
m3l1l2

2
+m4l1l2

)
θ̇22 sin(θ2 − θ1)

−
(
m4l1l3

2

)
θ̇23 sin(θ3 − θ1) (24)

C2 =

(
m3l1l2

2
+m4l1l2

)
θ̇21 sin(θ2 − θ1)

−
(
m4l2l3

2

)
θ̇23 sin(θ3 − θ2) (25)

C3 =

(
m4l1l3

2

)
θ̇21 sin(θ3 − θ1)

+

(
m4l2l3

2

)
θ̇22 sin(θ3 − θ2) (26)

847



G1 = −gc1 (m1h) (27)

G2 = −gc2
(
m1l1 +

m2l1
2

)
(28)

G3 = −gc3
(
m1l2 +m2l2 +

m3l2
2

)
(29)

Rij = ±εdi (30)

where, ε = 1 if muscle j works on the joint i, otherwise
ε = 0. Sign of Rij depends on the direction of the torque
the muscle j exert on the joint i.

J11 = −l1s1 − l2s12 − l3s123 (31)
J12 = −l2s12 − l3s123 (32)
J13 = −l3s123 (33)
J21 = l1c1 + l2c12 + l3c123 (34)
J22 = l2c12 + l3c123 (35)
J23 = l3c123 (36)

where, si = sin θi, cj = cos θj , sij = sin(θi + θj), and
cijk = cos(θi +θj +θk), respectively, and the corresponding
parameters used in the estimation algorithm are shown in
Table II [15]. Where, the foot link length l3 is assumed to
be proportional to the step cycle to have 0 at hill-strike and
l3 at toe-off in the model.

TABLE II
PARAMETERS OF HUMAN BODY JOINT-LINK MODEL [15]

Symbol Meaning Value [Unit]
I1 Upper Body Inertia Mnt 2.87 [kgm2]
I2 Upper Leg Inertia Mnt 0.112 [kgm2]
I3 Lower Leg Inertia Mnt 0.051 [kgm2]
I4 Foot Inertia Mnt 0.006 [kgm2]
m1 Upper Body Mass 47.46 [kg]
m2 Upper Leg Mass 7.00 [kg]
m3 Lower Leg Mass 3.26 [kg]
m4 Foot Mass 1.02 [kg]
l1 Upper Leg Link Length 0.421 [m]
l2 Lower Leg Link Length 0.423 [m]
l3 Foot Link Length 0.261 [m]
g Gravitational Aceel. 9.81 [m/s2]

B. Estimation Algorithm Embodying Hill’s Muscle Model

As briefly shown above, one of the keys for the estimation
is the use of nonlinear muscle model in the human body
dynamics. The equations introduced above are transformed
into the estimation algorithm, which is recursive least squares
in this work. The formulation is as follows. Splitting FMTUs

into FCEs and FPEs, then equation (9) becomes

MΘ̈ + C +G+RFCEs +RFPEs + JTFGRF = 0 (37)

then, substituting equation (3), it becomes

R [fCvifCliFCmaxi]Am =

−
[
MΘ̈ + C +G+RFPEs + JTFGRF

]
(38)

where, [fCvifCliFCmaxi] is the muscle grouping matrix
(23×10), and Am is the muscle group activation rate vector
(10×1) which is estimated. Further formulation for the
estimation algorithm follows in the next section.

Fig. 2. Schematic flow of the proposed method.

IV. MUSCLE GROUP ACTIVATION ESTIMATION

In this section, using the model elaborated in the previous
section, the individual muscle group activation rates are
estimated.

A. Schematic Flow

As shown in Fig. 2, when people walk, the outputs, which
are easily measurable, are the joint angles and the ground
reaction forces, using encoders and force sensors. The point
of this work is to estimate the inputs from 23 actuators in
10 groups–muscles in human plant, by only using those
external measurements. The schematic flow of this work
consists of the data reconstruction, and the estimation of
the individual muscle group activation rates using the least
squares algorithm. Then the estimation results are compared
with evidences from EMG signal measurements and verified
in the following sections.

B. Measurement Data Reconstruction

The external measurement signals used in this work, are
reconstructed ones based on findings of the literature. The
angular displacement profiles of the hip, knee, and ankle
joints, and the ground reaction force profiles are stacked with
time, and fed into the estimation algorithm.

The angular displacements of the human lower limb joints
are reconstructed based on the measurement data from [16],
and the ground reaction force profiles are reconstructed using
the measured data in [17]. Standard deviation originating
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Fig. 3. Reconstructed joint angle displacements of the average normal
subject during walking. Hip angle (upper), knee angle (middle), and ankle
angle (lower) are shown with respect to the gait cycle.

Fig. 4. Reconstructed joint angle displacements of the average patient with
knee disease during walking.

from multiple subjects and trials of the measurements is
reflected in the reconstructed signals, which are stacked and
synchronized along with time, and normalized to meet the
average subject assumption. The reconstructed joint angle
displacements are shown in Fig. 3 for the average normal
subject and 4 for the average patient, and the reconstructed
ground reaction forces are shown in Fig. 5 for the average
normal subject and 6 for the average patient with knee
disease. Throughout the estimation scheme, a normal walk-
ing, which is characterized by approximately 1.2 m/s and
105 steps per minute, is assumed. Parameters used in the
algorithm comply with those in Table I and II.

C. Algorithm: the Recursive Least Squares

For the estimation the recursive least squares method is
used. Using the reconstructed measurements of Fig. 3∼6 and
equation (38), the muscle group activation matrix Am 10×1
is estimated. Where,

Am =
[
am1 am2 . . . am10

]
(39)

and 0 ≤ ami ≤ 1. The estimate vector Am is calculated at
every 1 ms with the window of 60 samples, and plotted with
regard to time.

Fig. 5. Reconstructed ground reaction forces (GRF) of the average normal
subject during walking. Vertical component of GRF in red has larger in
amplitude than horizontal component in blue. GRFs of both legs are shown
in the upper graph, and the sum of the two is shown in the lower with
respect to the gait cycle.

Fig. 6. Reconstructed ground reaction forces (GRF) of the average patient
with knee disease during normal walking.

V. RESULTS AND DISCUSSION

The estimation results from the proposed algorithm are
compared to the measurement data using EMG (electromyo-
graphic) signal. The patterns from [18] are used for the
main reference of the comparison. As shown in Fig. 7,
the estimation result of the average normal subject is fairly
comparable to the EMG measurement results, which supports
the validity of the estimation. And in Fig. 8, it is shown
that the patient’s muscle activation deteriorated with low
activation levels for all muscle groups.

However, the accuracy of the estimation should be en-
hanced via refinement. Moreover, the external measurement
data used in this work was collected from multiple previous
works, which fundamentally lacks consistency. Data gather-
ing from a single experiment is needed; experiments should
be done, and the effectiveness of the proposed method needs
to be further shown.

VI. CONCLUSION

A simple and fast estimation method for extracting the
activation rate of the human leg muscle groups using the
recursive least squares embodying Hill’s muscle model is
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Fig. 7. Estimated results of the human leg muscle group activation rate
of the average normal subject. From the top left to the right and then to
the bottom, the activation rates of 10 muscle groups labeled in Table I are
shown. The transparent gray lines indicate the EMG measurements [18] of
the representative muscles of the corresponding groups.

Fig. 8. Estimated results of the human leg muscle group activation rate of
the average patient. From the top left to the right and then to the bottom,
the activation rates of 10 muscle groups labeled in Table I are shown.

proposed. The output force of each leg muscle group can be
simply estimated. The estimation result is fairly comparable

to those from electromyography, yet much simpler and
less invasive. Considering the importance of the knowledge
regarding the activation and deterioration state of leg mus-
cles, the proposed method is expected to contribute to the
progress in helping patients with gait problems, by providing
a simple, accurate, and less invasive estimation data to the
developers. Our future work will include the enhancement
of the estimation accuracy, the verification of the proposed
method with real-time measurements and estimation, which
will eventually lead to the controller design of adaptive type
walking assist devices.
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